lnd/watchtower/wtdb/range_index.go
2023-01-17 19:43:26 +01:00

620 lines
17 KiB
Go

package wtdb
import (
"fmt"
"sync"
)
// rangeItem represents the start and end values of a range.
type rangeItem struct {
start uint64
end uint64
}
// RangeIndexOption describes the signature of a functional option that can be
// used to modify the behaviour of a RangeIndex.
type RangeIndexOption func(*RangeIndex)
// WithSerializeUint64Fn is a functional option that can be used to set the
// function to be used to do the serialization of a uint64 into a byte slice.
func WithSerializeUint64Fn(fn func(uint64) ([]byte, error)) RangeIndexOption {
return func(index *RangeIndex) {
index.serializeUint64 = fn
}
}
// RangeIndex can be used to keep track of which numbers have been added to a
// set. It does so by keeping track of a sorted list of rangeItems. Each
// rangeItem has a start and end value of a range where all values in-between
// have been added to the set. It works well in situations where it is expected
// numbers in the set are not sparse.
type RangeIndex struct {
// set is a sorted list of rangeItem.
set []rangeItem
// mu is used to ensure safe access to set.
mu sync.Mutex
// serializeUint64 is the function that can be used to convert a uint64
// to a byte slice.
serializeUint64 func(uint64) ([]byte, error)
}
// NewRangeIndex constructs a new RangeIndex. An initial set of ranges may be
// passed to the function in the form of a map.
func NewRangeIndex(ranges map[uint64]uint64,
opts ...RangeIndexOption) (*RangeIndex, error) {
index := &RangeIndex{
serializeUint64: defaultSerializeUint64,
set: make([]rangeItem, 0),
}
// Apply any functional options.
for _, o := range opts {
o(index)
}
for s, e := range ranges {
if err := index.addRange(s, e); err != nil {
return nil, err
}
}
return index, nil
}
// addRange can be used to add an entire new range to the set. This method
// should only ever be called by NewRangeIndex to initialise the in-memory
// structure and so the RangeIndex mutex is not held during this method.
func (a *RangeIndex) addRange(start, end uint64) error {
// Check that the given range is valid.
if start > end {
return fmt.Errorf("invalid range. Start height %d is larger "+
"than end height %d", start, end)
}
// min is a helper closure that will return the minimum of two uint64s.
min := func(a, b uint64) uint64 {
if a < b {
return a
}
return b
}
// max is a helper closure that will return the maximum of two uint64s.
max := func(a, b uint64) uint64 {
if a > b {
return a
}
return b
}
// Collect the ranges that fall before and after the new range along
// with the start and end values of the new range.
var before, after []rangeItem
for _, x := range a.set {
// If the new start value can't extend the current ranges end
// value, then the two cannot be merged. The range is added to
// the group of ranges that fall before the new range.
if x.end+1 < start {
before = append(before, x)
continue
}
// If the current ranges start value does not follow on directly
// from the new end value, then the two cannot be merged. The
// range is added to the group of ranges that fall after the new
// range.
if end+1 < x.start {
after = append(after, x)
continue
}
// Otherwise, there is an overlap and so the two can be merged.
start = min(start, x.start)
end = max(end, x.end)
}
// Re-construct the range index set.
a.set = append(append(before, rangeItem{
start: start,
end: end,
}), after...)
return nil
}
// IsInIndex returns true if the given number is in the range set.
func (a *RangeIndex) IsInIndex(n uint64) bool {
a.mu.Lock()
defer a.mu.Unlock()
_, isCovered := a.lowerBoundIndex(n)
return isCovered
}
// NumInSet returns the number of items covered by the range set.
func (a *RangeIndex) NumInSet() uint64 {
a.mu.Lock()
defer a.mu.Unlock()
var numItems uint64
for _, r := range a.set {
numItems += r.end - r.start + 1
}
return numItems
}
// MaxHeight returns the highest number covered in the range.
