Optimize makeBlockTemplates

This commit is contained in:
Mononaut 2022-10-27 10:21:39 -06:00
parent 832ccdac46
commit 968d7b827b
No known key found for this signature in database
GPG key ID: 61B952CAF4838F94
5 changed files with 406 additions and 160 deletions

View file

@ -1,3 +1,4 @@
import logger from '../logger';
import { BlockExtended, TransactionExtended, MempoolBlockWithTransactions } from '../mempool.interfaces';
const PROPAGATION_MARGIN = 180; // in seconds, time since a transaction is first seen after which it is assumed to have propagated to all miners

View file

@ -1,7 +1,8 @@
import logger from '../logger';
import { MempoolBlock, TransactionExtended, TransactionStripped, MempoolBlockWithTransactions, MempoolBlockDelta, TransactionSet, Ancestor } from '../mempool.interfaces';
import { MempoolBlock, TransactionExtended, AuditTransaction, TransactionStripped, MempoolBlockWithTransactions, MempoolBlockDelta, Ancestor } from '../mempool.interfaces';
import { Common } from './common';
import config from '../config';
import { PairingHeap } from '../utils/pairing-heap';
class MempoolBlocks {
private mempoolBlocks: MempoolBlockWithTransactions[] = [];
@ -72,6 +73,7 @@ class MempoolBlocks {
logger.debug('Mempool blocks calculated in ' + time / 1000 + ' seconds');
const { blocks, deltas } = this.calculateMempoolBlocks(memPoolArray, this.mempoolBlocks);
this.mempoolBlocks = blocks;
this.mempoolBlockDeltas = deltas;
}
@ -144,226 +146,273 @@ class MempoolBlocks {
* Build projected mempool blocks using an approximation of the transaction selection algorithm from Bitcoin Core
* (see BlockAssembler in https://github.com/bitcoin/bitcoin/blob/master/src/node/miner.cpp)
*
* templateLimit: number of blocks to build using the full algo,
* remaining blocks up to blockLimit will skip the expensive updateDescendants step
*
* blockLimit: number of blocks to build in total. Excess transactions will be ignored.
* blockLimit: number of blocks to build in total.
* weightLimit: maximum weight of transactions to consider using the selection algorithm.
* if weightLimit is significantly lower than the mempool size, results may start to diverge from getBlockTemplate
* condenseRest: whether to ignore excess transactions or append them to the final block.
*/
public makeBlockTemplates(mempool: { [txid: string]: TransactionExtended }, templateLimit: number = Infinity, blockLimit: number = Infinity): MempoolBlockWithTransactions[] {
const start = new Date().getTime();
const txSets: { [txid: string]: TransactionSet } = {};
const mempoolArray: TransactionExtended[] = Object.values(mempool);
mempoolArray.forEach((tx) => {
tx.bestDescendant = null;
tx.ancestors = [];
tx.cpfpChecked = false;
tx.effectiveFeePerVsize = tx.feePerVsize;
txSets[tx.txid] = {
fee: 0,
weight: 1,
public makeBlockTemplates(mempool: { [txid: string]: TransactionExtended }, blockLimit: number, weightLimit: number | null = null, condenseRest = false): MempoolBlockWithTransactions[] {
const start = Date.now();
const auditPool: { [txid: string]: AuditTransaction } = {};
const mempoolArray: AuditTransaction[] = [];
const restOfArray: TransactionExtended[] = [];
let weight = 0;
const maxWeight = weightLimit ? Math.max(4_000_000 * blockLimit, weightLimit) : Infinity;
// grab the top feerate txs up to maxWeight
Object.values(mempool).sort((a, b) => b.feePerVsize - a.feePerVsize).forEach(tx => {
weight += tx.weight;
if (weight >= maxWeight) {
restOfArray.push(tx);
return;
}
// initializing everything up front helps V8 optimize property access later
auditPool[tx.txid] = {
txid: tx.txid,
fee: tx.fee,
size: tx.size,
weight: tx.weight,
feePerVsize: tx.feePerVsize,
vin: tx.vin,
relativesSet: false,
ancestorMap: new Map<string, AuditTransaction>(),
children: new Set<AuditTransaction>(),
ancestorFee: 0,
ancestorWeight: 0,
score: 0,
children: [],
available: true,
used: false,
modified: false,
};
});
modifiedNode: null,
}
