Calculate & save acceleration bid boost rates

This commit is contained in:
Mononaut 2024-02-27 18:09:15 +00:00
parent b9d46003f8
commit 130bdac58c
No known key found for this signature in database
GPG key ID: A3F058E41374C04E
4 changed files with 828 additions and 2 deletions

View file

@ -0,0 +1,738 @@
import logger from '../logger';
import { MempoolTransactionExtended } from '../mempool.interfaces';
import { IEsploraApi } from './bitcoin/esplora-api.interface';
const BLOCK_WEIGHT_UNITS = 4_000_000;
const BLOCK_SIGOPS = 80_000;
const MAX_RELATIVE_GRAPH_SIZE = 200;
const BID_BOOST_WINDOW = 40_000;
const BID_BOOST_MIN_OFFSET = 10_000;
const BID_BOOST_MAX_OFFSET = 400_000;
type Acceleration = {
txid: string;
max_bid: number;
};
interface TxSummary {
txid: string; // txid of the current transaction
effectiveVsize: number; // Total vsize of the dependency tree
effectiveFee: number; // Total fee of the dependency tree in sats
ancestorCount: number; // Number of ancestors
}
export interface AccelerationInfo {
txSummary: TxSummary;
targetFeeRate: number; // target fee rate (recommended next block fee, or median fee for mined block)
nextBlockFee: number; // fee in sats required to be in the next block (using recommended next block fee, or median fee for mined block)
cost: number; // additional cost to accelerate ((cost + txSummary.effectiveFee) / txSummary.effectiveVsize) >= targetFeeRate
}
interface GraphTx {
txid: string;
vsize: number;
weight: number;
fees: {
base: number;
};
depends: string[];
spentby: string[];
}
interface MempoolTx extends GraphTx {
ancestorcount: number;
ancestorsize: number;
fees: {
base: number;
ancestor: number;
};
ancestors: Map<string, MempoolTx>,
ancestorRate: number;
individualRate: number;
score: number;
}
class AccelerationCosts {
/**
* Takes a list of accelerations and verbose block data
* Returns the "fair" boost rate to charge accelerations
*
* @param accelerationsx
* @param verboseBlock
*/
public calculateBoostRate(accelerations: Acceleration[], blockTxs: IEsploraApi.Transaction[]): number {
// Run GBT ourselves to calculate accurate effective fee rates
// the list of transactions comes from a mined block, so we already know everything fits within consensus limits
const template = makeBlockTemplate(blockTxs, accelerations, 1, Infinity, Infinity);
// initialize working maps for fast tx lookups
const accMap = {};
const txMap = {};
for (const acceleration of accelerations) {
accMap[acceleration.txid] = acceleration;
}
for (const tx of template) {
txMap[tx.txid] = tx;
}
// Identify and exclude accelerated and otherwise prioritized transactions
const excludeMap = {};
let totalWeight = 0;
let minAcceleratedPackage = Infinity;
let lastEffectiveRate = 0;
// Iterate over the mined template from bottom to top.
// Transactions should appear in ascending order of mining priority.
for (const blockTx of [...blockTxs].reverse()) {
const txid = blockTx.txid;
const tx = txMap[txid];
totalWeight += tx.weight;
const isAccelerated = accMap[txid] != null;
// If a cluster has a in-band effective fee rate than the previous cluster,
// it must have been prioritized out-of-band (in order to have a higher mining priority)
// so exclude from the analysis.
const isPrioritized = tx.effectiveFeePerVsize < lastEffectiveRate;
if (isPrioritized || isAccelerated) {
let packageWeight = 0;
// exclude this whole CPFP cluster
for (const clusterTxid of tx.cluster) {
packageWeight += txMap[clusterTxid].weight;
if (!excludeMap[clusterTxid]) {
excludeMap[clusterTxid] = true;
}
}
// keep track of the smallest accelerated CPFP cluster for later
if (isAccelerated) {
minAcceleratedPackage = Math.min(minAcceleratedPackage, packageWeight);
}
}
if (!isPrioritized) {
if (!isAccelerated || !lastEffectiveRate) {
lastEffectiveRate = tx.effectiveFeePerVsize;
}
}
}
// The Bid Boost Rate is calculated by disregarding the bottom X weight units of the block,
// where X is the larger of BID_BOOST_MIN_OFFSET or the smallest accelerated package weight (the "offset"),
// then taking the average fee rate of the following BID_BOOST_WINDOW weight units
// (ignoring accelerated transactions and their ancestors).
