lnd/itest/lnd_taproot_test.go
yyforyongyu ed3cb26188
itest+lntest: stop using pointer to chainhash.Hash
This commit fixes the methods used in `lntest` so they stop using
pointers to chainhash.
2024-10-17 07:14:51 +08:00

1973 lines
62 KiB
Go

package itest
import (
"bytes"
"crypto/sha256"
"encoding/hex"
"testing"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/schnorr"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/btcutil/psbt"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/chainrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/stretchr/testify/require"
)
const (
testTaprootKeyFamily = 77
testAmount = 800_000
signMethodBip86 = signrpc.SignMethod_SIGN_METHOD_TAPROOT_KEY_SPEND_BIP0086
signMethodRootHash = signrpc.SignMethod_SIGN_METHOD_TAPROOT_KEY_SPEND
signMethodTapscript = signrpc.SignMethod_SIGN_METHOD_TAPROOT_SCRIPT_SPEND
)
var (
hexDecode = func(keyStr string) []byte {
keyBytes, _ := hex.DecodeString(keyStr)
return keyBytes
}
dummyInternalKey, _ = btcec.ParsePubKey(hexDecode(
"03464805f5468e294d88cf15a3f06aef6c89d63ef1bd7b42db2e0c74c1ac" +
"eb90fe",
))
)
// testTaproot ensures that the daemon can send to and spend from taproot (p2tr)
// outputs.
func testTaproot(ht *lntest.HarnessTest) {
testTaprootSendCoinsKeySpendBip86(ht, ht.Alice)
testTaprootComputeInputScriptKeySpendBip86(ht, ht.Alice)
testTaprootSignOutputRawScriptSpend(ht, ht.Alice)
testTaprootSignOutputRawScriptSpend(
ht, ht.Alice, txscript.SigHashSingle,
)
testTaprootSignOutputRawKeySpendBip86(ht, ht.Alice)
testTaprootSignOutputRawKeySpendBip86(
ht, ht.Alice, txscript.SigHashSingle,
)
testTaprootSignOutputRawKeySpendRootHash(ht, ht.Alice)
muSig2Versions := []signrpc.MuSig2Version{
signrpc.MuSig2Version_MUSIG2_VERSION_V040,
signrpc.MuSig2Version_MUSIG2_VERSION_V100RC2,
}
for _, version := range muSig2Versions {
testTaprootMuSig2KeySpendBip86(ht, ht.Alice, version)
testTaprootMuSig2KeySpendRootHash(ht, ht.Alice, version)
testTaprootMuSig2ScriptSpend(ht, ht.Alice, version)
testTaprootMuSig2CombinedLeafKeySpend(ht, ht.Alice, version)
testMuSig2CombineKey(ht, ht.Alice, version)
}
testTaprootImportTapscriptFullTree(ht, ht.Alice)
testTaprootImportTapscriptPartialReveal(ht, ht.Alice)
testTaprootImportTapscriptRootHashOnly(ht, ht.Alice)
testTaprootImportTapscriptFullKey(ht, ht.Alice)
}
// testTaprootSendCoinsKeySpendBip86 tests sending to and spending from
// p2tr key spend only (BIP-0086) addresses through the SendCoins RPC which
// internally uses the ComputeInputScript method for signing.
func testTaprootSendCoinsKeySpendBip86(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// We'll start the test by sending Alice some coins, which she'll use to
// send to herself on a p2tr output.
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
// Let's create a p2tr address now.
p2trResp := alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: AddrTypeTaprootPubkey,
})
// Assert this is a segwit v1 address that starts with bcrt1p.
require.Contains(
ht, p2trResp.Address, ht.Miner().ActiveNet.Bech32HRPSegwit+"1p",
)
// Send the coins from Alice's wallet to her own, but to the new p2tr
// address.
alice.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: p2trResp.Address,
Amount: 0.5 * btcutil.SatoshiPerBitcoin,
TargetConf: 6,
})
txid := ht.AssertNumTxsInMempool(1)[0]
// Wait until bob has seen the tx and considers it as owned.
p2trOutputIndex := ht.GetOutputIndex(txid, p2trResp.Address)
op := &lnrpc.OutPoint{
TxidBytes: txid[:],
OutputIndex: uint32(p2trOutputIndex),
}
ht.AssertUTXOInWallet(alice, op, "")
// Mine a block to clean up the mempool.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Let's sweep the whole wallet to a new p2tr address, making sure we
// can sign transactions with v0 and v1 inputs.
p2trResp = alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
alice.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: p2trResp.Address,
SendAll: true,
TargetConf: 6,
})
// Make sure the coins sent to the address are confirmed correctly,
// including the confirmation notification.
confirmAddress(ht, alice, p2trResp.Address)
}
// testTaprootComputeInputScriptKeySpendBip86 tests sending to and spending from
// p2tr key spend only (BIP-0086) addresses through the SendCoins RPC which
// internally uses the ComputeInputScript method for signing.
func testTaprootComputeInputScriptKeySpendBip86(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// We'll start the test by sending Alice some coins, which she'll use
// to send to herself on a p2tr output.