mempoolArray.push(auditPool[tx.txid]);
})
// Build relatives graph & calculate ancestor scores
mempoolArray.forEach((tx) => {
this.setRelatives(tx, mempool, txSets);
});
for (const tx of mempoolArray) {
if (!tx.relativesSet) {
this.setRelatives(tx, auditPool);
}
}
// Sort by descending ancestor score
const byAncestor = (a, b): number => this.sortByAncestorScore(a, b, txSets);
mempoolArray.sort(byAncestor);
mempoolArray.sort((a, b) => (b.score || 0) - (a.score || 0));
// Build blocks by greedily choosing the highest feerate package
// (i.e. the package rooted in the transaction with the best ancestor score)
const blocks: MempoolBlockWithTransactions[] = [];
let blockWeight = 4000;
let blockSize = 0;
let transactions: TransactionExtended[] = [];
let modified: TransactionExtended[] = [];
let overflow: TransactionExtended[] = [];
let transactions: AuditTransaction[] = [];
const modified: PairingHeap<AuditTransaction> = new PairingHeap((a, b): boolean => (a.score || 0) > (b.score || 0));
let overflow: AuditTransaction[] = [];
let failures = 0;
while ((mempoolArray.length || modified.length) && blocks.length < blockLimit) {
const simpleMode = blocks.length >= templateLimit;
let anyModified = false;
// Select best next package
let nextTx;
if (mempoolArray.length && (!modified.length || txSets[mempoolArray[0].txid]?.score > txSets[modified[0].txid]?.score)) {
nextTx = mempoolArray.shift();
if (txSets[nextTx?.txid]?.modified) {
nextTx = null;
}
} else {
nextTx = modified.shift();
let top = 0;
while ((top < mempoolArray.length || !modified.isEmpty()) && (condenseRest || blocks.length < blockLimit)) {
// skip invalid transactions
while (top < mempoolArray.length && (mempoolArray[top].used || mempoolArray[top].modified)) {
top++;
}
if (nextTx && txSets[nextTx.txid]?.available) {
const nextTxSet = txSets[nextTx.txid];
// Select best next package
let nextTx;
const nextPoolTx = mempoolArray[top];
const nextModifiedTx = modified.peek();
if (nextPoolTx && (!nextModifiedTx || (nextPoolTx.score || 0) > (nextModifiedTx.score || 0))) {
nextTx = nextPoolTx;
top++;
} else {
modified.pop();
if (nextModifiedTx) {
nextTx = nextModifiedTx;
nextTx.modifiedNode = undefined;
}
}
if (nextTx && !nextTx?.used) {
// Check if the package fits into this block
if (nextTxSet && blockWeight + nextTxSet.weight < config.MEMPOOL.BLOCK_WEIGHT_UNITS) {
blockWeight += nextTxSet.weight;
// sort txSet by dependency graph (equivalent to sorting by ascending ancestor count)
const sortedTxSet = [...nextTx.ancestors.sort((a, b) => {
return (mempool[a.txid]?.ancestors?.length || 0) - (mempool[b.txid]?.ancestors?.length || 0);
}), nextTx];
if (blockWeight + nextTx.ancestorWeight < config.MEMPOOL.BLOCK_WEIGHT_UNITS) {
blockWeight += nextTx.ancestorWeight;
const ancestors: AuditTransaction[] = Array.from(nextTx.ancestorMap.values());
// sort ancestors by dependency graph (equivalent to sorting by ascending ancestor count)
const sortedTxSet = [...ancestors.sort((a, b) => { return (a.ancestorMap.size || 0) - (b.ancestorMap.size || 0); }), nextTx];
const effectiveFeeRate = nextTx.ancestorFee / (nextTx.ancestorWeight / 4);
sortedTxSet.forEach((ancestor, i, arr) => {
const tx = mempool[ancestor.txid];
const txSet = txSets[ancestor.txid];
if (txSet.available) {
txSet.available = false;
tx.effectiveFeePerVsize = nextTxSet.fee / (nextTxSet.weight / 4);
tx.cpfpChecked = true;
const mempoolTx = mempool[ancestor.txid];
if (ancestor && !ancestor?.used) {
ancestor.used = true;
// update original copy of this tx with effective fee rate & relatives data
mempoolTx.effectiveFeePerVsize = effectiveFeeRate;
mempoolTx.ancestors = (Array.from(ancestor.ancestorMap?.values()) as AuditTransaction[]).map((a) => {
return {
txid: a.txid,
fee: a.fee,
weight: a.weight,
}
})
if (i < arr.length - 1) {
tx.bestDescendant = {
txid: arr[i + 1].txid,
fee: arr[i + 1].fee,
weight: arr[i + 1].weight,
mempoolTx.bestDescendant = {
txid: arr[arr.length - 1].txid,