//
// Transactions within the offset might pay less than the fair rate due to bin-packing effects
// But the average rate paid by the next chunk of non-accelerated transactions provides a good
// upper bound on the "next best rate" of alternatives to including the accelerated transactions
// (since, if there were any better options, they would have been included instead)
const spareWeight = BLOCK_WEIGHT_UNITS - totalWeight;
const windowOffset = Math.min(Math.max(minAcceleratedPackage, BID_BOOST_MIN_OFFSET, spareWeight), BID_BOOST_MAX_OFFSET);
const leftBound = windowOffset;
const rightBound = windowOffset + BID_BOOST_WINDOW;
let totalFeeInWindow = 0;
let totalWeightInWindow = Math.max(0, spareWeight - leftBound);
let txIndex = blockTxs.length - 1;
for (let offset = spareWeight; offset < BLOCK_WEIGHT_UNITS && txIndex >= 0; txIndex--) {
const txid = blockTxs[txIndex].txid;
const tx = txMap[txid];
if (excludeMap[txid]) {
// skip prioritized transactions and their ancestors
continue;
}
const left = offset;
const right = offset + tx.weight;
offset += tx.weight;
if (right < leftBound) {
// not within window yet
continue;
}
if (left > rightBound) {
// past window
break;
}
// count fees for weight units within the window
const overlapLeft = Math.max(leftBound, left);
const overlapRight = Math.min(rightBound, right);
const overlapUnits = overlapRight - overlapLeft;
totalFeeInWindow += (tx.effectiveFeePerVsize * (overlapUnits / 4));
totalWeightInWindow += overlapUnits;
}
if (totalWeightInWindow < BID_BOOST_WINDOW) {
// not enough un-prioritized transactions to calculate a fair rate
// just charge everyone their max bids
return Infinity;
}
// Divide the total fee by the size of the BID_BOOST_WINDOW in vbytes
const averageRate = totalFeeInWindow / (BID_BOOST_WINDOW / 4);
return averageRate;
}
/**
* Takes an accelerated mined txid and a target rate
* Returns the total vsize, fees and acceleration cost (in sats) of the tx and all same-block ancestors
*
* @param txid
* @param medianFeeRate
*/
public getAccelerationInfo(tx: MempoolTransactionExtended, targetFeeRate: number, transactions: MempoolTransactionExtended[]): AccelerationInfo {
// Get same-block transaction ancestors
const allRelatives = this.getSameBlockRelatives(tx, transactions);
const relativesMap = this.initializeRelatives(allRelatives);
const rootTx = relativesMap.get(tx.txid) as MempoolTx;
// Calculate cost to boost
return this.calculateAccelerationAncestors(rootTx, relativesMap, targetFeeRate);
}
/**
* Takes a raw transaction, and builds a graph of same-block relatives,
* and returns as a MempoolTx
*
* @param tx
*/
private getSameBlockRelatives(tx: MempoolTransactionExtended, transactions: MempoolTransactionExtended[]): Map<string, GraphTx> {
const blockTxs = new Map<string, MempoolTransactionExtended>(); // map of txs in this block
const spendMap = new Map<string, string>(); // map of outpoints to spending txids
for (const tx of transactions) {
blockTxs.set(tx.txid, tx);
for (const vin of tx.vin) {
spendMap.set(`${vin.txid}:${vin.vout}`, tx.txid);
}
}
const relatives: Map<string, GraphTx> = new Map();
const stack: string[] = [tx.txid];
// build set of same-block ancestors
while (stack.length > 0) {
const nextTxid = stack.pop();
const nextTx = nextTxid ? blockTxs.get(nextTxid) : null;
if (!nextTx || relatives.has(nextTx.txid)) {
continue;
}
const mempoolTx = this.convertToGraphTx(nextTx);
mempoolTx.fees.base = nextTx.fee || 0;
mempoolTx.depends = nextTx.vin.map(vin => vin.txid).filter(inTxid => inTxid && blockTxs.has(inTxid)) as string[];
mempoolTx.spentby = nextTx.vout.map((vout, index) => spendMap.get(`${nextTx.txid}:${index}`)).filter(outTxid => outTxid && blockTxs.has(outTxid)) as string[];
