rust-lightning/lightning/src/ln/peer_handler.rs

1247 lines
55 KiB
Rust
Raw Normal View History

//! Top level peer message handling and socket handling logic lives here.
//!
//! Instead of actually servicing sockets ourselves we require that you implement the
//! SocketDescriptor interface and use that to receive actions which you should perform on the
//! socket, and call into PeerManager with bytes read from the socket. The PeerManager will then
//! call into the provided message handlers (probably a ChannelManager and Router) with messages
//! they should handle, and encoding/sending response messages.
2017-12-25 01:05:27 -05:00
use secp256k1::key::{SecretKey,PublicKey};
use ln::features::InitFeatures;
2017-12-25 01:05:27 -05:00
use ln::msgs;
use ln::msgs::ChannelMessageHandler;
use ln::channelmanager::{SimpleArcChannelManager, SimpleRefChannelManager};
use util::ser::VecWriter;
2017-12-25 01:05:27 -05:00
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
use ln::wire;
use ln::wire::Encode;
2017-12-25 01:05:27 -05:00
use util::byte_utils;
use util::events::{MessageSendEvent, MessageSendEventsProvider};
use util::logger::Logger;
2017-12-25 01:05:27 -05:00
use std::collections::{HashMap,hash_map,HashSet,LinkedList};
2017-12-25 01:05:27 -05:00
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::{cmp,error,hash,fmt};
use std::ops::Deref;
2017-12-25 01:05:27 -05:00
use bitcoin_hashes::sha256::Hash as Sha256;
use bitcoin_hashes::sha256::HashEngine as Sha256Engine;
use bitcoin_hashes::{HashEngine, Hash};
/// Provides references to trait impls which handle different types of messages.
pub struct MessageHandler<CM: Deref> where CM::Target: msgs::ChannelMessageHandler {
/// A message handler which handles messages specific to channels. Usually this is just a
/// ChannelManager object.
pub chan_handler: CM,
/// A message handler which handles messages updating our knowledge of the network channel
/// graph. Usually this is just a Router object.
2018-03-19 17:26:29 -04:00
pub route_handler: Arc<msgs::RoutingMessageHandler>,
2017-12-25 01:05:27 -05:00
}
/// Provides an object which can be used to send data to and which uniquely identifies a connection
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
/// implement Hash to meet the PeerManager API.
///
2018-02-27 23:38:52 +01:00
/// For efficiency, Clone should be relatively cheap for this type.
///
2017-12-25 01:05:27 -05:00
/// You probably want to just extend an int and put a file descriptor in a struct and implement
/// send_data. Note that if you are using a higher-level net library that may close() itself, be
/// careful to ensure you don't have races whereby you might register a new connection with an fd
/// the same as a yet-to-be-socket_disconnected()-ed.
2017-12-25 01:05:27 -05:00
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
/// Attempts to send some data from the given slice to the peer.
///
2017-12-25 01:05:27 -05:00
/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
/// Note that in the disconnected case, a socket_disconnected must still fire and further write
2017-12-25 01:05:27 -05:00
/// attempts may occur until that time.
///
/// If the returned size is smaller than data.len(), a write_available event must
2017-12-25 01:05:27 -05:00
/// trigger the next time more data can be written. Additionally, until the a send_data event
/// completes fully, no further read_events should trigger on the same peer!
///
2017-12-25 01:05:27 -05:00
/// If a read_event on this descriptor had previously returned true (indicating that read
/// events should be paused to prevent DoS in the send buffer), resume_read may be set
/// indicating that read events on this descriptor should resume. A resume_read of false does
/// *not* imply that further read events should be paused.
fn send_data(&mut self, data: &[u8], resume_read: bool) -> usize;
/// Disconnect the socket pointed to by this SocketDescriptor. Once this function returns, no
/// more calls to write_buffer_space_avail, read_event or socket_disconnected may be made with
/// this descriptor. No socket_disconnected call should be generated as a result of this call,
/// though obviously races may occur whereby disconnect_socket is called after a call to
/// socket_disconnected but prior to that event completing.
fn disconnect_socket(&mut self);
2017-12-25 01:05:27 -05:00
}
/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
/// generate no further read_event/write_buffer_space_avail calls for the descriptor, only
/// triggering a single socket_disconnected call (unless it was provided in response to a
/// new_*_connection event, in which case no such socket_disconnected() must be generated and the
/// socket be silently disconencted).
pub struct PeerHandleError {
/// Used to indicate that we probably can't make any future connections to this peer, implying
/// we should go ahead and force-close any channels we have with it.
no_connection_possible: bool,
}
2018-03-19 17:26:29 -04:00
impl fmt::Debug for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
2018-03-19 17:26:29 -04:00
}
}
2018-06-14 18:03:16 -04:00
impl fmt::Display for PeerHandleError {
fn fmt(&self, formatter: &mut fmt::Formatter) -> Result<(), fmt::Error> {
formatter.write_str("Peer Sent Invalid Data")
}
}
impl error::Error for PeerHandleError {
fn description(&self) -> &str {
"Peer Sent Invalid Data"
}
}
2017-12-25 01:05:27 -05:00
enum InitSyncTracker{
NoSyncRequested,
ChannelsSyncing(u64),
NodesSyncing(PublicKey),
}
2017-12-25 01:05:27 -05:00
struct Peer {
channel_encryptor: PeerChannelEncryptor,
outbound: bool,
2017-12-25 01:05:27 -05:00
their_node_id: Option<PublicKey>,
their_features: Option<InitFeatures>,
2017-12-25 01:05:27 -05:00
pending_outbound_buffer: LinkedList<Vec<u8>>,
pending_outbound_buffer_first_msg_offset: usize,
awaiting_write_event: bool,
pending_read_buffer: Vec<u8>,
pending_read_buffer_pos: usize,
pending_read_is_header: bool,
sync_status: InitSyncTracker,
awaiting_pong: bool,
}
impl Peer {
2019-01-24 16:41:51 +02:00
/// Returns true if the channel announcements/updates for the given channel should be
/// forwarded to this peer.
