mirror of
https://github.com/mempool/mempool.git
synced 2025-02-24 14:50:52 +01:00
Add inscriptions parsing code
This commit is contained in:
parent
a700bd0ef1
commit
d31c2665ee
1 changed files with 401 additions and 0 deletions
401
frontend/src/app/shared/ord/inscription.utils.ts
Normal file
401
frontend/src/app/shared/ord/inscription.utils.ts
Normal file
|
@ -0,0 +1,401 @@
|
|||
// Adapted from https://github.com/ordpool-space/ordpool-parser/tree/ce04d7a5b6bb1cf37b9fdadd77ba430f5bd6e7d6/src
|
||||
// Utils functions to decode ord inscriptions
|
||||
|
||||
import { Inscription } from "../../components/ord-data/ord-data.component";
|
||||
|
||||
export const OP_FALSE = 0x00;
|
||||
export const OP_IF = 0x63;
|
||||
export const OP_0 = 0x00;
|
||||
|
||||
export const OP_PUSHBYTES_3 = 0x03; // 3 -- not an actual opcode, but used in documentation --> pushes the next 3 bytes onto the stack.
|
||||
export const OP_PUSHDATA1 = 0x4c; // 76 -- The next byte contains the number of bytes to be pushed onto the stack.
|
||||
export const OP_PUSHDATA2 = 0x4d; // 77 -- The next two bytes contain the number of bytes to be pushed onto the stack in little endian order.
|
||||
export const OP_PUSHDATA4 = 0x4e; // 78 -- The next four bytes contain the number of bytes to be pushed onto the stack in little endian order.
|
||||
export const OP_ENDIF = 0x68; // 104 -- Ends an if/else block.
|
||||
|
||||
export const OP_1NEGATE = 0x4f; // 79 -- The number -1 is pushed onto the stack.
|
||||
export const OP_RESERVED = 0x50; // 80 -- Transaction is invalid unless occuring in an unexecuted OP_IF branch
|
||||
export const OP_PUSHNUM_1 = 0x51; // 81 -- also known as OP_1
|
||||
export const OP_PUSHNUM_2 = 0x52; // 82 -- also known as OP_2
|
||||
export const OP_PUSHNUM_3 = 0x53; // 83 -- also known as OP_3
|
||||
export const OP_PUSHNUM_4 = 0x54; // 84 -- also known as OP_4
|
||||
export const OP_PUSHNUM_5 = 0x55; // 85 -- also known as OP_5
|
||||
export const OP_PUSHNUM_6 = 0x56; // 86 -- also known as OP_6
|
||||
export const OP_PUSHNUM_7 = 0x57; // 87 -- also known as OP_7
|
||||
export const OP_PUSHNUM_8 = 0x58; // 88 -- also known as OP_8
|
||||
export const OP_PUSHNUM_9 = 0x59; // 89 -- also known as OP_9
|
||||
export const OP_PUSHNUM_10 = 0x5a; // 90 -- also known as OP_10
|
||||
export const OP_PUSHNUM_11 = 0x5b; // 91 -- also known as OP_11
|
||||
export const OP_PUSHNUM_12 = 0x5c; // 92 -- also known as OP_12
|
||||
export const OP_PUSHNUM_13 = 0x5d; // 93 -- also known as OP_13
|
||||
export const OP_PUSHNUM_14 = 0x5e; // 94 -- also known as OP_14
|
||||
export const OP_PUSHNUM_15 = 0x5f; // 95 -- also known as OP_15
|
||||
export const OP_PUSHNUM_16 = 0x60; // 96 -- also known as OP_16
|
||||
|
||||
export const OP_RETURN = 0x6a; // 106 -- a standard way of attaching extra data to transactions is to add a zero-value output with a scriptPubKey consisting of OP_RETURN followed by data
|
||||
|
||||
//////////////////////////// Helper ///////////////////////////////
|
||||
|
||||
/**
|
||||
* Inscriptions may include fields before an optional body. Each field consists of two data pushes, a tag and a value.
|
||||
* Currently, there are six defined fields:
|
||||
*/
|
||||
export const knownFields = {
|
||||
// content_type, with a tag of 1, whose value is the MIME type of the body.