for (const txid of [...mempoolTx.depends, ...mempoolTx.spentby]) {
if (txid) {
stack.push(txid);
}
}
relatives.set(mempoolTx.txid, mempoolTx);
}
return relatives;
}
/**
* Takes a raw transaction and converts it to MempoolTx format
* fee and ancestor data is initialized with dummy/null values
*
* @param tx
*/
private convertToGraphTx(tx: MempoolTransactionExtended): GraphTx {
return {
txid: tx.txid,
vsize: tx.vsize,
weight: tx.weight,
fees: {
base: 0, // dummy
},
depends: [], // dummy
spentby: [], //dummy
};
}
private convertGraphToMempoolTx(tx: GraphTx): MempoolTx {
return {
...tx,
fees: {
base: tx.fees.base,
ancestor: tx.fees.base,
},
ancestorcount: 1,
ancestorsize: tx.vsize,
ancestors: new Map<string, MempoolTx>(),
ancestorRate: 0,
individualRate: 0,
score: 0,
};
}
/**
* Given a root transaction, a list of in-mempool ancestors, and a target fee rate,
* Calculate the minimum set of transactions to fee-bump, their total vsize + fees
*
* @param tx
* @param ancestors
*/
private calculateAccelerationAncestors(tx: MempoolTx, relatives: Map<string, MempoolTx>, targetFeeRate: number): AccelerationInfo {
// add root tx to the ancestor map
relatives.set(tx.txid, tx);
// Check for high-sigop transactions (not supported)
relatives.forEach(entry => {
if (entry.vsize > Math.ceil(entry.weight / 4)) {
throw new Error(`high_sigop_tx`);
}
});
// Initialize individual & ancestor fee rates
relatives.forEach(entry => this.setAncestorScores(entry));
// Sort by descending ancestor score
let sortedRelatives = Array.from(relatives.values()).sort(this.mempoolComparator);
let includedInCluster: Map<string, MempoolTx> | null = null;
// While highest score >= targetFeeRate
let maxIterations = MAX_RELATIVE_GRAPH_SIZE;
while (sortedRelatives.length && sortedRelatives[0].score && sortedRelatives[0].score >= targetFeeRate && maxIterations > 0) {
maxIterations--;
// Grab the highest scoring entry
const best = sortedRelatives.shift();
if (best) {
const cluster = new Map<string, MempoolTx>(best.ancestors?.entries() || []);
if (best.ancestors.has(tx.txid)) {
includedInCluster = cluster;
}
cluster.set(best.txid, best);
// Remove this cluster (it already pays over the target rate, so doesn't need to be boosted)
// and update scores, ancestor totals and dependencies for the survivors
this.removeAncestors(cluster, relatives);
// re-sort
sortedRelatives = Array.from(relatives.values()).sort(this.mempoolComparator);
}
}
// sanity check for infinite loops / too many ancestors (should never happen)
if (maxIterations <= 0) {
logger.warn(`acceleration dependency calculation failed: calculateAccelerationAncestors loop exceeded ${MAX_RELATIVE_GRAPH_SIZE} iterations, unable to proceed`);
throw new Error('invalid_tx_dependencies');
}
let totalFee = Math.round(tx.fees.ancestor * 100_000_000);
// transaction is already CPFP-d above the target rate by some descendant
if (includedInCluster) {
let clusterSize = 0;
let clusterFee = 0;
includedInCluster.forEach(entry => {
clusterSize += entry.vsize;
clusterFee += (entry.fees.base * 100_000_000);
});
const clusterRate = clusterFee / clusterSize;
totalFee = Math.ceil(tx.ancestorsize * clusterRate);
}
// Whatever remains in the accelerated tx's dependencies needs to be boosted to the targetFeeRate
// Cost = (totalVsize * targetFeeRate) - totalFee
return {
txSummary: {
txid: tx.txid,
effectiveVsize: tx.ancestorsize,
effectiveFee: totalFee,
ancestorCount: tx.ancestorcount,
},
cost: Math.max(0, Math.ceil(tx.ancestorsize * targetFeeRate) - totalFee),
targetFeeRate,
nextBlockFee: Math.ceil(tx.ancestorsize * targetFeeRate),
};
}
/**
* Recursively traverses an in-mempool dependency graph, and sets a Map of in-mempool ancestors
* for each transaction.
