rust-lightning/src/ln/peer_handler.rs

605 lines
26 KiB
Rust
Raw Normal View History

2017-12-25 01:05:27 -05:00
use secp256k1::key::{SecretKey,PublicKey};
use ln::msgs;
use ln::msgs::{MsgEncodable,MsgDecodable};
use ln::peer_channel_encryptor::{PeerChannelEncryptor,NextNoiseStep};
use util::byte_utils;
use util::events::{EventsProvider,Event};
use std::collections::{HashMap,LinkedList};
use std::sync::{Arc, Mutex};
use std::cmp;
use std::mem;
use std::hash;
pub struct MessageHandler {
pub chan_handler: Arc<msgs::ChannelMessageHandler>,
pub route_handler: Arc<msgs::RoutingMessageHandler>,
}
/// Provides an object which can be used to send data to and which uniquely identifies a connection
/// to a remote host. You will need to be able to generate multiple of these which meet Eq and
/// implement Hash to meet the PeerManager API.
/// For effeciency, Clone should be relatively cheap for this type.
/// You probably want to just extend an int and put a file descriptor in a struct and implement
/// send_data.
pub trait SocketDescriptor : cmp::Eq + hash::Hash + Clone {
/// Attempts to send some data from the given Vec starting at the given offset to the peer.
/// Returns the amount of data which was sent, possibly 0 if the socket has since disconnected.
/// Note that in the disconnected case, a disconnect_event must still fire and further write
/// attempts may occur until that time.
/// If the returned size is smaller than data.len() - write_offset, a write_available event must
/// trigger the next time more data can be written. Additionally, until the a send_data event
/// completes fully, no further read_events should trigger on the same peer!
/// If a read_event on this descriptor had previously returned true (indicating that read
/// events should be paused to prevent DoS in the send buffer), resume_read may be set
/// indicating that read events on this descriptor should resume. A resume_read of false does
/// *not* imply that further read events should be paused.
fn send_data(&mut self, data: &Vec<u8>, write_offset: usize, resume_read: bool) -> usize;
}
/// Error for PeerManager errors. If you get one of these, you must disconnect the socket and
/// generate no further read/write_events for the descriptor, only triggering a single
/// disconnect_event (unless it was provided in response to a new_*_connection event, in which case
/// no such disconnect_event must be generated and the socket be silently disconencted).
pub struct PeerHandleError {}
struct Peer {
channel_encryptor: PeerChannelEncryptor,
their_node_id: Option<PublicKey>,
pending_outbound_buffer: LinkedList<Vec<u8>>,
pending_outbound_buffer_first_msg_offset: usize,
awaiting_write_event: bool,
pending_read_buffer: Vec<u8>,
pending_read_buffer_pos: usize,
pending_read_is_header: bool,
}
struct PeerHolder<Descriptor: SocketDescriptor> {
peers: HashMap<Descriptor, Peer>,
/// Only add to this set when noise completes:
node_id_to_descriptor: HashMap<PublicKey, Descriptor>,
}
pub struct PeerManager<Descriptor: SocketDescriptor> {
message_handler: MessageHandler,
peers: Mutex<PeerHolder<Descriptor>>,
pending_events: Mutex<Vec<Event>>,
our_node_secret: SecretKey,
}
macro_rules! encode_msg {
($msg: expr, $msg_code: expr) => {
{
let just_msg = $msg.encode();
let mut encoded_msg = Vec::with_capacity(just_msg.len() + 2);
encoded_msg.extend_from_slice(&byte_utils::be16_to_array($msg_code));
encoded_msg.extend_from_slice(&just_msg[..]);
encoded_msg
}
}
}
/// Manages and reacts to connection events. You probably want to use file descriptors as PeerIds.
/// PeerIds may repeat, but only after disconnect_event() has been called.
impl<Descriptor: SocketDescriptor> PeerManager<Descriptor> {
pub fn new(message_handler: MessageHandler, our_node_secret: SecretKey) -> PeerManager<Descriptor> {
PeerManager {
message_handler: message_handler,
peers: Mutex::new(PeerHolder { peers: HashMap::new(), node_id_to_descriptor: HashMap::new() }),
pending_events: Mutex::new(Vec::new()),
our_node_secret: our_node_secret,
}
}
/// Indicates a new outbound connection has been established to a node with the given node_id.
/// Note that if an Err is returned here you MUST NOT call disconnect_event for the new
/// descriptor but must disconnect the connection immediately.
/// Returns some bytes to send to the remote node.