/// If we are sending our routing table to this peer and we have not yet sent channel
/// announcements/updates for the given channel_id then we will send it when we get to that
/// point and we shouldn't send it yet to avoid sending duplicate updates. If we've already
/// sent the old versions, we should send the update, and so return true here.
fn should_forward_channel(&self, channel_id: u64)->bool{
match self.sync_status {
InitSyncTracker::NoSyncRequested => true,
InitSyncTracker::ChannelsSyncing(i) => i < channel_id,
InitSyncTracker::NodesSyncing(_) => true,
}
}
2017-12-25 01:05:27 -05:00
}
struct PeerHolder<Descriptor: SocketDescriptor> {
peers: HashMap<Descriptor, Peer>,
/// Added to by do_read_event for cases where we pushed a message onto the send buffer but
/// didn't call do_attempt_write_data to avoid reentrancy. Cleared in process_events()
peers_needing_send: HashSet<Descriptor>,
2017-12-25 01:05:27 -05:00
/// Only add to this set when noise completes:
node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
}
#[cfg(not(any(target_pointer_width = "32", target_pointer_width = "64")))]
fn _check_usize_is_32_or_64() {
// See below, less than 32 bit pointers may be unsafe here!
unsafe { mem::transmute::<*const usize, [u8; 4]>(panic!()); }
}
/// SimpleArcPeerManager is useful when you need a PeerManager with a static lifetime, e.g.
/// when you're using lightning-net-tokio (since tokio::spawn requires parameters with static
/// lifetimes). Other times you can afford a reference, which is more efficient, in which case
/// SimpleRefPeerManager is the more appropriate type. Defining these type aliases prevents
/// issues such as overly long function definitions.
pub type SimpleArcPeerManager<SD, M> = Arc<PeerManager<SD, SimpleArcChannelManager<M>>>;
/// SimpleRefPeerManager is a type alias for a PeerManager reference, and is the reference
/// counterpart to the SimpleArcPeerManager type alias. Use this type by default when you don't
/// need a PeerManager with a static lifetime. You'll need a static lifetime in cases such as
/// usage of lightning-net-tokio (since tokio::spawn requires parameters with static lifetimes).
/// But if this is not necessary, using a reference is more efficient. Defining these type aliases
/// helps with issues such as long function definitions.
pub type SimpleRefPeerManager<'a, SD, M> = PeerManager<SD, SimpleRefChannelManager<'a, M>>;
/// A PeerManager manages a set of peers, described by their SocketDescriptor and marshalls socket
/// events into messages which it passes on to its MessageHandlers.
///
/// Rather than using a plain PeerManager, it is preferable to use either a SimpleArcPeerManager
/// a SimpleRefPeerManager, for conciseness. See their documentation for more details, but
/// essentially you should default to using a SimpleRefPeerManager, and use a
/// SimpleArcPeerManager when you require a PeerManager with a static lifetime, such as when
/// you're using lightning-net-tokio.
pub struct PeerManager<Descriptor: SocketDescriptor, CM: Deref> where CM::Target: msgs::ChannelMessageHandler {
message_handler: MessageHandler<CM>,
2017-12-25 01:05:27 -05:00
peers: Mutex<PeerHolder<Descriptor>>,
our_node_secret: SecretKey,
ephemeral_key_midstate: Sha256Engine,
// Usize needs to be at least 32 bits to avoid overflowing both low and high. If usize is 64
// bits we will never realistically count into high:
peer_counter_low: AtomicUsize,
peer_counter_high: AtomicUsize,
logger: Arc<Logger>,
2017-12-25 01:05:27 -05:00
}
macro_rules! encode_msg {
($msg: expr) => {{
let mut buffer = VecWriter(Vec::new());
wire::write($msg, &mut buffer).unwrap();
buffer.0
}}
2017-12-25 01:05:27 -05:00
}
/// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
/// PeerIds may repeat, but only after socket_disconnected() has been called.
impl<Descriptor: SocketDescriptor, CM: Deref> PeerManager<Descriptor, CM> where CM::Target: msgs::ChannelMessageHandler {
/// Constructs a new PeerManager with the given message handlers and node_id secret key
/// ephemeral_random_data is used to derive per-connection ephemeral keys and must be
/// cryptographically secure random bytes.
pub fn new(message_handler: MessageHandler<CM>, our_node_secret: SecretKey, ephemeral_random_data: &[u8; 32], logger: Arc<Logger>) -> PeerManager<Descriptor, CM> {
let mut ephemeral_key_midstate = Sha256::engine();
ephemeral_key_midstate.input(ephemeral_random_data);
2017-12-25 01:05:27 -05:00
PeerManager {
message_handler: message_handler,
peers: Mutex::new(PeerHolder {
peers: HashMap::new(),
peers_needing_send: HashSet::new(),
node_id_to_descriptor: HashMap::new()
}),
2017-12-25 01:05:27 -05:00
our_node_secret: our_node_secret,
ephemeral_key_midstate,
peer_counter_low: AtomicUsize::new(0),
peer_counter_high: AtomicUsize::new(0),
logger,
2017-12-25 01:05:27 -05:00
}
}
2018-07-22 13:11:58 -04:00
/// Get the list of node ids for peers which have completed the initial handshake.