*
* @param tx
* @param all
*/
private setAncestors(tx: MempoolTx, all: Map<string, MempoolTx>, visited: Map<string, Map<string, MempoolTx>>, depth: number = 0): Map<string, MempoolTx> {
// sanity check for infinite recursion / too many ancestors (should never happen)
if (depth >= 100) {
logger.warn('acceleration dependency calculation failed: setAncestors reached depth of 100, unable to proceed', `Accelerator`);
throw new Error('invalid_tx_dependencies');
}
// initialize the ancestor map for this tx
tx.ancestors = new Map<string, MempoolTx>();
tx.depends.forEach(parentId => {
const parent = all.get(parentId);
if (parent) {
// add the parent
tx.ancestors?.set(parentId, parent);
// check for a cached copy of this parent's ancestors
let ancestors = visited.get(parent.txid);
if (!ancestors) {
// recursively fetch the parent's ancestors
ancestors = this.setAncestors(parent, all, visited, depth + 1);
}
// and add to this tx's map
ancestors.forEach((ancestor, ancestorId) => {
tx.ancestors?.set(ancestorId, ancestor);
});
}
});
visited.set(tx.txid, tx.ancestors);
return tx.ancestors;
}
/**
* Efficiently sets a Map of in-mempool ancestors for each member of an expanded relative graph
* by running setAncestors on each leaf, and caching intermediate results.
* then initializes ancestor data for each transaction
*
* @param all
*/
private initializeRelatives(all: Map<string, GraphTx>): Map<string, MempoolTx> {
const mempoolTxs = new Map<string, MempoolTx>();
all.forEach(entry => {
mempoolTxs.set(entry.txid, this.convertGraphToMempoolTx(entry));
});
const visited: Map<string, Map<string, MempoolTx>> = new Map();
const leaves: MempoolTx[] = Array.from(mempoolTxs.values()).filter(entry => entry.spentby.length === 0);
for (const leaf of leaves) {
this.setAncestors(leaf, mempoolTxs, visited);
}
mempoolTxs.forEach(entry => {
entry.ancestors?.forEach(ancestor => {
entry.ancestorcount++;
entry.ancestorsize += ancestor.vsize;
entry.fees.ancestor += ancestor.fees.base;
});
this.setAncestorScores(entry);
});
return mempoolTxs;
}
/**
* Remove a cluster of transactions from an in-mempool dependency graph
* and update the survivors' scores and ancestors
*
* @param cluster
* @param ancestors
*/
private removeAncestors(cluster: Map<string, MempoolTx>, all: Map<string, MempoolTx>): void {
// remove
cluster.forEach(tx => {
all.delete(tx.txid);
});
// update survivors
all.forEach(tx => {
cluster.forEach(remove => {
if (tx.ancestors?.has(remove.txid)) {
// remove as dependency
tx.ancestors.delete(remove.txid);
tx.depends = tx.depends.filter(parent => parent !== remove.txid);
// update ancestor sizes and fees
tx.ancestorsize -= remove.vsize;
tx.fees.ancestor -= remove.fees.base;
}
});
// recalculate fee rates
this.setAncestorScores(tx);
});
}
/**
* Take a mempool transaction, and set the fee rates and ancestor score
*
* @param tx
*/
private setAncestorScores(tx: MempoolTx): void {
tx.individualRate = (tx.fees.base * 100_000_000) / tx.vsize;
tx.ancestorRate = (tx.fees.ancestor * 100_000_000) / tx.ancestorsize;
tx.score = Math.min(tx.individualRate, tx.ancestorRate);
}
// Sort by descending score
private mempoolComparator(a, b): number {
return b.score - a.score;
}
}
export default new AccelerationCosts;
interface TemplateTransaction {
txid: string;
order: number;
weight: number;