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
// Let's create a p2tr address now.
p2trAddr, p2trPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_TAPROOT_PUBKEY,
)
// Send the coins from Alice's wallet to her own, but to the new p2tr
// address.
req := &lnrpc.SendCoinsRequest{
Addr: p2trAddr.String(),
Amount: testAmount,
TargetConf: 6,
}
alice.RPC.SendCoins(req)
// Wait until bob has seen the tx and considers it as owned.
txid := ht.AssertNumTxsInMempool(1)[0]
p2trOutputIndex := ht.GetOutputIndex(txid, p2trAddr.String())
op := &lnrpc.OutPoint{
TxidBytes: txid[:],
OutputIndex: uint32(p2trOutputIndex),
}
ht.AssertUTXOInWallet(alice, op, "")
p2trOutpoint := wire.OutPoint{
Hash: txid,
Index: uint32(p2trOutputIndex),
}
// Mine a block to clean up the mempool.
ht.MineBlocksAndAssertNumTxes(1, 1)
// We'll send the coins back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
signReq := &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
Sighash: uint32(txscript.SigHashDefault),
}},
PrevOutputs: utxoInfo,
}
signResp := alice.RPC.ComputeInputScript(signReq)
tx.TxIn[0].Witness = signResp.InputScripts[0].Witness
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootSignOutputRawScriptSpend tests sending to and spending from p2tr
// script addresses using the script path with the SignOutputRaw RPC.
func testTaprootSignOutputRawScriptSpend(ht *lntest.HarnessTest,
alice *node.HarnessNode, sigHashType ...txscript.SigHashType) {
// For the next step, we need a public key. Let's use a special family
// for this.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc := alice.RPC.DeriveNextKey(req)
leafSigningKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
require.NoError(ht, err)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
// Let's add a second script output as well to test the partial reveal.
leaf2 := testScriptSchnorrSig(ht.T, leafSigningKey)
inclusionProof := leaf1.TapHash()
tapscript := input.TapscriptPartialReveal(
dummyInternalKey, leaf2, inclusionProof[:],
)
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTapscriptInput(
input.TaprootSignatureWitnessSize, tapscript,
)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
sigHash := txscript.SigHashDefault
if len(sigHashType) != 0 {
sigHash = sigHashType[0]
// If a non-default sighash is used, then we'll need to add an
// extra byte to account for the sighash that doesn't exist in
// the default case.
estimatedWeight++
}
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// Before we actually sign, we want to make sure that we get an error
// when we try to sign for a Taproot output without specifying all UTXO
// information.
signReq := &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
KeyDesc: keyDesc,
Sighash: uint32(sigHash),
WitnessScript: leaf2.Script,
SignMethod: signMethodTapscript,
}},
}
err = alice.RPC.SignOutputRawErr(signReq)
require.Contains(
ht, err.Error(), "error signing taproot output, transaction "+
"input 0 is missing its previous outpoint information",
)
// We also want to make sure we get an error when we don't specify the
// correct signing method.
signReq = &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
KeyDesc: keyDesc,
Sighash: uint32(sigHash),
WitnessScript: leaf2.Script,
}},
PrevOutputs: utxoInfo,
}
err = alice.RPC.SignOutputRawErr(signReq)
require.Contains(
ht, err.Error(), "selected sign method witness_v0 is not "+
"compatible with given pk script 5120",
)
// Do the actual signing now.
signReq = &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
KeyDesc: keyDesc,
Sighash: uint32(sigHash),
WitnessScript: leaf2.Script,
SignMethod: signMethodTapscript,
}},
PrevOutputs: utxoInfo,
}
signResp := alice.RPC.SignOutputRaw(signReq)
// We can now assemble the witness stack.
