mempool/backend/src/api/tx-selection-worker.ts

336 lines
No EOL
12 KiB
TypeScript

import config from '../config';
import logger from '../logger';
import { TransactionExtended, MempoolBlockWithTransactions, AuditTransaction } from '../mempool.interfaces';
import { PairingHeap } from '../utils/pairing-heap';
import { Common } from './common';
import { parentPort } from 'worker_threads';
if (parentPort) {
parentPort.on('message', (params: { mempool: { [txid: string]: TransactionExtended }, blockLimit: number, weightLimit: number | null, condenseRest: boolean}) => {
const { mempool, blocks } = makeBlockTemplates(params);
// return the result to main thread.
if (parentPort) {
parentPort.postMessage({ mempool, blocks });
}
});
}
/*
* Build projected mempool blocks using an approximation of the transaction selection algorithm from Bitcoin Core
* (see BlockAssembler in https://github.com/bitcoin/bitcoin/blob/master/src/node/miner.cpp)
*
* blockLimit: number of blocks to build in total.
* weightLimit: maximum weight of transactions to consider using the selection algorithm.
* if weightLimit is significantly lower than the mempool size, results may start to diverge from getBlockTemplate
* condenseRest: whether to ignore excess transactions or append them to the final block.
*/
function makeBlockTemplates({ mempool, blockLimit, weightLimit, condenseRest }: { mempool: { [txid: string]: TransactionExtended }, blockLimit: number, weightLimit?: number | null, condenseRest?: boolean | null })
: { mempool: { [txid: string]: TransactionExtended }, blocks: MempoolBlockWithTransactions[] } {
const start = Date.now();
const auditPool: { [txid: string]: AuditTransaction } = {};
const mempoolArray: AuditTransaction[] = [];
const restOfArray: TransactionExtended[] = [];
let weight = 0;
const maxWeight = weightLimit ? Math.max(4_000_000 * blockLimit, weightLimit) : Infinity;
// grab the top feerate txs up to maxWeight
Object.values(mempool).sort((a, b) => b.feePerVsize - a.feePerVsize).forEach(tx => {
weight += tx.weight;
if (weight >= maxWeight) {
restOfArray.push(tx);
return;
}
// initializing everything up front helps V8 optimize property access later
auditPool[tx.txid] = {
txid: tx.txid,
fee: tx.fee,
size: tx.size,
weight: tx.weight,
feePerVsize: tx.feePerVsize,
vin: tx.vin,
relativesSet: false,
ancestorMap: new Map<string, AuditTransaction>(),
children: new Set<AuditTransaction>(),
ancestorFee: 0,
ancestorWeight: 0,
score: 0,
used: false,
modified: false,
modifiedNode: null,
};
mempoolArray.push(auditPool[tx.txid]);
});
// Build relatives graph & calculate ancestor scores
for (const tx of mempoolArray) {
if (!tx.relativesSet) {
setRelatives(tx, auditPool);
}
}
// Sort by descending ancestor score
mempoolArray.sort((a, b) => (b.score || 0) - (a.score || 0));
// Build blocks by greedily choosing the highest feerate package
// (i.e. the package rooted in the transaction with the best ancestor score)
const blocks: MempoolBlockWithTransactions[] = [];
let blockWeight = 4000;
let blockSize = 0;
let transactions: AuditTransaction[] = [];
const modified: PairingHeap<AuditTransaction> = new PairingHeap((a, b): boolean => (a.score || 0) > (b.score || 0));
let overflow: AuditTransaction[] = [];
let failures = 0;
let top = 0;
while ((top < mempoolArray.length || !modified.isEmpty()) && (condenseRest || blocks.length < blockLimit)) {
// skip invalid transactions
while (top < mempoolArray.length && (mempoolArray[top].used || mempoolArray[top].modified)) {
top++;
}
// Select best next package
let nextTx;
const nextPoolTx = mempoolArray[top];
const nextModifiedTx = modified.peek();