fee: arr[arr.length - 1].fee,
weight: arr[arr.length - 1].weight,
};
}
transactions.push(tx);
blockSize += tx.size;
transactions.push(ancestor);
blockSize += ancestor.size;
}
});
// remove these as valid package ancestors for any remaining descendants
if (!simpleMode) {
// remove these as valid package ancestors for any descendants remaining in the mempool
if (sortedTxSet.length) {
sortedTxSet.forEach(tx => {
anyModified = this.updateDescendants(tx, tx, mempool, txSets, modified);
this.updateDescendants(tx, auditPool, modified);
});
}
failures = 0;
} else {
// hold this package in an overflow list while we check for smaller options
txSets[nextTx.txid].modified = true;
overflow.push(nextTx);
failures++;
}
}
// this block is full
const outOfTransactions = !mempoolArray.length && !modified.length;
const exceededPackageTries = failures > 1000 && blockWeight > (config.MEMPOOL.BLOCK_WEIGHT_UNITS - 4000);
const exceededSimpleTries = failures > 0 && simpleMode;
if (outOfTransactions || exceededPackageTries || exceededSimpleTries) {
if (exceededPackageTries && (!condenseRest || blocks.length < blockLimit - 1)) {
// construct this block
blocks.push(this.dataToMempoolBlocks(transactions, blockSize, blockWeight, blocks.length));
if (transactions.length) {
blocks.push(this.dataToMempoolBlocks(transactions.map(t => mempool[t.txid]), blockSize, blockWeight, blocks.length));
}
// reset for the next block
transactions = [];
blockSize = 0;
blockWeight = 4000;
// 'overflow' packages didn't fit in this block, but are valid candidates for the next
if (overflow.length) {
modified = modified.concat(overflow);
overflow = [];
anyModified = true;
for (const overflowTx of overflow.reverse()) {
if (overflowTx.modified) {
overflowTx.modifiedNode = modified.add(overflowTx);
} else {
top--;
mempoolArray[top] = overflowTx;
}
}
}
// re-sort modified list if necessary
if (anyModified) {
modified = modified.filter(tx => txSets[tx.txid]?.available).sort(byAncestor);
overflow = [];
}
}
if (condenseRest) {
// pack any leftover transactions into the last block
for (const tx of overflow) {
if (!tx || tx?.used) {
continue;
}
blockWeight += tx.weight;
blockSize += tx.size;
transactions.push(tx);
tx.used = true;
}
const blockTransactions = transactions.map(t => mempool[t.txid])
restOfArray.forEach(tx => {
blockWeight += tx.weight;
blockSize += tx.size;
blockTransactions.push(tx);
});
if (blockTransactions.length) {
blocks.push(this.dataToMempoolBlocks(blockTransactions, blockSize, blockWeight, blocks.length));
}
transactions = [];
} else if (transactions.length) {
blocks.push(this.dataToMempoolBlocks(transactions.map(t => mempool[t.txid]), blockSize, blockWeight, blocks.length));
}
const end = new Date().getTime();
const end = Date.now();
const time = end - start;
logger.debug('Mempool templates calculated in ' + time / 1000 + ' seconds');
return blocks;
}
private sortByAncestorScore(a, b, txSets): number {
return txSets[b.txid]?.score - txSets[a.txid]?.score;
// traverse in-mempool ancestors
// recursion unavoidable, but should be limited to depth < 25 by mempool policy
public setRelatives(
tx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
): void {
for (const parent of tx.vin) {
const parentTx = mempool[parent.txid];
if (parentTx && !tx.ancestorMap!.has(parent.txid)) {
tx.ancestorMap.set(parent.txid, parentTx);
parentTx.children.add(tx);
// visit each node only once
if (!parentTx.relativesSet) {
this.setRelatives(parentTx, mempool);
}
parentTx.ancestorMap.forEach((ancestor) => {
tx.ancestorMap.set(ancestor.txid, ancestor);
});
}
};
tx.ancestorFee = tx.fee || 0;
tx.ancestorWeight = tx.weight || 0;
tx.ancestorMap.forEach((ancestor) => {
tx.ancestorFee += ancestor.fee;
tx.ancestorWeight += ancestor.weight;
});
tx.score = tx.ancestorFee / (tx.ancestorWeight || 1);
tx.relativesSet = true;
}
private setRelatives(tx: TransactionExtended, mempool: { [txid: string]: TransactionExtended }, txSets: { [txid: string]: TransactionSet }): { [txid: string]: Ancestor } {