adjustedVsize: number; // sigop-adjusted vsize, rounded up to the nearest integer
sigops: number;
fee: number;
feeDelta: number;
ancestors: string[];
cluster: string[];
effectiveFeePerVsize: number;
}
interface MinerTransaction extends TemplateTransaction {
inputs: string[];
feePerVsize: number;
relativesSet: boolean;
ancestorMap: Map<string, MinerTransaction>;
children: Set<MinerTransaction>;
ancestorFee: number;
ancestorVsize: number;
ancestorSigops: number;
score: number;
used: boolean;
modified: boolean;
dependencyRate: number;
}
/*
* Build a block using an approximation of the transaction selection algorithm from Bitcoin Core
* (see BlockAssembler in https://github.com/bitcoin/bitcoin/blob/master/src/node/miner.cpp)
*/
function makeBlockTemplate(candidates: IEsploraApi.Transaction[], accelerations: Acceleration[], maxBlocks: number = 8, weightLimit: number = BLOCK_WEIGHT_UNITS, sigopLimit: number = BLOCK_SIGOPS): TemplateTransaction[] {
const auditPool: Map<string, MinerTransaction> = new Map();
const mempoolArray: MinerTransaction[] = [];
candidates.forEach(tx => {
// initializing everything up front helps V8 optimize property access later
const adjustedVsize = Math.ceil(Math.max(tx.weight / 4, 5 * (tx.sigops || 0)));
const feePerVsize = (tx.fee / adjustedVsize);
auditPool.set(tx.txid, {
txid: tx.txid,
order: txidToOrdering(tx.txid),
fee: tx.fee,
feeDelta: 0,
weight: tx.weight,
adjustedVsize,
feePerVsize: feePerVsize,
effectiveFeePerVsize: feePerVsize,
dependencyRate: feePerVsize,
sigops: tx.sigops || 0,
inputs: (tx.vin?.map(vin => vin.txid) || []) as string[],
relativesSet: false,
ancestors: [],
cluster: [],
ancestorMap: new Map<string, MinerTransaction>(),
children: new Set<MinerTransaction>(),
ancestorFee: 0,
ancestorVsize: 0,
ancestorSigops: 0,
score: 0,
used: false,
modified: false,
});
mempoolArray.push(auditPool.get(tx.txid) as MinerTransaction);
});
// set accelerated effective fee
for (const acceleration of accelerations) {
const tx = auditPool.get(acceleration.txid);
if (tx) {
tx.feeDelta = acceleration.max_bid;
tx.feePerVsize = ((tx.fee + tx.feeDelta) / tx.adjustedVsize);
tx.effectiveFeePerVsize = tx.feePerVsize;
tx.dependencyRate = tx.feePerVsize;
}
}
// Build relatives graph & calculate ancestor scores
for (const tx of mempoolArray) {
if (!tx.relativesSet) {
setRelatives(tx, auditPool);
}
}
// Sort by descending ancestor score
mempoolArray.sort(priorityComparator);
// Build blocks by greedily choosing the highest feerate package
// (i.e. the package rooted in the transaction with the best ancestor score)
const blocks: number[][] = [];
let blockWeight = 0;
let blockSigops = 0;
const transactions: MinerTransaction[] = [];
let modified: MinerTransaction[] = [];
const overflow: MinerTransaction[] = [];
let failures = 0;
while (mempoolArray.length || modified.length) {
// skip invalid transactions
while (mempoolArray[0].used || mempoolArray[0].modified) {
mempoolArray.shift();
}
// Select best next package
let nextTx;
const nextPoolTx = mempoolArray[0];
const nextModifiedTx = modified[0];
if (nextPoolTx && (!nextModifiedTx || (nextPoolTx.score || 0) > (nextModifiedTx.score || 0))) {
nextTx = nextPoolTx;
mempoolArray.shift();
} else {
modified.shift();
if (nextModifiedTx) {
nextTx = nextModifiedTx;
}
}
if (nextTx && !nextTx?.used) {