/// Panics if descriptor is duplicative with some other descriptor which has not yet has a
/// disconnect_event.
pub fn new_outbound_connection(&self, their_node_id: PublicKey, descriptor: Descriptor) -> Result<Vec<u8>, PeerHandleError> {
let mut peer_encryptor = PeerChannelEncryptor::new_outbound(their_node_id.clone());
let res = peer_encryptor.get_act_one().to_vec();
let pending_read_buffer = [0; 50].to_vec(); // Noise act two is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
their_node_id: Some(their_node_id),
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(res)
}
/// Indicates a new inbound connection has been established.
/// May refuse the connection by returning an Err, but will never write bytes to the remote end
/// (outbound connector always speaks first). Note that if an Err is returned here you MUST NOT
/// call disconnect_event for the new descriptor but must disconnect the connection
/// immediately.
/// Panics if descriptor is duplicative with some other descriptor which has not yet has a
/// disconnect_event.
pub fn new_inbound_connection(&self, descriptor: Descriptor) -> Result<(), PeerHandleError> {
let peer_encryptor = PeerChannelEncryptor::new_inbound(&self.our_node_secret);
let pending_read_buffer = [0; 50].to_vec(); // Noise act one is 50 bytes
let mut peers = self.peers.lock().unwrap();
if peers.peers.insert(descriptor, Peer {
channel_encryptor: peer_encryptor,
their_node_id: None,
pending_outbound_buffer: LinkedList::new(),
pending_outbound_buffer_first_msg_offset: 0,
awaiting_write_event: false,
pending_read_buffer: pending_read_buffer,
pending_read_buffer_pos: 0,
pending_read_is_header: false,
}).is_some() {
panic!("PeerManager driver duplicated descriptors!");
};
Ok(())
}
fn do_attempt_write_data(descriptor: &mut Descriptor, peer: &mut Peer) {
while !peer.awaiting_write_event {
if {
let next_buff = match peer.pending_outbound_buffer.front() {
None => return,
Some(buff) => buff,
};
let should_be_reading = peer.pending_outbound_buffer.len() < 10;
let data_sent = descriptor.send_data(next_buff, peer.pending_outbound_buffer_first_msg_offset, should_be_reading);
peer.pending_outbound_buffer_first_msg_offset += data_sent;
if peer.pending_outbound_buffer_first_msg_offset == next_buff.len() { true } else { false }
} {
peer.pending_outbound_buffer_first_msg_offset = 0;
peer.pending_outbound_buffer.pop_front();
} else {
peer.awaiting_write_event = true;
}
}
}
/// Indicates that there is room to write data to the given socket descriptor.
/// May return an Err to indicate that the connection should be closed.
/// Will most likely call send_data on the descriptor passed in (or the descriptor handed into
/// new_*_connection) before returning. Thus, be very careful with reentrancy issues! The
/// invariants around calling write_event in case a write did not fully complete must still
/// hold - be ready to call write_event again if a write call generated here isn't sufficient!
/// Panics if the descriptor was not previously registered in a new_*_connection event.
pub fn write_event(&self, descriptor: &mut Descriptor) -> Result<(), PeerHandleError> {
let mut peers = self.peers.lock().unwrap();
match peers.peers.get_mut(descriptor) {
None => panic!("Descriptor for write_event is not already known to PeerManager"),
Some(peer) => {
peer.awaiting_write_event = false;
Self::do_attempt_write_data(descriptor, peer);
}
};
Ok(())
}
/// Indicates that data was read from the given socket descriptor.
/// May return an Err to indicate that the connection should be closed.
/// Will very likely call send_data on the descriptor passed in (or a descriptor handed into
/// new_*_connection) before returning. Thus, be very careful with reentrancy issues! The
/// invariants around calling write_event in case a write did not fully complete must still
/// hold. Note that this function will often call send_data on many peers before returning, not
/// just this peer!
/// If Ok(true) is returned, further read_events should not be triggered until a write_event on
/// this file descriptor has resume_read set (preventing DoS issues in the send buffer). Note
/// that this must be true even if a send_data call with resume_read=true was made during the
/// course of this function!