func (a *RangeIndex) MaxHeight() uint64 {
a.mu.Lock()
defer a.mu.Unlock()
if len(a.set) == 0 {
return 0
}
return a.set[len(a.set)-1].end
}
// GetAllRanges returns a copy of the range set in the form of a map.
func (a *RangeIndex) GetAllRanges() map[uint64]uint64 {
a.mu.Lock()
defer a.mu.Unlock()
cp := make(map[uint64]uint64, len(a.set))
for _, item := range a.set {
cp[item.start] = item.end
}
return cp
}
// lowerBoundIndex returns the index of the RangeIndex that is most appropriate
// for the new value, n. In other words, it returns the index of the rangeItem
// set of the range where the start value is the highest start value in the set
// that is still lower than or equal to the given number, n. The returned
// boolean is true if the given number is already covered in the RangeIndex.
// A returned index of -1 indicates that no lower bound range exists in the set.
// Since the most likely case is that the new number will just extend the
// highest range, a check is first done to see if this is the case which will
// make the methods' computational complexity O(1). Otherwise, a binary search
// is done which brings the computational complexity to O(log N).
func (a *RangeIndex) lowerBoundIndex(n uint64) (int, bool) {
// If the set is empty, then there is no such index and the value
// definitely is not in the set.
if len(a.set) == 0 {
return -1, false
}
// In most cases, the last index item will be the one we want. So just
// do a quick check on that index first to avoid doing the binary
// search.
lastIndex := len(a.set) - 1
lastRange := a.set[lastIndex]
if lastRange.start <= n {
return lastIndex, lastRange.end >= n
}
// Otherwise, do a binary search to find the index of interest.
var (
low = 0
high = len(a.set) - 1
rangeIndex = -1
)
for {
mid := (low + high) / 2
currentRange := a.set[mid]
switch {
case currentRange.start > n:
// If the start of the range is greater than n, we can
// completely cut out that entire part of the array.
high = mid
case currentRange.start < n:
// If the range already includes the given height, we
// can stop searching now.
if currentRange.end >= n {
return mid, true
}
// If the start of the range is smaller than n, we can
// store this as the new best index to return.
rangeIndex = mid
// If low and mid are already equal, then increment low
// by 1. Exit if this means that low is now greater than
// high.
if low == mid {
low = mid + 1
if low > high {
return rangeIndex, false
}
} else {
low = mid
}
continue
default:
// If the height is equal to the start value of the
// current range that mid is pointing to, then the
// height is already covered.
return mid, true
}
// Exit if we have checked all the ranges.
if low == high {
break
}
}
return rangeIndex, false
}
// KVStore is an interface representing a key-value store.
type KVStore interface {
// Put saves the specified key/value pair to the store. Keys that do not
// already exist are added and keys that already exist are overwritten.
Put(key, value []byte) error
// Delete removes the specified key from the bucket. Deleting a key that
// does not exist does not return an error.
Delete(key []byte) error
}
// Add adds a single number to the range set. It first attempts to apply the
// necessary changes to the passed KV store and then only if this succeeds, will
// the changes be applied to the in-memory structure.
func (a *RangeIndex) Add(newHeight uint64, kv KVStore) error {
a.mu.Lock()
defer a.mu.Unlock()
// Compute the changes that will need to be applied to both the sorted
// rangeItem array representation and the key-value store representation
// of the range index.
arrayChanges, kvStoreChanges := a.getChanges(newHeight)
// First attempt to apply the KV store changes. Only if this succeeds
// will we apply the changes to our in-memory range index structure.
err := a.applyKVChanges(kv, kvStoreChanges)
if err != nil {
return err
}
// Since the DB changes were successful, we can now commit the
// changes to our in-memory representation of the range set.
a.applyArrayChanges(arrayChanges)
return nil
}
// applyKVChanges applies the given set of kvChanges to a KV store. It is
// assumed that a transaction is being held on the kv store so that if any
// of the actions of the function fails, the changes will be reverted.