///
2018-07-22 13:11:58 -04:00
/// For outbound connections, this will be the same as the their_node_id parameter passed in to
/// new_outbound_connection, however entries will only appear once the initial handshake has
/// completed and we are sure the remote peer has the private key for the given node_id.
pub fn get_peer_node_ids(&self) -> Vec<PublicKey> {
let peers = self.peers.lock().unwrap();
peers.peers.values().filter_map(|p| {
if !p.channel_encryptor.is_ready_for_encryption() || p.their_features.is_none() {
return None;
}
p.their_node_id
}).collect()
}
fn get_ephemeral_key(&self) -> SecretKey {
let mut ephemeral_hash = self.ephemeral_key_midstate.clone();
let low = self.peer_counter_low.fetch_add(1, Ordering::AcqRel);
let high = if low == 0 {
self.peer_counter_high.fetch_add(1, Ordering::AcqRel)
} else {
self.peer_counter_high.load(Ordering::Acquire)
};
ephemeral_hash.input(&byte_utils::le64_to_array(low as u64));
ephemeral_hash.input(&byte_utils::le64_to_array(high as u64));
SecretKey::from_slice(&Sha256::from_engine(ephemeral_hash).into_inner()).expect("You broke SHA-256!")
}
2017-12-25 01:05:27 -05:00
/// Indicates a new outbound connection has been established to a node with the given node_id.
/// Note that if an Err is returned here you MUST NOT call socket_disconnected for the new
2017-12-25 01:05:27 -05:00
/// descriptor but must disconnect the connection immediately.
///
/// Returns a small number of bytes to send to the remote node (currently always 50).
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet had a
/// socket_disconnected().
2017-12-25 01:05:27 -05:00
pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone(), self.get_ephemeral_key());
2017-12-25 01:05:27 -05:00
let res = peer_encryptor.get_act_one().to_vec();
let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
outbound: true,
their_node_id: None,
their_features: None,
2017-12-25 01:05:27 -05:00
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
awaiting_pong: false,
2017-12-25 01:05:27 -05:00
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(res)
}
/// Indicates a new inbound connection has been established.
///
2017-12-25 01:05:27 -05:00
/// May refuse the connection by returning an Err, but will never write bytes to the remote end
/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
/// call socket_disconnected for the new descriptor but must disconnect the connection
2017-12-25 01:05:27 -05:00
/// immediately.
///
/// Panics if descriptor is duplicative with some other descriptor which has not yet had
/// socket_disconnected called.
2017-12-25 01:05:27 -05:00
pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
outbound: false,
2017-12-25 01:05:27 -05:00
their_node_id: None,
their_features: None,
2017-12-25 01:05:27 -05:00
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
sync_status: InitSyncTracker::NoSyncRequested,
awaiting_pong: false,
2017-12-25 01:05:27 -05:00
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(())
}
fn do_attempt_write_data(&self, descriptor: &mut Descriptor, peer: &mut Peer) {
macro_rules! encode_and_send_msg {
($msg: expr) => {
{
log_trace!(self, "Encoding and sending sync update message of type {} to {}", $msg.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg)[..]));
}
}
}
const MSG_BUFF_SIZE: usize = 10;
2017-12-25 01:05:27 -05:00
while !peer.awaiting_write_event {
if peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE {
match peer.sync_status {
InitSyncTracker::NoSyncRequested => {},
InitSyncTracker::ChannelsSyncing(c) if c < 0xffff_ffff_ffff_ffff => {
let steps = ((MSG_BUFF_SIZE - peer.pending_outbound_buffer.len() + 2) / 3) as u8;
let all_messages = self.message_handler.route_handler.get_next_channel_announcements(0, steps);
for &(ref announce, ref update_a, ref update_b) in all_messages.iter() {
encode_and_send_msg!(announce);
encode_and_send_msg!(update_a);
encode_and_send_msg!(update_b);
peer.sync_status = InitSyncTracker::ChannelsSyncing(announce.contents.short_channel_id + 1);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::ChannelsSyncing(0xffff_ffff_ffff_ffff);
}
},
InitSyncTracker::ChannelsSyncing(c) if c == 0xffff_ffff_ffff_ffff => {
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(None, steps);
for msg in all_messages.iter() {
encode_and_send_msg!(msg);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
InitSyncTracker::ChannelsSyncing(_) => unreachable!(),
InitSyncTracker::NodesSyncing(key) => {
let steps = (MSG_BUFF_SIZE - peer.pending_outbound_buffer.len()) as u8;
let all_messages = self.message_handler.route_handler.get_next_node_announcements(Some(&key), steps);
for msg in all_messages.iter() {
encode_and_send_msg!(msg);
peer.sync_status = InitSyncTracker::NodesSyncing(msg.contents.node_id);
}
if all_messages.is_empty() || all_messages.len() != steps as usize {
peer.sync_status = InitSyncTracker::NoSyncRequested;
}
},
}
}
2017-12-25 01:05:27 -05:00
if {
let next_buff = match peer.pending_outbound_buffer.front() {
None => return,
Some(buff) => buff,
};
let should_be_reading = peer.pending_outbound_buffer.len() < MSG_BUFF_SIZE;
let pending = &next_buff[peer.pending_outbound_buffer_first_msg_offset..];
let data_sent = descriptor.send_data(pending, should_be_reading);
2017-12-25 01:05:27 -05:00
peer.pending_outbound_buffer_first_msg_offset += data_sent;
if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
} {
peer.pending_outbound_buffer_first_msg_offset = 0;
peer.pending_outbound_buffer.pop_front();
} else {
peer.awaiting_write_event = true;
}
}
}
/// Indicates that there is room to write data to the given socket descriptor.