|
||||
content_type: 0x01,
|
||||
|
||||
// pointer, with a tag of 2, see pointer docs: https://docs.ordinals.com/inscriptions/pointer.html
|
||||
pointer: 0x02,
|
||||
|
||||
// parent, with a tag of 3, see provenance docs: https://docs.ordinals.com/inscriptions/provenance.html
|
||||
parent: 0x03,
|
||||
|
||||
// metadata, with a tag of 5, see metadata docs: https://docs.ordinals.com/inscriptions/metadata.html
|
||||
metadata: 0x05,
|
||||
|
||||
// metaprotocol, with a tag of 7, whose value is the metaprotocol identifier.
|
||||
metaprotocol: 0x07,
|
||||
|
||||
// content_encoding, with a tag of 9, whose value is the encoding of the body.
|
||||
content_encoding: 0x09,
|
||||
|
||||
// delegate, with a tag of 11, see delegate docs: https://docs.ordinals.com/inscriptions/delegate.html
|
||||
delegate: 0xb
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves the value for a given field from an array of field objects.
|
||||
* It returns the value of the first object where the tag matches the specified field.
|
||||
*
|
||||
* @param fields - An array of objects containing tag and value properties.
|
||||
* @param field - The field number to search for.
|
||||
* @returns The value associated with the first matching field, or undefined if no match is found.
|
||||
*/
|
||||
export function getKnownFieldValue(fields: { tag: number; value: Uint8Array }[], field: number): Uint8Array | undefined {
|
||||
const knownField = fields.find(x =>
|
||||
x.tag === field);
|
||||
|
||||
if (knownField === undefined) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return knownField.value;
|
||||
}
|
||||
|
||||
/**
|
||||
* Retrieves the values for a given field from an array of field objects.
|
||||
* It returns the values of all objects where the tag matches the specified field.
|
||||
*
|
||||
* @param fields - An array of objects containing tag and value properties.
|
||||
* @param field - The field number to search for.
|
||||
* @returns An array of Uint8Array values associated with the matching fields. If no matches are found, an empty array is returned.
|
||||
*/
|
||||
export function getKnownFieldValues(fields: { tag: number; value: Uint8Array }[], field: number): Uint8Array[] {
|
||||
const knownFields = fields.filter(x =>
|
||||
x.tag === field
|
||||
);
|
||||
|
||||
return knownFields.map(field => field.value);
|
||||
}
|
||||
|
||||
/**
|
||||
* Searches for the next position of the ordinal inscription mark (0063036f7264)
|
||||
* within the raw transaction data, starting from a given position.
|
||||
*
|
||||
* This function looks for a specific sequence of 6 bytes that represents the start of an ordinal inscription.
|
||||
* If the sequence is found, the function returns the index immediately following the inscription mark.
|
||||
* If the sequence is not found, the function returns -1, indicating no inscription mark was found.
|
||||
*
|
||||
* Note: This function uses a simple hardcoded approach based on the fixed length of the inscription mark.
|
||||
*
|
||||
* @returns The position immediately after the inscription mark, or -1 if not found.
|
||||
*/
|
||||
export function getNextInscriptionMark(raw: Uint8Array, startPosition: number): number {
|
||||
|
||||
// OP_FALSE
|
||||
// OP_IF
|
||||
// OP_PUSHBYTES_3: This pushes the next 3 bytes onto the stack.
|
||||
// 0x6f, 0x72, 0x64: These bytes translate to the ASCII string "ord"
|
||||
const inscriptionMark = new Uint8Array([OP_FALSE, OP_IF, OP_PUSHBYTES_3, 0x6f, 0x72, 0x64]);
|
||||
|
||||
for (let index = startPosition; index <= raw.length - 6; index++) {
|
||||
if (raw[index] === inscriptionMark[0] &&
|
||||
raw[index + 1] === inscriptionMark[1] &&
|
||||
raw[index + 2] === inscriptionMark[2] &&
|
||||
raw[index + 3] === inscriptionMark[3] &&
|
||||
raw[index + 4] === inscriptionMark[4] &&
|
||||
raw[index + 5] === inscriptionMark[5]) {
|
||||
return index + 6;
|
||||
}
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/////////////////////////////// Reader ///////////////////////////////
|
||||
|
||||
/**
|
||||
* Reads a specified number of bytes from a Uint8Array starting from a given pointer.