func (a *RangeIndex) applyKVChanges(kv KVStore, changes *kvChanges) error {
// Exit early if there are no changes to apply.
if kv == nil || changes == nil {
return nil
}
// Check if any range pair needs to be deleted.
if changes.deleteKVKey != nil {
del, err := a.serializeUint64(*changes.deleteKVKey)
if err != nil {
return err
}
if err := kv.Delete(del); err != nil {
return err
}
}
start, err := a.serializeUint64(changes.key)
if err != nil {
return err
}
end, err := a.serializeUint64(changes.value)
if err != nil {
return err
}
return kv.Put(start, end)
}
// applyArrayChanges applies the given arrayChanges to the in-memory RangeIndex
// itself. This should only be done once the persisted kv store changes have
// already been applied.
func (a *RangeIndex) applyArrayChanges(changes *arrayChanges) {
if changes == nil {
return
}
if changes.indexToDelete != nil {
a.set = append(
a.set[:*changes.indexToDelete],
a.set[*changes.indexToDelete+1:]...,
)
}
if changes.newIndex != nil {
switch {
case *changes.newIndex == 0:
a.set = append([]rangeItem{{
start: changes.start,
end: changes.end,
}}, a.set...)
case *changes.newIndex == len(a.set):
a.set = append(a.set, rangeItem{
start: changes.start,
end: changes.end,
})
default:
a.set = append(
a.set[:*changes.newIndex+1],
a.set[*changes.newIndex:]...,
)
a.set[*changes.newIndex] = rangeItem{
start: changes.start,
end: changes.end,
}
}
return
}
if changes.indexToEdit != nil {
a.set[*changes.indexToEdit] = rangeItem{
start: changes.start,
end: changes.end,
}
}
}
// arrayChanges encompasses the diff to apply to the sorted rangeItem array
// representation of a range index. Such a diff will either include adding a
// new range or editing an existing range. If an existing range is edited, then
// the diff might also include deleting an index (this will be the case if the
// editing of the one range results in the merge of another range).
type arrayChanges struct {
start uint64
end uint64
// newIndex, if set, is the index of the in-memory range array where a
// new range, [start:end], should be added. newIndex should never be
// set at the same time as indexToEdit or indexToDelete.
newIndex *int
// indexToDelete, if set, is the index of the sorted rangeItem array
// that should be deleted. This should be applied before reading the
// index value of indexToEdit. This should not be set at the same time
// as newIndex.
indexToDelete *int
// indexToEdit is the index of the in-memory range array that should be
// edited. The range at this index will be changed to [start:end]. This
// should only be read after indexToDelete index has been deleted.
indexToEdit *int
}
// kvChanges encompasses the diff to apply to a KV-store representation of a
// range index. A kv-store diff for the addition of a single number to the range
// index will include either a brand new key-value pair or the altering of the
// value of an existing key. Optionally, the diff may also include the deletion
// of an existing key. A deletion will be required if the addition of the new
// number results in the merge of two ranges.
type kvChanges struct {
key uint64
value uint64
// deleteKVKey, if set, is the key of the kv store representation that
// should be deleted.
deleteKVKey *uint64
}
// getChanges will calculate and return the changes that need to be applied to
// both the sorted-rangeItem-array representation and the key-value store
// representation of the range index.
func (a *RangeIndex) getChanges(n uint64) (*arrayChanges, *kvChanges) {
// If the set is empty then a new range item is added.
if len(a.set) == 0 {
// For the array representation, a new range [n:n] is added to
// the first index of the array.
firstIndex := 0
ac := &arrayChanges{
newIndex: &firstIndex,
start: n,
end: n,
}
// For the KV representation, a new [n:n] pair is added.
kvc := &kvChanges{
key: n,
value: n,
}
return ac, kvc
}
// Find the index of the lower bound range to the new number.