///
2017-12-25 01:05:27 -05:00
/// May return an Err to indicate that the connection should be closed.
///
2017-12-25 01:05:27 -05:00
/// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
/// new_*\_connection) before returning. Thus, be very careful with reentrancy issues! The
/// invariants around calling write_buffer_space_avail in case a write did not fully complete
/// must still hold - be ready to call write_buffer_space_avail again if a write call generated
/// here isn't sufficient! Panics if the descriptor was not previously registered in a
/// new_\*_connection event.
pub fn write_buffer_space_avail(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
2017-12-25 01:05:27 -05:00
let mut peers = self.peers.lock().unwrap();
match peers.peers.get_mut(descriptor) {
None => panic!("Descriptor for write_event is not already known to PeerManager"),
Some(peer) => {
peer.awaiting_write_event = false;
self.do_attempt_write_data(descriptor, peer);
2017-12-25 01:05:27 -05:00
}
};
Ok(())
}
/// Indicates that data was read from the given socket descriptor.
///
2017-12-25 01:05:27 -05:00
/// May return an Err to indicate that the connection should be closed.
///
/// Will *not* call back into send_data on any descriptors to avoid reentrancy complexity.
/// Thus, however, you almost certainly want to call process_events() after any read_event to
/// generate send_data calls to handle responses.
///
/// If Ok(true) is returned, further read_events should not be triggered until a send_data call
/// on this file descriptor has resume_read set (preventing DoS issues in the send buffer).
///
2017-12-25 01:05:27 -05:00
/// Panics if the descriptor was not previously registered in a new_*_connection event.
pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
2018-03-19 17:26:29 -04:00
match self.do_read_event(peer_descriptor, data) {
Ok(res) => Ok(res),
Err(e) => {
self.disconnect_event_internal(peer_descriptor, e.no_connection_possible);
2018-03-19 17:26:29 -04:00
Err(e)
}
}
}
fn do_read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
2017-12-25 01:05:27 -05:00
let pause_read = {
let mut peers_lock = self.peers.lock().unwrap();
let peers = &mut *peers_lock;
let pause_read = match peers.peers.get_mut(peer_descriptor) {
2017-12-25 01:05:27 -05:00
None => panic!("Descriptor for read_event is not already known to PeerManager"),
Some(peer) => {
assert!(peer.pending_read_buffer.len() > 0);
assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
let mut read_pos = 0;
while read_pos < data.len() {
{
let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
read_pos += data_to_copy;
peer.pending_read_buffer_pos += data_to_copy;
}
2017-12-25 01:05:27 -05:00
if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
peer.pending_read_buffer_pos = 0;
macro_rules! encode_and_send_msg {
($msg: expr) => {
2018-08-16 22:38:49 -04:00
{
log_trace!(self, "Encoding and sending message of type {} to {}", $msg.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(&$msg)[..]));
peers.peers_needing_send.insert(peer_descriptor.clone());
2018-08-16 22:38:49 -04:00
}
}
}
macro_rules! try_potential_handleerror {
($thing: expr) => {
match $thing {
Ok(x) => x,
Err(e) => {
match e.action {
msgs::ErrorAction::DisconnectPeer { msg: _ } => {
//TODO: Try to push msg
log_trace!(self, "Got Err handling message, disconnecting peer because {}", e.err);
return Err(PeerHandleError{ no_connection_possible: false });
},
msgs::ErrorAction::IgnoreError => {
log_trace!(self, "Got Err handling message, ignoring because {}", e.err);
continue;
},
msgs::ErrorAction::SendErrorMessage { msg } => {
log_trace!(self, "Got Err handling message, sending Error message because {}", e.err);
encode_and_send_msg!(msg);
continue;
},
}
}
};
}
}
macro_rules! insert_node_id {
() => {
match peers.node_id_to_descriptor.entry(peer.their_node_id.unwrap()) {
hash_map::Entry::Occupied(_) => {
log_trace!(self, "Got second connection with {}, closing", log_pubkey!(peer.their_node_id.unwrap()));
peer.their_node_id = None; // Unset so that we don't generate a peer_disconnected event
return Err(PeerHandleError{ no_connection_possible: false })
},
hash_map::Entry::Vacant(entry) => {
log_trace!(self, "Finished noise handshake for connection with {}", log_pubkey!(peer.their_node_id.unwrap()));
entry.insert(peer_descriptor.clone())
},
};
}
}
2017-12-25 01:05:27 -05:00
let next_step = peer.channel_encryptor.get_noise_step();
match next_step {
NextNoiseStep::ActOne => {
let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_keys(&peer.pending_read_buffer[..], &self.our_node_secret, self.get_ephemeral_key())).to_vec();
2017-12-25 01:05:27 -05:00
peer.pending_outbound_buffer.push_back(act_two);
peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
},
NextNoiseStep::ActTwo => {
let (act_three, their_node_id) = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret));
peer.pending_outbound_buffer.push_back(act_three.to_vec());
2017-12-25 01:05:27 -05:00
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
2018-03-29 16:42:44 -04:00
peer.pending_read_is_header = true;
2017-12-25 01:05:27 -05:00
peer.their_node_id = Some(their_node_id);
insert_node_id!();
let mut features = InitFeatures::supported();
if self.message_handler.route_handler.should_request_full_sync(&peer.their_node_id.unwrap()) {
features.set_initial_routing_sync();
}
let resp = msgs::Init { features };
encode_and_send_msg!(resp);
2017-12-25 01:05:27 -05:00
},
NextNoiseStep::ActThree => {
let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
2017-12-25 01:05:27 -05:00
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id!();
2017-12-25 01:05:27 -05:00
},
NextNoiseStep::NoiseComplete => {
if peer.pending_read_is_header {
let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
if msg_len < 2 { // Need at least the message type tag
return Err(PeerHandleError{ no_connection_possible: false });
2017-12-25 01:05:27 -05:00
}
peer.pending_read_is_header = false;
} else {
let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
assert!(msg_data.len() >= 2);
// Reset read buffer
peer.pending_read_buffer = [0; 18].to_vec();
peer.pending_read_is_header = true;
let mut reader = ::std::io::Cursor::new(&msg_data[..]);
let message_result = wire::read(&mut reader);
let message = match message_result {
Ok(x) => x,