// Check if the package fits into this block
if (blocks.length >= (maxBlocks - 1) || ((blockWeight + (4 * nextTx.ancestorVsize) < weightLimit) && (blockSigops + nextTx.ancestorSigops <= sigopLimit))) {
const ancestors: MinerTransaction[] = Array.from(nextTx.ancestorMap.values());
// sort ancestors by dependency graph (equivalent to sorting by ascending ancestor count)
const sortedTxSet = [...ancestors.sort((a, b) => { return (a.ancestorMap.size || 0) - (b.ancestorMap.size || 0); }), nextTx];
const clusterTxids = sortedTxSet.map(tx => tx.txid);
const effectiveFeeRate = Math.min(nextTx.dependencyRate || Infinity, nextTx.ancestorFee / nextTx.ancestorVsize);
const used: MinerTransaction[] = [];
while (sortedTxSet.length) {
const ancestor = sortedTxSet.pop();
if (!ancestor) {
continue;
}
ancestor.used = true;
ancestor.usedBy = nextTx.txid;
// update this tx with effective fee rate & relatives data
if (ancestor.effectiveFeePerVsize !== effectiveFeeRate) {
ancestor.effectiveFeePerVsize = effectiveFeeRate;
}
ancestor.cluster = clusterTxids;
transactions.push(ancestor);
blockWeight += ancestor.weight;
blockSigops += ancestor.sigops;
used.push(ancestor);
}
// remove these as valid package ancestors for any descendants remaining in the mempool
if (used.length) {
used.forEach(tx => {
modified = updateDescendants(tx, auditPool, modified, effectiveFeeRate);
});
}
failures = 0;
} else {
// hold this package in an overflow list while we check for smaller options
overflow.push(nextTx);
failures++;
}
}
// this block is full
const exceededPackageTries = failures > 1000 && blockWeight > (weightLimit - 4000);
const queueEmpty = !mempoolArray.length && !modified.length;
if (exceededPackageTries || queueEmpty) {
break;
}
}
for (const tx of transactions) {
tx.ancestors = Object.values(tx.ancestorMap);
}
return transactions;
}
// traverse in-mempool ancestors
// recursion unavoidable, but should be limited to depth < 25 by mempool policy
function setRelatives(
tx: MinerTransaction,
mempool: Map<string, MinerTransaction>,
): void {
for (const parent of tx.inputs) {
const parentTx = mempool.get(parent);
if (parentTx && !tx.ancestorMap?.has(parent)) {
tx.ancestorMap.set(parent, parentTx);
parentTx.children.add(tx);
// visit each node only once
if (!parentTx.relativesSet) {
setRelatives(parentTx, mempool);
}
parentTx.ancestorMap.forEach((ancestor) => {
tx.ancestorMap.set(ancestor.txid, ancestor);
});
}
};
tx.ancestorFee = (tx.fee + tx.feeDelta);
tx.ancestorVsize = tx.adjustedVsize || 0;
tx.ancestorSigops = tx.sigops || 0;
tx.ancestorMap.forEach((ancestor) => {
tx.ancestorFee += (ancestor.fee + ancestor.feeDelta);
tx.ancestorVsize += ancestor.adjustedVsize;
tx.ancestorSigops += ancestor.sigops;
});
tx.score = tx.ancestorFee / tx.ancestorVsize;
tx.relativesSet = true;
}
// iterate over remaining descendants, removing the root as a valid ancestor & updating the ancestor score
// avoids recursion to limit call stack depth
function updateDescendants(
rootTx: MinerTransaction,
mempool: Map<string, MinerTransaction>,
modified: MinerTransaction[],
clusterRate: number,
): MinerTransaction[] {
const descendantSet: Set<MinerTransaction> = new Set();
// stack of nodes left to visit
const descendants: MinerTransaction[] = [];
let descendantTx: MinerTransaction | undefined;