indexOfRangeBelow, alreadyCovered := a.lowerBoundIndex(n)
switch {
// The new number is already covered by the range index. No changes are
// required.
case alreadyCovered:
return nil, nil
// No lower bound index exists.
case indexOfRangeBelow < 0:
// Check if the very first range can be merged into this new
// one.
if n+1 == a.set[0].start {
// If so, the two ranges can be merged and so the start
// value of the range is n and the end value is the end
// of the existing first range.
start := n
end := a.set[0].end
// For the array representation, we can just edit the
// first entry of the array
editIndex := 0
ac := &arrayChanges{
indexToEdit: &editIndex,
start: start,
end: end,
}
// For the KV store representation, we add a new kv pair
// and delete the range with the key equal to the start
// value of the range we are merging.
kvKeyToDelete := a.set[0].start
kvc := &kvChanges{
key: start,
value: end,
deleteKVKey: &kvKeyToDelete,
}
return ac, kvc
}
// Otherwise, we add a new index.
// For the array representation, a new range [n:n] is added to
// the first index of the array.
newIndex := 0
ac := &arrayChanges{
newIndex: &newIndex,
start: n,
end: n,
}
// For the KV representation, a new [n:n] pair is added.
kvc := &kvChanges{
key: n,
value: n,
}
return ac, kvc
// A lower range does exist, and it can be extended to include this new
// number.
case a.set[indexOfRangeBelow].end+1 == n:
start := a.set[indexOfRangeBelow].start
end := n
indexToChange := indexOfRangeBelow
// If there are no intervals above this one or if there are, but
// they can't be merged into this one then we just need to edit
// this interval.
if indexOfRangeBelow == len(a.set)-1 ||
a.set[indexOfRangeBelow+1].start != n+1 {
// For the array representation, we just edit the index.
ac := &arrayChanges{
indexToEdit: &indexToChange,
start: start,
end: end,
}
// For the key-value representation, we just overwrite
// the end value at the existing start key.
kvc := &kvChanges{
key: start,
value: end,
}
return ac, kvc
}
// There is a range above this one that we need to merge into
// this one.
delIndex := indexOfRangeBelow + 1
end = a.set[delIndex].end
// For the array representation, we delete the range above this
// one and edit this range to include the end value of the range
// above.
ac := &arrayChanges{
indexToDelete: &delIndex,
indexToEdit: &indexToChange,
start: start,
end: end,
}
// For the kv representation, we tweak the end value of an
// existing key and delete the key of the range we are deleting.
deleteKey := a.set[delIndex].start
kvc := &kvChanges{
key: start,
value: end,
deleteKVKey: &deleteKey,
}
return ac, kvc
// A lower range does exist, but it can't be extended to include this
// new number, and so we need to add a new range after the lower bound
// range.
default:
newIndex := indexOfRangeBelow + 1
// If there are no ranges above this new one or if there are,
// but they can't be merged into this new one, then we can just
// add the new one as is.
if newIndex == len(a.set) || a.set[newIndex].start != n+1 {
ac := &arrayChanges{
newIndex: &newIndex,
start: n,
end: n,
}
kvc := &kvChanges{
key: n,
value: n,
}
return ac, kvc
}
// Else, we merge the above index.
start := n
end := a.set[newIndex].end
toEdit := newIndex
// For the array representation, we edit the range above to
// include the new start value.
ac := &arrayChanges{
indexToEdit: &toEdit,
start: start,
end: end,
}
// For the kv representation, we insert the new start-end key
// value pair and delete the key using the old start value.
delKey := a.set[newIndex].start
kvc := &kvChanges{
key: start,
value: end,
deleteKVKey: &delKey,
}
return ac, kvc
}
}
func defaultSerializeUint64(i uint64) ([]byte, error) {
var b [8]byte
byteOrder.PutUint64(b[:], i)
return b[:], nil
}