let ancestors: { [txid: string]: Ancestor } = {};
tx.vin.forEach((parent) => {
const parentTx = mempool[parent.txid];
const parentTxSet = txSets[parent.txid];
if (parentTx && parentTxSet) {
ancestors[parentTx.txid] = parentTx;
if (!parentTxSet.children) {
parentTxSet.children = [tx.txid];
} else {
parentTxSet.children.push(tx.txid);
}
if (!parentTxSet.score) {
ancestors = {
...ancestors,
...this.setRelatives(parentTx, mempool, txSets),
};
}
// iterate over remaining descendants, removing the root as a valid ancestor & updating the ancestor score
// avoids recursion to limit call stack depth
private updateDescendants(
rootTx: AuditTransaction,
mempool: { [txid: string]: AuditTransaction },
modified: PairingHeap<AuditTransaction>,
): void {
const descendantSet: Set<AuditTransaction> = new Set();
// stack of nodes left to visit
const descendants: AuditTransaction[] = [];
let descendantTx;
let ancestorIndex;
let tmpScore;
rootTx.children.forEach(childTx => {
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
tx.ancestors = Object.values(ancestors).map(ancestor => {
return {
txid: ancestor.txid,
fee: ancestor.fee,
weight: ancestor.weight
};
});
let totalFees = tx.fee;
let totalWeight = tx.weight;
tx.ancestors.forEach(ancestor => {
totalFees += ancestor.fee;
totalWeight += ancestor.weight;
});
txSets[tx.txid].fee = totalFees;
txSets[tx.txid].weight = totalWeight;
txSets[tx.txid].score = this.calcAncestorScore(tx, totalFees, totalWeight);
while (descendants.length) {
descendantTx = descendants.pop();
if (descendantTx && descendantTx.ancestorMap && descendantTx.ancestorMap.has(rootTx.txid)) {
// remove tx as ancestor
descendantTx.ancestorMap.delete(rootTx.txid);
descendantTx.ancestorFee -= rootTx.fee;
descendantTx.ancestorWeight -= rootTx.weight;
tmpScore = descendantTx.score;
descendantTx.score = descendantTx.ancestorFee / descendantTx.ancestorWeight;
return ancestors;
}
private calcAncestorScore(tx: TransactionExtended, ancestorFees: number, ancestorWeight: number): number {
return Math.min(tx.fee / tx.weight, ancestorFees / ancestorWeight);
}
// walk over remaining descendants, removing the root as a valid ancestor & updating the ancestor score
// returns whether any descendants were modified
private updateDescendants(
root: TransactionExtended,
tx: TransactionExtended,
mempool: { [txid: string]: TransactionExtended },
txSets: { [txid: string]: TransactionSet },
modified: TransactionExtended[],
): boolean {
let anyModified = false;
const txSet = txSets[tx.txid];
if (txSet.children) {
txSet.children.forEach(childId => {
const child = mempool[childId];
if (child && child.ancestors) {
const ancestorIndex = child.ancestors.findIndex(a => a.txid === root.txid);
if (ancestorIndex > -1) {
// remove tx as ancestor
child.ancestors.splice(ancestorIndex, 1);
const childTxSet = txSets[childId];
childTxSet.fee -= root.fee;
childTxSet.weight -= root.weight;
childTxSet.score = this.calcAncestorScore(child, childTxSet.fee, childTxSet.weight);
anyModified = true;
if (!childTxSet.modified) {
childTxSet.modified = true;
modified.push(child);
}
if (!descendantTx.modifiedNode) {
descendantTx.modified = true;
descendantTx.modifiedNode = modified.add(descendantTx);
} else {
// rebalance modified heap if score has changed
if (descendantTx.score < tmpScore) {
modified.decreasePriority(descendantTx.modifiedNode);
} else if (descendantTx.score > tmpScore) {
modified.increasePriority(descendantTx.modifiedNode);
}
}
// recursively update grandchildren
if (child) {
anyModified = this.updateDescendants(root, child, mempool, txSets, modified) || anyModified;
}
});
// add this node's children to the stack
descendantTx.children.forEach(childTx => {
// visit each node only once
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
}
}
return anyModified;
}
private dataToMempoolBlocks(transactions: TransactionExtended[],