if (nextPoolTx && (!nextModifiedTx || (nextPoolTx.score || 0) > (nextModifiedTx.score || 0))) {
nextTx = nextPoolTx;
top++;
} else {
modified.pop();
if (nextModifiedTx) {
nextTx = nextModifiedTx;
nextTx.modifiedNode = undefined;
}
}
if (nextTx && !nextTx?.used) {
// Check if the package fits into this block
if (blockWeight + nextTx.ancestorWeight < config.MEMPOOL.BLOCK_WEIGHT_UNITS) {
blockWeight += nextTx.ancestorWeight;
const ancestors: AuditTransaction[] = Array.from(nextTx.ancestorMap.values());
// sort ancestors by dependency graph (equivalent to sorting by ascending ancestor count)
const sortedTxSet = [...ancestors.sort((a, b) => { return (a.ancestorMap.size || 0) - (b.ancestorMap.size || 0); }), nextTx];
const effectiveFeeRate = nextTx.ancestorFee / (nextTx.ancestorWeight / 4);
sortedTxSet.forEach((ancestor, i, arr) => {
const mempoolTx = mempool[ancestor.txid];
if (ancestor && !ancestor?.used) {
ancestor.used = true;
// update original copy of this tx with effective fee rate & relatives data
mempoolTx.effectiveFeePerVsize = effectiveFeeRate;
mempoolTx.ancestors = (Array.from(ancestor.ancestorMap?.values()) as AuditTransaction[]).map((a) => {
return {
txid: a.txid,
fee: a.fee,
weight: a.weight,
};
});
mempoolTx.cpfpChecked = true;
if (i < arr.length - 1) {
mempoolTx.bestDescendant = {
txid: arr[arr.length - 1].txid,
fee: arr[arr.length - 1].fee,
weight: arr[arr.length - 1].weight,
};
} else {
mempoolTx.bestDescendant = null;
}
transactions.push(ancestor);
blockSize += ancestor.size;
}
});
// remove these as valid package ancestors for any descendants remaining in the mempool
if (sortedTxSet.length) {
sortedTxSet.forEach(tx => {
updateDescendants(tx, auditPool, modified);
});
}
failures = 0;
} else {
// hold this package in an overflow list while we check for smaller options
overflow.push(nextTx);
failures++;
}
}
// this block is full
const exceededPackageTries = failures > 1000 && blockWeight > (config.MEMPOOL.BLOCK_WEIGHT_UNITS - 4000);
const queueEmpty = top >= mempoolArray.length && modified.isEmpty();
if ((exceededPackageTries || queueEmpty) && (!condenseRest || blocks.length < blockLimit - 1)) {
// construct this block
if (transactions.length) {
blocks.push(dataToMempoolBlocks(transactions.map(t => mempool[t.txid]), blockSize, blockWeight, blocks.length));
}
// reset for the next block
transactions = [];
blockSize = 0;
blockWeight = 4000;
// 'overflow' packages didn't fit in this block, but are valid candidates for the next
for (const overflowTx of overflow.reverse()) {
if (overflowTx.modified) {
overflowTx.modifiedNode = modified.add(overflowTx);
} else {
top--;
mempoolArray[top] = overflowTx;
}
}
overflow = [];
}
}
if (condenseRest) {
// pack any leftover transactions into the last block
for (const tx of overflow) {
if (!tx || tx?.used) {
continue;
}
blockWeight += tx.weight;
blockSize += tx.size;
const mempoolTx = mempool[tx.txid];
// update original copy of this tx with effective fee rate & relatives data
mempoolTx.effectiveFeePerVsize = tx.score;
mempoolTx.ancestors = (Array.from(tx.ancestorMap?.values()) as AuditTransaction[]).map((a) => {
return {
txid: a.txid,
fee: a.fee,
weight: a.weight,
};
});
mempoolTx.bestDescendant = null;
mempoolTx.cpfpChecked = true;
transactions.push(tx);
tx.used = true;
}
const blockTransactions = transactions.map(t => mempool[t.txid]);
restOfArray.forEach(tx => {
blockWeight += tx.weight;
blockSize += tx.size;
tx.effectiveFeePerVsize = tx.feePerVsize;
tx.cpfpChecked = false;
tx.ancestors = [];
tx.bestDescendant = null;
blockTransactions.push(tx);
});
if (blockTransactions.length) {