|
||||
*
|
||||
* @param raw - The Uint8Array from which bytes are to be read.
|
||||
* @param pointer - The position in the array from where to start reading.
|
||||
* @param n - The number of bytes to read.
|
||||
* @returns A tuple containing the read bytes as Uint8Array and the updated pointer position.
|
||||
*/
|
||||
export function readBytes(raw: Uint8Array, pointer: number, n: number): [Uint8Array, number] {
|
||||
const slice = raw.slice(pointer, pointer + n);
|
||||
return [slice, pointer + n];
|
||||
}
|
||||
|
||||
/**
|
||||
* Reads data based on the Bitcoin script push opcode starting from a specified pointer in the raw data.
|
||||
* Handles different opcodes and direct push (where the opcode itself signifies the number of bytes to push).
|
||||
*
|
||||
* @param raw - The raw transaction data as a Uint8Array.
|
||||
* @param pointer - The current position in the raw data array.
|
||||
* @returns A tuple containing the read data as Uint8Array and the updated pointer position.
|
||||
*/
|
||||
export function readPushdata(raw: Uint8Array, pointer: number): [Uint8Array, number] {
|
||||
|
||||
let [opcodeSlice, newPointer] = readBytes(raw, pointer, 1);
|
||||
const opcode = opcodeSlice[0];
|
||||
|
||||
// Handle the special case of OP_0 (0x00) which pushes an empty array (interpreted as zero)
|
||||
// fixes #18
|
||||
if (opcode === OP_0) {
|
||||
return [new Uint8Array(), newPointer];
|
||||
}
|
||||
|
||||
// Handle the special case of OP_1NEGATE (-1)
|
||||
if (opcode === OP_1NEGATE) {
|
||||
// OP_1NEGATE pushes the value -1 onto the stack, represented as 0x81 in Bitcoin Script
|
||||
return [new Uint8Array([0x81]), newPointer];
|
||||
}
|
||||
|
||||
// Handle minimal push numbers OP_PUSHNUM_1 (0x51) to OP_PUSHNUM_16 (0x60)
|
||||
// which are used to push the values 0x01 (decimal 1) through 0x10 (decimal 16) onto the stack.
|
||||
// To get the value, we can subtract OP_RESERVED (0x50) from the opcode to get the value to be pushed.
|
||||
if (opcode >= OP_PUSHNUM_1 && opcode <= OP_PUSHNUM_16) {
|
||||
// Convert opcode to corresponding byte value
|
||||
const byteValue = opcode - OP_RESERVED;
|
||||
return [Uint8Array.from([byteValue]), newPointer];
|
||||
}
|
||||
|
||||
// Handle direct push of 1 to 75 bytes (OP_PUSHBYTES_1 to OP_PUSHBYTES_75)
|
||||
if (1 <= opcode && opcode <= 75) {
|
||||
return readBytes(raw, newPointer, opcode);
|
||||
}
|
||||
|
||||
let numBytes: number;
|
||||
switch (opcode) {
|
||||
case OP_PUSHDATA1: numBytes = 1; break;
|
||||
case OP_PUSHDATA2: numBytes = 2; break;
|
||||
case OP_PUSHDATA4: numBytes = 4; break;
|
||||
default:
|
||||
throw new Error(`Invalid push opcode ${opcode} at position ${pointer}`);
|
||||
}
|
||||
|
||||
let [dataSizeArray, nextPointer] = readBytes(raw, newPointer, numBytes);
|
||||
let dataSize = littleEndianBytesToNumber(dataSizeArray);
|
||||
return readBytes(raw, nextPointer, dataSize);
|
||||
}
|
||||
|
||||
//////////////////////////// Conversion ////////////////////////////
|
||||
|
||||
/**
|
||||
* Converts a Uint8Array containing UTF-8 encoded data to a normal a UTF-16 encoded string.
|
||||
*
|
||||
* @param bytes - The Uint8Array containing UTF-8 encoded data.
|
||||
* @returns The corresponding UTF-16 encoded JavaScript string.