Err(e) => {
match e {
msgs::DecodeError::UnknownVersion => return Err(PeerHandleError { no_connection_possible: false }),
msgs::DecodeError::UnknownRequiredFeature => {
log_debug!(self, "Got a channel/node announcement with an known required feature flag, you may want to update!");
continue;
}
msgs::DecodeError::InvalidValue => {
log_debug!(self, "Got an invalid value while deserializing message");
return Err(PeerHandleError { no_connection_possible: false });
}
msgs::DecodeError::ShortRead => {
log_debug!(self, "Deserialization failed due to shortness of message");
return Err(PeerHandleError { no_connection_possible: false });
}
msgs::DecodeError::ExtraAddressesPerType => {
log_debug!(self, "Error decoding message, ignoring due to lnd spec incompatibility. See https://github.com/lightningnetwork/lnd/issues/1407");
continue;
}
msgs::DecodeError::BadLengthDescriptor => return Err(PeerHandleError { no_connection_possible: false }),
msgs::DecodeError::Io(_) => return Err(PeerHandleError { no_connection_possible: false }),
}
}
};
log_trace!(self, "Received message of type {} from {}", message.type_id(), log_pubkey!(peer.their_node_id.unwrap()));
// Need an Init as first message
if let wire::Message::Init(_) = message {
} else if peer.their_features.is_none() {
log_trace!(self, "Peer {} sent non-Init first message", log_pubkey!(peer.their_node_id.unwrap()));
return Err(PeerHandleError{ no_connection_possible: false });
}
match message {
// Setup and Control messages:
wire::Message::Init(msg) => {
if msg.features.requires_unknown_bits() {
log_info!(self, "Peer global features required unknown version bits");
return Err(PeerHandleError{ no_connection_possible: true });
2017-12-25 01:05:27 -05:00
}
if msg.features.requires_unknown_bits() {
log_info!(self, "Peer local features required unknown version bits");
return Err(PeerHandleError{ no_connection_possible: true });
}
if peer.their_features.is_some() {
return Err(PeerHandleError{ no_connection_possible: false });
}
log_info!(self, "Received peer Init message: data_loss_protect: {}, initial_routing_sync: {}, upfront_shutdown_script: {}, unkown local flags: {}, unknown global flags: {}",
if msg.features.supports_data_loss_protect() { "supported" } else { "not supported"},
if msg.features.initial_routing_sync() { "requested" } else { "not requested" },
if msg.features.supports_upfront_shutdown_script() { "supported" } else { "not supported"},
if msg.features.supports_unknown_bits() { "present" } else { "none" },
if msg.features.supports_unknown_bits() { "present" } else { "none" });
if msg.features.initial_routing_sync() {
peer.sync_status = InitSyncTracker::ChannelsSyncing(0);
peers.peers_needing_send.insert(peer_descriptor.clone());
}
if !peer.outbound {
let mut features = InitFeatures::supported();
if self.message_handler.route_handler.should_request_full_sync(&peer.their_node_id.unwrap()) {
features.set_initial_routing_sync();
}
let resp = msgs::Init { features };
encode_and_send_msg!(resp);
}
self.message_handler.chan_handler.peer_connected(&peer.their_node_id.unwrap(), &msg);
peer.their_features = Some(msg.features);
2017-12-25 01:05:27 -05:00
},
wire::Message::Error(msg) => {
let mut data_is_printable = true;
for b in msg.data.bytes() {
if b < 32 || b > 126 {
data_is_printable = false;
break;
}
}
if data_is_printable {
log_debug!(self, "Got Err message from {}: {}", log_pubkey!(peer.their_node_id.unwrap()), msg.data);
} else {
log_debug!(self, "Got Err message from {} with non-ASCII error message", log_pubkey!(peer.their_node_id.unwrap()));
}
self.message_handler.chan_handler.handle_error(&peer.their_node_id.unwrap(), &msg);
if msg.channel_id == [0; 32] {
return Err(PeerHandleError{ no_connection_possible: true });
}
2017-12-25 01:05:27 -05:00
},
wire::Message::Ping(msg) => {
if msg.ponglen < 65532 {
let resp = msgs::Pong { byteslen: msg.ponglen };
encode_and_send_msg!(resp);
}
},
wire::Message::Pong(_msg) => {
peer.awaiting_pong = false;
},
// Channel messages:
wire::Message::OpenChannel(msg) => {
self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::AcceptChannel(msg) => {
self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), peer.their_features.clone().unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::FundingCreated(msg) => {
self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::FundingSigned(msg) => {
self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::FundingLocked(msg) => {
self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::Shutdown(msg) => {
self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::ClosingSigned(msg) => {
self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
// Commitment messages:
wire::Message::UpdateAddHTLC(msg) => {
self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::UpdateFulfillHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::UpdateFailHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::UpdateFailMalformedHTLC(msg) => {
self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::CommitmentSigned(msg) => {
self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::RevokeAndACK(msg) => {
self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::UpdateFee(msg) => {
self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::ChannelReestablish(msg) => {
self.message_handler.chan_handler.handle_channel_reestablish(&peer.their_node_id.unwrap(), &msg);
},
2017-12-25 01:05:27 -05:00
// Routing messages:
wire::Message::AnnouncementSignatures(msg) => {
self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg);
2017-12-25 01:05:27 -05:00
},
wire::Message::ChannelAnnouncement(msg) => {
2017-12-25 01:05:27 -05:00
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_announcement(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
},
wire::Message::NodeAnnouncement(msg) => {
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_node_announcement(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
2017-12-25 01:05:27 -05:00
},
wire::Message::ChannelUpdate(msg) => {
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_update(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
2017-12-25 01:05:27 -05:00
},
// Unknown messages:
wire::Message::Unknown(msg_type) if msg_type.is_even() => {
// Fail the channel if message is an even, unknown type as per BOLT #1.