/// Panics if the descriptor was not previously registered in a new_*_connection event.
pub fn read_event(&self, peer_descriptor: &mut Descriptor, data: Vec<u8>) -> Result<bool, PeerHandleError> {
let mut upstream_events = Vec::new();
let pause_read = {
let mut peers = self.peers.lock().unwrap();
let (should_insert_node_id, pause_read) = match peers.peers.get_mut(peer_descriptor) {
None => panic!("Descriptor for read_event is not already known to PeerManager"),
Some(peer) => {
assert!(peer.pending_read_buffer.len() > 0);
assert!(peer.pending_read_buffer.len() > peer.pending_read_buffer_pos);
macro_rules! try_potential_handleerror {
($thing: expr) => {
match $thing {
Ok(x) => x,
Err(_e) => {
//TODO: Handle e appropriately!
return Err(PeerHandleError{});
}
};
}
}
macro_rules! try_potential_decodeerror {
($thing: expr) => {
match $thing {
Ok(x) => x,
Err(_e) => {
//TODO: Handle e?
return Err(PeerHandleError{});
}
};
}
}
macro_rules! encode_and_send_msg {
($msg: expr, $msg_code: expr) => {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!($msg, $msg_code)[..]));
}
}
let mut insert_node_id = None;
let mut read_pos = 0;
while read_pos < data.len() {
{
let data_to_copy = cmp::min(peer.pending_read_buffer.len() - peer.pending_read_buffer_pos, data.len() - read_pos);
peer.pending_read_buffer[peer.pending_read_buffer_pos..peer.pending_read_buffer_pos + data_to_copy].copy_from_slice(&data[read_pos..read_pos + data_to_copy]);
read_pos += data_to_copy;
peer.pending_read_buffer_pos += data_to_copy;
}
if peer.pending_read_buffer_pos == peer.pending_read_buffer.len() {
let next_step = peer.channel_encryptor.get_noise_step();
match next_step {
NextNoiseStep::ActOne => {
let act_two = try_potential_handleerror!(peer.channel_encryptor.process_act_one_with_key(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec();
peer.pending_outbound_buffer.push_back(act_two);
peer.pending_read_buffer = [0; 66].to_vec(); // act three is 66 bytes long
},
NextNoiseStep::ActTwo => {
let act_three = try_potential_handleerror!(peer.channel_encryptor.process_act_two(&peer.pending_read_buffer[..], &self.our_node_secret)).to_vec();
peer.pending_outbound_buffer.push_back(act_three);
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
insert_node_id = Some(peer.their_node_id.unwrap());
encode_and_send_msg!(msgs::Init {
global_features: msgs::GlobalFeatures::new(),
local_features: msgs::LocalFeatures::new(),
}, 16);
},
NextNoiseStep::ActThree => {
let their_node_id = try_potential_handleerror!(peer.channel_encryptor.process_act_three(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = [0; 18].to_vec(); // Message length header is 18 bytes
peer.pending_read_is_header = true;
peer.their_node_id = Some(their_node_id);
insert_node_id = Some(peer.their_node_id.unwrap());
},
NextNoiseStep::NoiseComplete => {
if peer.pending_read_is_header {
let msg_len = try_potential_handleerror!(peer.channel_encryptor.decrypt_length_header(&peer.pending_read_buffer[..]));
peer.pending_read_buffer = Vec::with_capacity(msg_len as usize + 16);
peer.pending_read_buffer.resize(msg_len as usize + 16, 0);
if msg_len < 2 + 16 { // Need at least the message type tag
return Err(PeerHandleError{});
}
peer.pending_read_is_header = false;
} else {
let msg_data = try_potential_handleerror!(peer.channel_encryptor.decrypt_message(&peer.pending_read_buffer[..]));
assert!(msg_data.len() >= 2);
let msg_type = byte_utils::slice_to_be16(&msg_data[0..2]);
match msg_type {
// Connection control:
16 => {
let msg = try_potential_decodeerror!(msgs::Init::decode(&msg_data[2..]));
if msg.global_features.requires_unknown_bits() {
return Err(PeerHandleError{});
}
if msg.local_features.requires_unknown_bits() {
return Err(PeerHandleError{});
}
//TODO: Store features!