|
||||
*/
|
||||
export function bytesToUnicodeString(bytes: Uint8Array): string {
|
||||
const decoder = new TextDecoder('utf-8');
|
||||
return decoder.decode(bytes);
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert a Uint8Array to a string by treating each byte as a character code.
|
||||
* It avoids interpreting bytes as UTF-8 encoded sequences.
|
||||
* --> Again: it ignores UTF-8 encoding, which is necessary for binary content!
|
||||
*
|
||||
* Note: This method is different from just using `String.fromCharCode(...combinedData)` which can
|
||||
* cause a "Maximum call stack size exceeded" error for large arrays due to the limitation of
|
||||
* the spread operator in JavaScript. (previously the parser broke here, because of large content)
|
||||
*
|
||||
* @param bytes - The byte array to convert.
|
||||
* @returns The resulting string where each byte value is treated as a direct character code.
|
||||
*/
|
||||
export function bytesToBinaryString(bytes: Uint8Array): string {
|
||||
let resultStr = '';
|
||||
for (let i = 0; i < bytes.length; i++) {
|
||||
resultStr += String.fromCharCode(bytes[i]);
|
||||
}
|
||||
return resultStr;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a hexadecimal string to a Uint8Array.
|
||||
*
|
||||
* @param hex - A string of hexadecimal characters.
|
||||
* @returns A Uint8Array representing the hex string.
|
||||
*/
|
||||
export function hexToBytes(hex: string): Uint8Array {
|
||||
const bytes = new Uint8Array(hex.length / 2);
|
||||
for (let i = 0, j = 0; i < hex.length; i += 2, j++) {
|
||||
bytes[j] = parseInt(hex.slice(i, i + 2), 16);
|
||||
}
|
||||
return bytes;
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a Uint8Array to a hexadecimal string.
|
||||
*
|
||||
* @param bytes - A Uint8Array to convert.
|
||||
* @returns A string of hexadecimal characters representing the byte array.
|
||||
*/
|
||||
export function bytesToHex(bytes: Uint8Array): string {
|
||||
if (!bytes) {
|
||||
return null;
|
||||
}
|
||||
return Array.from(bytes, byte => byte.toString(16).padStart(2, '0')).join('');
|
||||
}
|
||||
|
||||
/**
|
||||
* Converts a little-endian byte array to a JavaScript number.
|
||||
*
|
||||
* This function interprets the provided bytes in little-endian format, where the least significant byte comes first.
|
||||
* It constructs an integer value representing the number encoded by the bytes.
|
||||
*
|
||||
* @param byteArray - An array containing the bytes in little-endian format.
|
||||
* @returns The number represented by the byte array.
|
||||
*/
|
||||
export function littleEndianBytesToNumber(byteArray: Uint8Array): number {
|
||||
let number = 0;
|
||||
for (let i = 0; i < byteArray.length; i++) {
|
||||
// Extract each byte from byteArray, shift it to the left by 8 * i bits, and combine it with number.
|
||||
// The shifting accounts for the little-endian format where the least significant byte comes first.
|
||||
number |= byteArray[i] << (8 * i);
|
||||
}
|
||||
return number;
|
||||
}
|
||||
|
||||
/**
|
||||
* Concatenates multiple Uint8Array objects into a single Uint8Array.
|
||||
*
|
||||
* @param arrays - An array of Uint8Array objects to concatenate.
|
||||
* @returns A new Uint8Array containing the concatenated results of the input arrays.
|
||||
*/
|
||||
export function concatUint8Arrays(arrays: Uint8Array[]): Uint8Array {
|
||||
if (arrays.length === 0) {
|
||||
return new Uint8Array();
|
||||
}
|
||||
|
||||
const totalLength = arrays.reduce((sum, arr) => sum + arr.length, 0);
|
||||
const result = new Uint8Array(totalLength);
|
||||
let offset = 0;
|
||||
|
||||
for (const array of arrays) {
|
||||
result.set(array, offset);
|
||||
offset += array.length;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
////////////////////////////// Inscription ///////////////////////////
|
||||
|
||||
/**
|
||||
* Extracts fields from the raw data until OP_0 is encountered.