return Err(PeerHandleError{ no_connection_possible: true });
2017-12-25 01:05:27 -05:00
},
wire::Message::Unknown(_) => {},
2017-12-25 01:05:27 -05:00
}
}
}
}
}
}
self.do_attempt_write_data(peer_descriptor, peer);
2017-12-25 01:05:27 -05:00
peer.pending_outbound_buffer.len() > 10 // pause_read
2017-12-25 01:05:27 -05:00
}
};
pause_read
};
Ok(pause_read)
}
/// Checks for any events generated by our handlers and processes them. Includes sending most
/// response messages as well as messages generated by calls to handler functions directly (eg
/// functions like ChannelManager::process_pending_htlc_forward or send_payment).
pub fn process_events(&self) {
{
2017-12-25 01:05:27 -05:00
// TODO: There are some DoS attacks here where you can flood someone's outbound send
// buffer by doing things like announcing channels on another node. We should be willing to
// drop optional-ish messages when send buffers get full!
let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_msg_events();
let mut peers_lock = self.peers.lock().unwrap();
let peers = &mut *peers_lock;
2017-12-25 01:05:27 -05:00
for event in events_generated.drain(..) {
macro_rules! get_peer_for_forwarding {
($node_id: expr, $handle_no_such_peer: block) => {
{
let descriptor = match peers.node_id_to_descriptor.get($node_id) {
Some(descriptor) => descriptor.clone(),
None => {
$handle_no_such_peer;
continue;
},
};
match peers.peers.get_mut(&descriptor) {
Some(peer) => {
if peer.their_features.is_none() {
$handle_no_such_peer;
continue;
}
2017-12-25 01:05:27 -05:00
(descriptor, peer)
},
None => panic!("Inconsistent peers set state!"),
}
}
}
}
match event {
MessageSendEvent::SendAcceptChannel { ref node_id, ref msg } => {
log_trace!(self, "Handling SendAcceptChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendOpenChannel { ref node_id, ref msg } => {
2018-08-16 22:38:49 -04:00
log_trace!(self, "Handling SendOpenChannel event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Drop the pending channel? (or just let it timeout, but that sucks)
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendFundingCreated { ref node_id, ref msg } => {
2018-08-16 22:38:49 -04:00
log_trace!(self, "Handling SendFundingCreated event in peer_handler for node {} for channel {} (which becomes {})",
log_pubkey!(node_id),
log_bytes!(msg.temporary_channel_id),
log_funding_channel_id!(msg.funding_txid, msg.funding_output_index));
2017-12-25 01:05:27 -05:00
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
2017-12-25 01:05:27 -05:00
},
MessageSendEvent::SendFundingSigned { ref node_id, ref msg } => {
log_trace!(self, "Handling SendFundingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendFundingLocked { ref node_id, ref msg } => {
log_trace!(self, "Handling SendFundingLocked event in peer_handler for node {} for channel {}",
2018-08-16 22:38:49 -04:00
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
2017-12-25 01:05:27 -05:00
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendAnnouncementSignatures { ref node_id, ref msg } => {
log_trace!(self, "Handling SendAnnouncementSignatures event in peer_handler for node {} for channel {})",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
2017-12-25 01:05:27 -05:00
},
MessageSendEvent::UpdateHTLCs { ref node_id, updates: msgs::CommitmentUpdate { ref update_add_htlcs, ref update_fulfill_htlcs, ref update_fail_htlcs, ref update_fail_malformed_htlcs, ref update_fee, ref commitment_signed } } => {
log_trace!(self, "Handling UpdateHTLCs event in peer_handler for node {} with {} adds, {} fulfills, {} fails for channel {}",
2018-08-16 22:38:49 -04:00
log_pubkey!(node_id),
update_add_htlcs.len(),
update_fulfill_htlcs.len(),
update_fail_htlcs.len(),
log_bytes!(commitment_signed.channel_id));
2017-12-25 01:05:27 -05:00
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
for msg in update_add_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
2017-12-25 01:05:27 -05:00
}
for msg in update_fulfill_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
}
for msg in update_fail_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
}
for msg in update_fail_malformed_htlcs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
}
2018-09-26 19:54:28 -04:00
if let &Some(ref msg) = update_fee {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
2018-09-26 19:54:28 -04:00
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_signed)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendRevokeAndACK { ref node_id, ref msg } => {
log_trace!(self, "Handling SendRevokeAndACK event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendClosingSigned { ref node_id, ref msg } => {
log_trace!(self, "Handling SendClosingSigned event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::SendShutdown { ref node_id, ref msg } => {
2018-08-16 22:38:49 -04:00
log_trace!(self, "Handling Shutdown event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
2018-07-22 23:03:31 -04:00