},
17 => {
// Error msg
},
18 => { }, // ping
19 => { }, // pong
// Channel control:
32 => {
let msg = try_potential_decodeerror!(msgs::OpenChannel::decode(&msg_data[2..]));
let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_open_channel(&peer.their_node_id.unwrap(), &msg));
encode_and_send_msg!(resp, 33);
},
33 => {
let msg = try_potential_decodeerror!(msgs::AcceptChannel::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_accept_channel(&peer.their_node_id.unwrap(), &msg));
},
34 => {
let msg = try_potential_decodeerror!(msgs::FundingCreated::decode(&msg_data[2..]));
let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_created(&peer.their_node_id.unwrap(), &msg));
encode_and_send_msg!(resp, 35);
},
35 => {
let msg = try_potential_decodeerror!(msgs::FundingSigned::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_signed(&peer.their_node_id.unwrap(), &msg));
},
36 => {
let msg = try_potential_decodeerror!(msgs::FundingLocked::decode(&msg_data[2..]));
let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_funding_locked(&peer.their_node_id.unwrap(), &msg));
match resp_option {
Some(resp) => encode_and_send_msg!(resp, 259),
None => {},
}
},
38 => {
let msg = try_potential_decodeerror!(msgs::Shutdown::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_shutdown(&peer.their_node_id.unwrap(), &msg));
},
39 => {
let msg = try_potential_decodeerror!(msgs::ClosingSigned::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_closing_signed(&peer.their_node_id.unwrap(), &msg));
},
128 => {
let msg = try_potential_decodeerror!(msgs::UpdateAddHTLC::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_add_htlc(&peer.their_node_id.unwrap(), &msg));
},
130 => {
let msg = try_potential_decodeerror!(msgs::UpdateFulfillHTLC::decode(&msg_data[2..]));
let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fulfill_htlc(&peer.their_node_id.unwrap(), &msg));
match resp_option {
Some(resps) => {
for resp in resps.0 {
encode_and_send_msg!(resp, 128);
}
encode_and_send_msg!(resps.1, 132);
},
None => {},
}
},
131 => {
let msg = try_potential_decodeerror!(msgs::UpdateFailHTLC::decode(&msg_data[2..]));
let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_htlc(&peer.their_node_id.unwrap(), &msg));
match resp_option {
Some(resps) => {
for resp in resps.0 {
encode_and_send_msg!(resp, 128);
}
encode_and_send_msg!(resps.1, 132);
},
None => {},
}
},
135 => {
let msg = try_potential_decodeerror!(msgs::UpdateFailMalformedHTLC::decode(&msg_data[2..]));
let resp_option = try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fail_malformed_htlc(&peer.their_node_id.unwrap(), &msg));
match resp_option {
Some(resps) => {
for resp in resps.0 {
encode_and_send_msg!(resp, 128);
}
encode_and_send_msg!(resps.1, 132);
},
None => {},
}
},
132 => {
let msg = try_potential_decodeerror!(msgs::CommitmentSigned::decode(&msg_data[2..]));
let resp = try_potential_handleerror!(self.message_handler.chan_handler.handle_commitment_signed(&peer.their_node_id.unwrap(), &msg));
encode_and_send_msg!(resp, 133);
},
133 => {
let msg = try_potential_decodeerror!(msgs::RevokeAndACK::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_revoke_and_ack(&peer.their_node_id.unwrap(), &msg));
},
134 => {
let msg = try_potential_decodeerror!(msgs::UpdateFee::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_update_fee(&peer.their_node_id.unwrap(), &msg));
},
136 => { }, // TODO: channel_reestablish
// Routing control:
259 => {
let msg = try_potential_decodeerror!(msgs::AnnouncementSignatures::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.chan_handler.handle_announcement_signatures(&peer.their_node_id.unwrap(), &msg));
},
256 => {
let msg = try_potential_decodeerror!(msgs::ChannelAnnouncement::decode(&msg_data[2..]));
let should_forward = try_potential_handleerror!(self.message_handler.route_handler.handle_channel_announcement(&msg));
if should_forward {
// TODO: forward msg along to all our other peers!
}
},
257 => {
let msg = try_potential_decodeerror!(msgs::NodeAnnouncement::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.route_handler.handle_node_announcement(&msg));
},
258 => {
let msg = try_potential_decodeerror!(msgs::ChannelUpdate::decode(&msg_data[2..]));
try_potential_handleerror!(self.message_handler.route_handler.handle_channel_update(&msg));
},
_ => {
if (msg_type & 1) == 0 {
//TODO: Fail all channels. Kill the peer!
return Err(PeerHandleError{});
}
},
}
peer.pending_read_buffer = [0; 18].to_vec();
peer.pending_read_is_header = true;
}
}
}
peer.pending_read_buffer_pos = 0;
}
}
Self::do_attempt_write_data(peer_descriptor, peer);
(insert_node_id /* should_insert_node_id */, peer.pending_outbound_buffer.len() > 10) // pause_read
}
};
match should_insert_node_id {
Some(node_id) => { peers.node_id_to_descriptor.insert(node_id, peer_descriptor.clone()); },
None => {}
};
// TODO: There are some DoS attacks here where you can flood someone's outbound send
// buffer by doing things like announcing channels on another node. We should be willing to
// drop optional-ish messages when send buffers get full!