|
||||
*
|
||||
* @param raw - The raw data to read.
|
||||
* @param pointer - The current pointer where the reading starts.
|
||||
* @returns An array of fields and the updated pointer position.
|
||||
*/
|
||||
export function extractFields(raw: Uint8Array, pointer: number): [{ tag: number; value: Uint8Array }[], number] {
|
||||
|
||||
const fields: { tag: number; value: Uint8Array }[] = [];
|
||||
let newPointer = pointer;
|
||||
let slice: Uint8Array;
|
||||
|
||||
while (newPointer < raw.length &&
|
||||
// normal inscription - content follows now
|
||||
(raw[newPointer] !== OP_0) &&
|
||||
// delegate - inscription has no further content and ends directly here
|
||||
(raw[newPointer] !== OP_ENDIF)
|
||||
) {
|
||||
|
||||
// tags are encoded by ord as single-byte data pushes, but are accepted by ord as either single-byte pushes, or as OP_NUM data pushes.
|
||||
// tags greater than or equal to 256 should be encoded as little endian integers with trailing zeros omitted.
|
||||
// see: https://github.com/ordinals/ord/issues/2505
|
||||
[slice, newPointer] = readPushdata(raw, newPointer);
|
||||
const tag = slice.length === 1 ? slice[0] : littleEndianBytesToNumber(slice);
|
||||
|
||||
[slice, newPointer] = readPushdata(raw, newPointer);
|
||||
const value = slice;
|
||||
|
||||
fields.push({ tag, value });
|
||||
}
|
||||
|
||||
return [fields, newPointer];
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Extracts inscription data starting from the current pointer.
|
||||
* @param raw - The raw data to read.
|
||||
* @param pointer - The current pointer where the reading starts.
|
||||
* @returns The parsed inscription or nullx
|
||||
*/
|
||||
export function extractInscriptionData(raw: Uint8Array, pointer: number): Inscription | null {
|
||||
|
||||
try {
|
||||
|
||||
let fields: { tag: number; value: Uint8Array }[];
|
||||
let newPointer: number;
|
||||
let slice: Uint8Array;
|
||||
|
||||
[fields, newPointer] = extractFields(raw, pointer);
|
||||
|
||||
// Now we are at the beginning of the body
|
||||
// (or at the end of the raw data if there's no body)
|
||||
if (newPointer < raw.length && raw[newPointer] === OP_0) {
|
||||
newPointer++; // Skip OP_0
|
||||
}
|
||||
|
||||
// Collect body data until OP_ENDIF
|
||||
const data: Uint8Array[] = [];
|
||||
while (newPointer < raw.length && raw[newPointer] !== OP_ENDIF) {
|
||||
[slice, newPointer] = readPushdata(raw, newPointer);
|
||||
data.push(slice);
|
||||
}
|
||||
|
||||
const combinedLengthOfAllArrays = data.reduce((acc, curr) => acc + curr.length, 0);
|
||||
let combinedData = new Uint8Array(combinedLengthOfAllArrays);
|
||||
|
||||
// Copy all segments from data into combinedData, forming a single contiguous Uint8Array
|
||||
let idx = 0;
|
||||
for (const segment of data) {
|
||||
combinedData.set(segment, idx);
|
||||
idx += segment.length;
|
||||
}
|
||||
|
||||
const contentTypeRaw = getKnownFieldValue(fields, knownFields.content_type);
|
||||
let contentType: string;
|
||||
|
||||
if (!contentTypeRaw) {
|
||||
contentType = 'undefined';
|
||||
} else {
|
||||
contentType = bytesToUnicodeString(contentTypeRaw);
|
||||
}
|
||||
|
||||
return {
|
||||
content_type_str: contentType,
|
||||
body: combinedData.slice(0, 150), // Limit body to 150 bytes for now
|
||||
body_length: combinedData.length,
|
||||
delegate_txid: getKnownFieldValue(fields, knownFields.delegate) ? bytesToHex(getKnownFieldValue(fields, knownFields.delegate).reverse()) : null
|
||||
};
|
||||
|
||||
} catch (ex) {
|
||||
return null;
|
||||
}
|
||||
}
|
Loading…
Add table
Reference in a new issue