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
2018-07-22 23:03:31 -04:00
},
MessageSendEvent::SendChannelReestablish { ref node_id, ref msg } => {
log_trace!(self, "Handling SendChannelReestablish event in peer_handler for node {} for channel {}",
log_pubkey!(node_id),
log_bytes!(msg.channel_id));
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
MessageSendEvent::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
2018-08-16 22:38:49 -04:00
log_trace!(self, "Handling BroadcastChannelAnnouncement event in peer_handler for short channel id {}", msg.contents.short_channel_id);
if self.message_handler.route_handler.handle_channel_announcement(msg).is_ok() && self.message_handler.route_handler.handle_channel_update(update_msg).is_ok() {
let encoded_msg = encode_msg!(msg);
let encoded_update_msg = encode_msg!(update_msg);
2017-12-25 01:05:27 -05:00
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
!peer.should_forward_channel(msg.contents.short_channel_id) {
continue
}
match peer.their_node_id {
None => continue,
Some(their_node_id) => {
if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
continue
}
2017-12-25 01:05:27 -05:00
}
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..]));
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
}
}
},
MessageSendEvent::BroadcastChannelUpdate { ref msg } => {
2018-08-16 22:38:49 -04:00
log_trace!(self, "Handling BroadcastChannelUpdate event in peer_handler for short channel id {}", msg.contents.short_channel_id);
if self.message_handler.route_handler.handle_channel_update(msg).is_ok() {
let encoded_msg = encode_msg!(msg);
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
if !peer.channel_encryptor.is_ready_for_encryption() || peer.their_features.is_none() ||
!peer.should_forward_channel(msg.contents.short_channel_id) {
continue
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
self.do_attempt_write_data(&mut (*descriptor).clone(), peer);
2017-12-25 01:05:27 -05:00
}
}
},
MessageSendEvent::PaymentFailureNetworkUpdate { ref update } => {
self.message_handler.route_handler.handle_htlc_fail_channel_update(update);
},
MessageSendEvent::HandleError { ref node_id, ref action } => {
match *action {
msgs::ErrorAction::DisconnectPeer { ref msg } => {
if let Some(mut descriptor) = peers.node_id_to_descriptor.remove(node_id) {
peers.peers_needing_send.remove(&descriptor);
if let Some(mut peer) = peers.peers.remove(&descriptor) {
if let Some(ref msg) = *msg {
log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
// This isn't guaranteed to work, but if there is enough free
// room in the send buffer, put the error message there...
self.do_attempt_write_data(&mut descriptor, &mut peer);
} else {
log_trace!(self, "Handling DisconnectPeer HandleError event in peer_handler for node {} with no message", log_pubkey!(node_id));
}
}
descriptor.disconnect_socket();
self.message_handler.chan_handler.peer_disconnected(&node_id, false);
}
},
msgs::ErrorAction::IgnoreError => {},
msgs::ErrorAction::SendErrorMessage { ref msg } => {
log_trace!(self, "Handling SendErrorMessage HandleError event in peer_handler for node {} with message {}",
log_pubkey!(node_id),
msg.data);
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg)));
self.do_attempt_write_data(&mut descriptor, peer);
},
}
}
2017-12-25 01:05:27 -05:00
}
}
for mut descriptor in peers.peers_needing_send.drain() {
match peers.peers.get_mut(&descriptor) {
Some(peer) => self.do_attempt_write_data(&mut descriptor, peer),
None => panic!("Inconsistent peers set state!"),
}
}
}
2017-12-25 01:05:27 -05:00
}
/// Indicates that the given socket descriptor's connection is now closed.
///
/// This must only be called if the socket has been disconnected by the peer or your own
/// decision to disconnect it and must NOT be called in any case where other parts of this
/// library (eg PeerHandleError, explicit disconnect_socket calls) instruct you to disconnect
/// the peer.
///
2017-12-25 01:05:27 -05:00
/// Panics if the descriptor was not previously registered in a successful new_*_connection event.
pub fn socket_disconnected(&self, descriptor: &Descriptor) {
self.disconnect_event_internal(descriptor, false);
}
fn disconnect_event_internal(&self, descriptor: &Descriptor, no_connection_possible: bool) {
2017-12-25 01:05:27 -05:00
let mut peers = self.peers.lock().unwrap();
peers.peers_needing_send.remove(descriptor);
2017-12-25 01:05:27 -05:00
let peer_option = peers.peers.remove(descriptor);
match peer_option {
None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
Some(peer) => {
match peer.their_node_id {
Some(node_id) => {
peers.node_id_to_descriptor.remove(&node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, no_connection_possible);
},
2017-12-25 01:05:27 -05:00
None => {}
}
}
};
}
/// This function should be called roughly once every 30 seconds.
/// It will send pings to each peer and disconnect those which did not respond to the last round of pings.