let mut events_generated = self.message_handler.chan_handler.get_and_clear_pending_events();
for event in events_generated.drain(..) {
macro_rules! get_peer_for_forwarding {
($node_id: expr, $handle_no_such_peer: block) => {
{
let descriptor = match peers.node_id_to_descriptor.get($node_id) {
Some(descriptor) => descriptor.clone(),
None => {
$handle_no_such_peer;
continue;
},
};
match peers.peers.get_mut(&descriptor) {
Some(peer) => {
(descriptor, peer)
},
None => panic!("Inconsistent peers set state!"),
}
}
}
}
match event {
Event::FundingGenerationReady {..} => { /* Hand upstream */ },
Event::FundingBroadcastSafe {..} => { /* Hand upstream */ },
Event::PaymentReceived {..} => { /* Hand upstream */ },
Event::PendingHTLCsForwardable {..} => {
//TODO: Handle upstream in some confused form so that upstream just knows
//to call us somehow?
},
Event::SendFundingCreated { ref node_id, ref msg } => {
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: generate a DiscardFunding event indicating to the wallet that
//they should just throw away this funding transaction
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 34)));
Self::do_attempt_write_data(&mut descriptor, peer);
continue;
},
Event::SendFundingLocked { ref node_id, ref msg, ref announcement_sigs } => {
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 36)));
match announcement_sigs {
&Some(ref announce_msg) => peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(announce_msg, 259))),
&None => {},
}
Self::do_attempt_write_data(&mut descriptor, peer);
continue;
},
Event::SendHTLCs { ref node_id, ref msgs, ref commitment_msg } => {
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
for msg in msgs {
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 128)));
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(commitment_msg, 132)));
Self::do_attempt_write_data(&mut descriptor, peer);
continue;
},
Event::SendFulfillHTLC { ref node_id, ref msg } => {
let (mut descriptor, peer) = get_peer_for_forwarding!(node_id, {
//TODO: Do whatever we're gonna do for handling dropped messages
});
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encode_msg!(msg, 130)));
Self::do_attempt_write_data(&mut descriptor, peer);
continue;
},
Event::BroadcastChannelAnnouncement { ref msg, ref update_msg } => {
let encoded_msg = encode_msg!(msg, 256);
let encoded_update_msg = encode_msg!(update_msg, 258);
for (ref descriptor, ref mut peer) in peers.peers.iter_mut() {
if !peer.channel_encryptor.is_ready_for_encryption() {
continue
}
match peer.their_node_id {
None => continue,
Some(their_node_id) => {
if their_node_id == msg.contents.node_id_1 || their_node_id == msg.contents.node_id_2 {
continue
}
}
}
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_msg[..]));
peer.pending_outbound_buffer.push_back(peer.channel_encryptor.encrypt_message(&encoded_update_msg[..]));
Self::do_attempt_write_data(&mut (*descriptor).clone(), peer);
}
continue;
},
}
upstream_events.push(event);
}
pause_read
};
let mut pending_events = self.pending_events.lock().unwrap();
for event in upstream_events.drain(..) {
pending_events.push(event);
}
Ok(pause_read)
}
/// Indicates that the given socket descriptor's connection is now closed.
/// This must be called even if a PeerHandleError was given for a read_event or write_event,
/// but must NOT be called if a PeerHandleError was provided out of a new_*_connection event!
/// Panics if the descriptor was not previously registered in a successful new_*_connection event.
pub fn disconnect_event(&self, descriptor: &Descriptor) {
let mut peers = self.peers.lock().unwrap();
let peer_option = peers.peers.remove(descriptor);
match peer_option {
None => panic!("Descriptor for disconnect_event is not already known to PeerManager"),
Some(peer) => {
match peer.their_node_id {
Some(node_id) => { peers.node_id_to_descriptor.remove(&node_id); },
None => {}
}
//TODO: Notify the chan_handler that this node disconnected, and do something about
//handling response messages that were queued for sending (maybe the send buffer
//needs to be unencrypted?)
}
};
}
}
impl<Descriptor: SocketDescriptor> EventsProvider for PeerManager<Descriptor> {
fn get_and_clear_pending_events(&self) -> Vec<Event> {
let mut pending_events = self.pending_events.lock().unwrap();
let mut ret = Vec::new();
mem::swap(&mut ret, &mut *pending_events);
ret
}
}