rootTx.children.forEach(childTx => {
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
while (descendants.length) {
descendantTx = descendants.pop();
if (descendantTx && descendantTx.ancestorMap && descendantTx.ancestorMap.has(rootTx.txid)) {
// remove tx as ancestor
descendantTx.ancestorMap.delete(rootTx.txid);
descendantTx.ancestorFee -= (rootTx.fee + rootTx.feeDelta);
descendantTx.ancestorVsize -= rootTx.adjustedVsize;
descendantTx.ancestorSigops -= rootTx.sigops;
descendantTx.score = descendantTx.ancestorFee / descendantTx.ancestorVsize;
descendantTx.dependencyRate = descendantTx.dependencyRate ? Math.min(descendantTx.dependencyRate, clusterRate) : clusterRate;
if (!descendantTx.modified) {
descendantTx.modified = true;
modified.push(descendantTx);
}
// add this node's children to the stack
descendantTx.children.forEach(childTx => {
// visit each node only once
if (!descendantSet.has(childTx)) {
descendants.push(childTx);
descendantSet.add(childTx);
}
});
}
}
// return new, resorted modified list
return modified.sort(priorityComparator);
}
// Used to sort an array of MinerTransactions by descending ancestor score
function priorityComparator(a: MinerTransaction, b: MinerTransaction): number {
if (b.score === a.score) {
// tie-break by txid for stability
return a.order - b.order;
} else {
return b.score - a.score;
}
}
// returns the most significant 4 bytes of the txid as an integer
function txidToOrdering(txid: string): number {
return parseInt(
txid.substring(62, 64) +
txid.substring(60, 62) +
txid.substring(58, 60) +
txid.substring(56, 58),
16
);
}

View file

@ -7,7 +7,7 @@ import cpfpRepository from '../repositories/CpfpRepository';
import { RowDataPacket } from 'mysql2';
class DatabaseMigration {
private static currentVersion = 68;
private static currentVersion = 69;
private queryTimeout = 3600_000;
private statisticsAddedIndexed = false;
private uniqueLogs: string[] = [];
@ -580,6 +580,11 @@ class DatabaseMigration {
await this.$executeQuery(`INSERT INTO state VALUES('last_bitcoin_block_audit', 0, NULL);`);
await this.updateToSchemaVersion(68);
}
if (databaseSchemaVersion < 69 && config.MEMPOOL.NETWORK === 'mainnet') {
await this.$executeQuery(this.getCreateAccelerationsTableQuery(), await this.$checkIfTableExists('accelerations'));
await this.updateToSchemaVersion(69);
}
}
/**
@ -1123,6 +1128,23 @@ class DatabaseMigration {
) ENGINE=InnoDB DEFAULT CHARSET=utf8;`;
}
private getCreateAccelerationsTableQuery(): string {
return `CREATE TABLE IF NOT EXISTS accelerations (
txid varchar(65) NOT NULL,
added date NOT NULL,
height int(10) NOT NULL,
pool smallint unsigned NULL,
effective_vsize int(10) NOT NULL,
effective_fee bigint(20) unsigned NOT NULL,
boost_rate float unsigned,
boost_cost bigint(20) unsigned NOT NULL,
PRIMARY KEY (txid),
INDEX (added),
INDEX (height),
INDEX (pool)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;`;
}
public async $blocksReindexingTruncate(): Promise<void> {
logger.warn(`Truncating pools, blocks, hashrates and difficulty_adjustments tables for re-indexing (using '--reindex-blocks'). You can cancel this command within 5 seconds`);
await Common.sleep$(5000);

View file

@ -24,6 +24,8 @@ import { ApiPrice } from '../repositories/PricesRepository';
import accelerationApi from './services/acceleration';