/// Will most likely call send_data on all of the registered descriptors, thus, be very careful with reentrancy issues!
pub fn timer_tick_occured(&self) {
let mut peers_lock = self.peers.lock().unwrap();
{
let peers = &mut *peers_lock;
let peers_needing_send = &mut peers.peers_needing_send;
let node_id_to_descriptor = &mut peers.node_id_to_descriptor;
let peers = &mut peers.peers;
let mut descriptors_needing_disconnect = Vec::new();
peers.retain(|descriptor, peer| {
if peer.awaiting_pong {
peers_needing_send.remove(descriptor);
descriptors_needing_disconnect.push(descriptor.clone());
match peer.their_node_id {
Some(node_id) => {
node_id_to_descriptor.remove(&node_id);
self.message_handler.chan_handler.peer_disconnected(&node_id, true);
}
None => {}
}
return false;
}
if !peer.channel_encryptor.is_ready_for_encryption() {
// The peer needs to complete its handshake before we can exchange messages
return true;
}
let ping = msgs::Ping {
ponglen: 0,
byteslen: 64,
};
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(&ping)));
let mut descriptor_clone = descriptor.clone();
self.do_attempt_write_data(&mut descriptor_clone, peer);
peer.awaiting_pong = true;
true
});
for mut descriptor in descriptors_needing_disconnect.drain(..) {
descriptor.disconnect_socket();
}
}
}
2017-12-25 01:05:27 -05:00
}
#[cfg(test)]
mod tests {
use ln::peer_handler::{PeerManager, MessageHandler, SocketDescriptor};
use ln::msgs;
use util::events;
use util::test_utils;
use util::logger::Logger;
use secp256k1::Secp256k1;
use secp256k1::key::{SecretKey, PublicKey};
use rand::{thread_rng, Rng};
use std;
use std::sync::{Arc, Mutex};
#[derive(Clone)]
struct FileDescriptor {
fd: u16,
outbound_data: Arc<Mutex<Vec<u8>>>,
}
impl PartialEq for FileDescriptor {
fn eq(&self, other: &Self) -> bool {
self.fd == other.fd
}
}
impl Eq for FileDescriptor { }
impl std::hash::Hash for FileDescriptor {
fn hash<H: std::hash::Hasher>(&self, hasher: &mut H) {
self.fd.hash(hasher)
}
}
impl SocketDescriptor for FileDescriptor {
fn send_data(&mut self, data: &[u8], _resume_read: bool) -> usize {
self.outbound_data.lock().unwrap().extend_from_slice(data);
data.len()
}
fn disconnect_socket(&mut self) {}
}
fn create_chan_handlers(peer_count: usize) -> Vec<test_utils::TestChannelMessageHandler> {
let mut chan_handlers = Vec::new();
for _ in 0..peer_count {
let chan_handler = test_utils::TestChannelMessageHandler::new();
chan_handlers.push(chan_handler);
}
chan_handlers
}
fn create_network<'a>(peer_count: usize, chan_handlers: &'a Vec<test_utils::TestChannelMessageHandler>) -> Vec<PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler>> {
let mut peers = Vec::new();
let mut rng = thread_rng();
let logger : Arc<Logger> = Arc::new(test_utils::TestLogger::new());
let mut ephemeral_bytes = [0; 32];
rng.fill_bytes(&mut ephemeral_bytes);
for i in 0..peer_count {
let router = test_utils::TestRoutingMessageHandler::new();
let node_id = {
let mut key_slice = [0;32];
rng.fill_bytes(&mut key_slice);
SecretKey::from_slice(&key_slice).unwrap()
};
let msg_handler = MessageHandler { chan_handler: &chan_handlers[i], route_handler: Arc::new(router) };
let peer = PeerManager::new(msg_handler, node_id, &ephemeral_bytes, Arc::clone(&logger));
peers.push(peer);
}
peers
}
fn establish_connection<'a>(peer_a: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler>, peer_b: &PeerManager<FileDescriptor, &'a test_utils::TestChannelMessageHandler>) {
let secp_ctx = Secp256k1::new();
let a_id = PublicKey::from_secret_key(&secp_ctx, &peer_a.our_node_secret);
let mut fd_a = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let mut fd_b = FileDescriptor { fd: 1, outbound_data: Arc::new(Mutex::new(Vec::new())) };
let initial_data = peer_b.new_outbound_connection(a_id, fd_b.clone()).unwrap();
peer_a.new_inbound_connection(fd_a.clone()).unwrap();
assert_eq!(peer_a.read_event(&mut fd_a, initial_data).unwrap(), false);
assert_eq!(peer_b.read_event(&mut fd_b, fd_a.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
assert_eq!(peer_a.read_event(&mut fd_a, fd_b.outbound_data.lock().unwrap().split_off(0)).unwrap(), false);
}
#[test]
fn test_disconnect_peer() {
// Simple test which builds a network of PeerManager, connects and brings them to NoiseState::Finished and
2019-01-24 16:41:51 +02:00
// push a DisconnectPeer event to remove the node flagged by id
let chan_handlers = create_chan_handlers(2);
let chan_handler = test_utils::TestChannelMessageHandler::new();
let mut peers = create_network(2, &chan_handlers);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
let secp_ctx = Secp256k1::new();
let their_id = PublicKey::from_secret_key(&secp_ctx, &peers[1].our_node_secret);
chan_handler.pending_events.lock().unwrap().push(events::MessageSendEvent::HandleError {
node_id: their_id,
action: msgs::ErrorAction::DisconnectPeer { msg: None },
});
assert_eq!(chan_handler.pending_events.lock().unwrap().len(), 1);
peers[0].message_handler.chan_handler = &chan_handler;
peers[0].process_events();
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
}
#[test]
fn test_timer_tick_occured(){
// Create peers, a vector of two peer managers, perform initial set up and check that peers[0] has one Peer.
let chan_handlers = create_chan_handlers(2);
let peers = create_network(2, &chan_handlers);
establish_connection(&peers[0], &peers[1]);
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
// peers[0] awaiting_pong is set to true, but the Peer is still connected
peers[0].timer_tick_occured();
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 1);
// Since timer_tick_occured() is called again when awaiting_pong is true, all Peers are disconnected
peers[0].timer_tick_occured();
assert_eq!(peers[0].peers.lock().unwrap().peers.len(), 0);
}
}