View file

@ -250,6 +250,8 @@ class WebsocketHandler {
throw new Error('WebSocket.Server is not set');
}
logger.debug("mempool changed!");
mempoolBlocks.updateMempoolBlocks(newMempool);
const mBlocks = mempoolBlocks.getMempoolBlocks();
const mBlockDeltas = mempoolBlocks.getMempoolBlockDeltas();
@ -417,7 +419,7 @@ class WebsocketHandler {
const _memPool = memPool.getMempool();
const mempoolCopy = cloneMempool(_memPool);
const projectedBlocks = mempoolBlocks.makeBlockTemplates(mempoolCopy, 2, 2);
const projectedBlocks = mempoolBlocks.makeBlockTemplates(mempoolCopy, 2);
if (projectedBlocks[0]) {
const { censored, added, score } = Audit.auditBlock(block, txIds, transactions, projectedBlocks, mempoolCopy);

View file

@ -1,4 +1,5 @@
import { IEsploraApi } from './api/bitcoin/esplora-api.interface';
import { HeapNode } from "./utils/pairing-heap";
export interface PoolTag {
id: number; // mysql row id
@ -70,6 +71,24 @@ export interface TransactionExtended extends IEsploraApi.Transaction {
deleteAfter?: number;
}
export interface AuditTransaction {
txid: string;
fee: number;
size: number;
weight: number;
feePerVsize: number;
vin: IEsploraApi.Vin[];
relativesSet: boolean;
ancestorMap: Map<string, AuditTransaction>;
children: Set<AuditTransaction>;
ancestorFee: number;
ancestorWeight: number;
score: number;
used: boolean;
modified: boolean;
modifiedNode: HeapNode<AuditTransaction>;
}
export interface Ancestor {
txid: string;
weight: number;
@ -80,9 +99,10 @@ export interface TransactionSet {
fee: number;
weight: number;
score: number;
children?: string[];
children?: Set<string>;
available?: boolean;
modified?: boolean;
modifiedNode?: HeapNode<string>;
}
interface BestDescendant {