import mempool from './mempool';
import statistics from './statistics/statistics';
import accelerationCosts from './acceleration';
import accelerationRepository from '../repositories/AccelerationRepository';
interface AddressTransactions {
mempool: MempoolTransactionExtended[],
@ -728,6 +730,28 @@ class WebsocketHandler {
const _memPool = memPool.getMempool();
const isAccelerated = config.MEMPOOL_SERVICES.ACCELERATIONS && accelerationApi.isAcceleratedBlock(block, Object.values(mempool.getAccelerations()));
if (isAccelerated) {
const blockTxs: { [txid: string]: MempoolTransactionExtended } = {};
for (const tx of transactions) {
blockTxs[tx.txid] = tx;
}
const accelerations = Object.values(mempool.getAccelerations());
const boostRate = accelerationCosts.calculateBoostRate(
accelerations.map(acc => ({ txid: acc.txid, max_bid: acc.feeDelta })),
transactions
);
for (const acc of accelerations) {
if (blockTxs[acc.txid]) {
const tx = blockTxs[acc.txid];
const accelerationInfo = accelerationCosts.getAccelerationInfo(tx, boostRate, transactions);
accelerationRepository.$saveAcceleration(accelerationInfo, block, block.extras.pool.id);
}
}
}
const rbfTransactions = Common.findMinedRbfTransactions(transactions, memPool.getSpendMap());
memPool.handleMinedRbfTransactions(rbfTransactions);
memPool.removeFromSpendMap(transactions);
@ -735,7 +759,6 @@ class WebsocketHandler {
if (config.MEMPOOL.AUDIT && memPool.isInSync()) {
let projectedBlocks;
let auditMempool = _memPool;
const isAccelerated = config.MEMPOOL_SERVICES.ACCELERATIONS && accelerationApi.isAcceleratedBlock(block, Object.values(mempool.getAccelerations()));
// template calculation functions have mempool side effects, so calculate audits using
// a cloned copy of the mempool if we're running a different algorithm for mempool updates
const separateAudit = config.MEMPOOL.ADVANCED_GBT_AUDIT !== config.MEMPOOL.ADVANCED_GBT_MEMPOOL;

View file

@ -0,0 +1,43 @@
import { AccelerationInfo } from '../api/acceleration';
import { ResultSetHeader, RowDataPacket } from 'mysql2';
import DB from '../database';
import logger from '../logger';
import { IEsploraApi } from '../api/bitcoin/esplora-api.interface';
class AccelerationRepository {
public async $saveAcceleration(acceleration: AccelerationInfo, block: IEsploraApi.Block, pool_id: number): Promise<void> {
try {
await DB.query(`
INSERT INTO accelerations(txid, added, height, pool, effective_vsize, effective_fee, boost_rate, boost_cost)
VALUE (?, FROM_UNIXTIME(?), ?, ?, ?, ?, ?, ?)
ON DUPLICATE KEY UPDATE
added = FROM_UNIXTIME(?),
height = ?,
pool = ?,
effective_vsize = ?,
effective_fee = ?,
boost_rate = ?,
boost_cost = ?
`, [
acceleration.txSummary.txid,
block.timestamp,
block.height,
pool_id,
acceleration.txSummary.effectiveVsize,
acceleration.txSummary.effectiveFee,
acceleration.targetFeeRate, acceleration.cost,
block.timestamp,
block.height,
pool_id,
acceleration.txSummary.effectiveVsize,
acceleration.txSummary.effectiveFee,
acceleration.targetFeeRate, acceleration.cost,
]);
} catch (e: any) {
logger.err(`Cannot save acceleration (${acceleration.txSummary.txid}) into db. Reason: ` + (e instanceof Error ? e.message : e));
// We don't throw, not a critical issue if we miss some accelerations
}
}
}
export default new AccelerationRepository();