blocks.push(dataToMempoolBlocks(blockTransactions, blockSize, blockWeight, blocks.length));
}
transactions = [];
} else if (transactions.length) {
blocks.push(dataToMempoolBlocks(transactions.map(t => mempool[t.txid]), blockSize, blockWeight, blocks.length));
}
const end = Date.now();
const time = end - start;
logger.debug('Mempool templates calculated in ' + time / 1000 + ' seconds');
return {
mempool,
blocks
};
}
// traverse in-mempool ancestors
// recursion unavoidable, but should be limited to depth < 25 by mempool policy
function setRelatives(
tx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
): void {
for (const parent of tx.vin) {
const parentTx = mempool[parent.txid];
if (parentTx && !tx.ancestorMap?.has(parent.txid)) {
tx.ancestorMap.set(parent.txid, parentTx);
parentTx.children.add(tx);
// visit each node only once
if (!parentTx.relativesSet) {
setRelatives(parentTx, mempool);
}
parentTx.ancestorMap.forEach((ancestor) => {
tx.ancestorMap.set(ancestor.txid, ancestor);
});
}
};
tx.ancestorFee = tx.fee || 0;
tx.ancestorWeight = tx.weight || 0;
tx.ancestorMap.forEach((ancestor) => {
tx.ancestorFee += ancestor.fee;
tx.ancestorWeight += ancestor.weight;
});
tx.score = tx.ancestorFee / ((tx.ancestorWeight / 4) || 1);
tx.relativesSet = true;
}
// iterate over remaining descendants, removing the root as a valid ancestor & updating the ancestor score
// avoids recursion to limit call stack depth
function updateDescendants(
rootTx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
modified: PairingHeap<AuditTransaction>,
): void {
const descendantSet: Set<AuditTransaction> = new Set();
// stack of nodes left to visit
const descendants: AuditTransaction[] = [];
let descendantTx;
let tmpScore;
rootTx.children.forEach(childTx => {
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
while (descendants.length) {
descendantTx = descendants.pop();
if (descendantTx && descendantTx.ancestorMap && descendantTx.ancestorMap.has(rootTx.txid)) {
// remove tx as ancestor
descendantTx.ancestorMap.delete(rootTx.txid);
descendantTx.ancestorFee -= rootTx.fee;
descendantTx.ancestorWeight -= rootTx.weight;
tmpScore = descendantTx.score;
descendantTx.score = descendantTx.ancestorFee / (descendantTx.ancestorWeight / 4);
if (!descendantTx.modifiedNode) {
descendantTx.modified = true;
descendantTx.modifiedNode = modified.add(descendantTx);
} else {
// rebalance modified heap if score has changed
if (descendantTx.score < tmpScore) {
modified.decreasePriority(descendantTx.modifiedNode);
} else if (descendantTx.score > tmpScore) {
modified.increasePriority(descendantTx.modifiedNode);
}
}
// add this node's children to the stack
descendantTx.children.forEach(childTx => {
// visit each node only once
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
}
}
}
function dataToMempoolBlocks(transactions: TransactionExtended[],
blockSize: number, blockWeight: number, blocksIndex: number): MempoolBlockWithTransactions {
let rangeLength = 4;
if (blocksIndex === 0) {
rangeLength = 8;
}
if (transactions.length > 4000) {
rangeLength = 6;
} else if (transactions.length > 10000) {
rangeLength = 8;
}
return {
blockSize: blockSize,
blockVSize: blockWeight / 4,
nTx: transactions.length,
totalFees: transactions.reduce((acc, cur) => acc + cur.fee, 0),
medianFee: Common.percentile(transactions.map((tx) => tx.effectiveFeePerVsize), config.MEMPOOL.RECOMMENDED_FEE_PERCENTILE),
feeRange: Common.getFeesInRange(transactions, rangeLength),
transactionIds: transactions.map((tx) => tx.txid),
transactions: transactions.map((tx) => Common.stripTransaction(tx)),
};
}