View file

@ -0,0 +1,174 @@
export type HeapNode<T> = {
element: T
child?: HeapNode<T>
next?: HeapNode<T>
prev?: HeapNode<T>
} | null | undefined;
// minimal pairing heap priority queue implementation
export class PairingHeap<T> {
private root: HeapNode<T> = null;
private comparator: (a: T, b: T) => boolean;
// comparator function should return 'true' if a is higher priority than b
constructor(comparator: (a: T, b: T) => boolean) {
this.comparator = comparator;
}
isEmpty(): boolean {
return !this.root;
}
add(element: T): HeapNode<T> {
const node: HeapNode<T> = {
element
};
this.root = this.meld(this.root, node);
return node;
}
// returns the top priority element without modifying the queue
peek(): T | void {
return this.root?.element;
}
// removes and returns the top priority element
pop(): T | void {
let element;
if (this.root) {
const node = this.root;
element = node.element;
this.root = this.mergePairs(node.child);
}
return element;
}
deleteNode(node: HeapNode<T>): void {
if (!node) {
return;
}
if (node === this.root) {
this.root = this.mergePairs(node.child);
}
else {
if (node.prev) {
if (node.prev.child === node) {
node.prev.child = node.next;
}
else {
node.prev.next = node.next;
}
}
if (node.next) {
node.next.prev = node.prev;
}
this.root = this.meld(this.root, this.mergePairs(node.child));
}
node.child = null;
node.prev = null;
node.next = null;
}
// fix the heap after increasing the priority of a given node
increasePriority(node: HeapNode<T>): void {
// already the top priority element
if (!node || node === this.root) {
return;
}
// extract from siblings
if (node.prev) {
if (node.prev?.child === node) {
if (this.comparator(node.prev.element, node.element)) {
// already in a valid position
return;
}
node.prev.child = node.next;
}
else {
node.prev.next = node.next;
}
}
if (node.next) {
node.next.prev = node.prev;
}
this.root = this.meld(this.root, node);
}
decreasePriority(node: HeapNode<T>): void {
this.deleteNode(node);
this.root = this.meld(this.root, node);
}
meld(a: HeapNode<T>, b: HeapNode<T>): HeapNode<T> {
if (!a) {
return b;
}
if (!b || a === b) {
return a;
}
let parent: HeapNode<T> = b;
let child: HeapNode<T> = a;
if (this.comparator(a.element, b.element)) {
parent = a;
child = b;
}
child.next = parent.child;
if (parent.child) {
parent.child.prev = child;
}
child.prev = parent;
parent.child = child;
parent.next = null;
parent.prev = null;
return parent;
}
mergePairs(node: HeapNode<T>): HeapNode<T> {
if (!node) {
return null;
}
let current: HeapNode<T> = node;
let next: HeapNode<T>;
let nextCurrent: HeapNode<T>;
let pairs: HeapNode<T>;
let melded: HeapNode<T>;
while (current) {
next = current.next;
if (next) {
nextCurrent = next.next;
melded = this.meld(current, next);
if (melded) {
melded.prev = pairs;
}
pairs = melded;
}
else {
nextCurrent = null;
current.prev = pairs;
pairs = current;
break;
}
current = nextCurrent;
}
melded = null;
let prev: HeapNode<T>;
while (pairs) {
prev = pairs.prev;
melded = this.meld(melded, pairs);
pairs = prev;
}
return melded;
}
}