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(ht, err)
sig := signResp.RawSigs[0]
if len(sigHashType) != 0 {
sig = append(sig, byte(sigHashType[0]))
}
tx.TxIn[0].Witness = wire.TxWitness{
sig, leaf2.Script, controlBlockBytes,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootSignOutputRawKeySpendBip86 tests that a tapscript address can
// also be spent using the key spend path through the SignOutputRaw RPC using a
// BIP0086 key spend only commitment.
func testTaprootSignOutputRawKeySpendBip86(ht *lntest.HarnessTest,
alice *node.HarnessNode, sigHashType ...txscript.SigHashType) {
// For the next step, we need a public key. Let's use a special family
// for this.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc := alice.RPC.DeriveNextKey(req)
internalKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
require.NoError(ht, err)
// We want to make sure we can still use a tweaked key, even if it ends
// up being essentially double tweaked because of the taproot root hash.
dummyKeyTweak := sha256.Sum256([]byte("this is a key tweak"))
internalKey = input.TweakPubKeyWithTweak(internalKey, dummyKeyTweak[:])
// Our taproot key is a BIP0086 key spend only construction that just
// commits to the internal key and no root hash.
taprootKey := txscript.ComputeTaprootKeyNoScript(internalKey)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
sigHash := txscript.SigHashDefault
if len(sigHashType) != 0 {
sigHash = sigHashType[0]
}
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(sigHash)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
signReq := &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
KeyDesc: keyDesc,
SingleTweak: dummyKeyTweak[:],
Sighash: uint32(sigHash),
SignMethod: signMethodBip86,
}},
PrevOutputs: utxoInfo,
}
signResp := alice.RPC.SignOutputRaw(signReq)
sig := signResp.RawSigs[0]
if len(sigHashType) != 0 {
sig = append(sig, byte(sigHash))
}
tx.TxIn[0].Witness = wire.TxWitness{sig}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootSignOutputRawKeySpendRootHash tests that a tapscript address can
// also be spent using the key spend path through the SignOutputRaw RPC using a
// tapscript root hash.
func testTaprootSignOutputRawKeySpendRootHash(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// For the next step, we need a public key. Let's use a special family
// for this.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc := alice.RPC.DeriveNextKey(req)
internalKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
require.NoError(ht, err)
// We want to make sure we can still use a tweaked key, even if it ends
// up being essentially double tweaked because of the taproot root hash.
dummyKeyTweak := sha256.Sum256([]byte("this is a key tweak"))
internalKey = input.TweakPubKeyWithTweak(internalKey, dummyKeyTweak[:])
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
signReq := &signrpc.SignReq{
RawTxBytes: buf.Bytes(),
SignDescs: []*signrpc.SignDescriptor{{
Output: utxoInfo[0],
InputIndex: 0,
KeyDesc: keyDesc,
SingleTweak: dummyKeyTweak[:],
Sighash: uint32(txscript.SigHashDefault),
TapTweak: rootHash[:],
SignMethod: signMethodRootHash,
}},
PrevOutputs: utxoInfo,
}
signResp := alice.RPC.SignOutputRaw(signReq)
tx.TxIn[0].Witness = wire.TxWitness{
signResp.RawSigs[0],
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2KeySpendBip86 tests that a combined MuSig2 key can also be
// used as a BIP-0086 key spend only key.
func testTaprootMuSig2KeySpendBip86(ht *lntest.HarnessTest,
alice *node.HarnessNode, version signrpc.MuSig2Version) {
// We're not going to commit to a script. So our taproot tweak will be
// empty and just specify the necessary flag.
taprootTweak := &signrpc.TaprootTweakDesc{
KeySpendOnly: true,
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ht, alice, version,
)
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ht, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys, version,
)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTaprootSignatureHash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
)
require.NoError(ht, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
signReq := &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
}
alice.RPC.MuSig2Sign(signReq)
signReq = &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
}
signResp2 := alice.RPC.MuSig2Sign(signReq)
signReq = &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
Cleanup: true,
}
signResp3 := alice.RPC.MuSig2Sign(signReq)
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq := &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
signResp3.LocalPartialSignature,
},
}
combineResp := alice.RPC.MuSig2CombineSig(combineReq)
require.Equal(ht, true, combineResp.HaveAllSignatures)
require.NotEmpty(ht, combineResp.FinalSignature)
sig, err := schnorr.ParseSignature(combineResp.FinalSignature)
require.NoError(ht, err)
require.True(ht, sig.Verify(sigHash, taprootKey))
tx.TxIn[0].Witness = wire.TxWitness{
combineResp.FinalSignature,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2KeySpendRootHash tests that a tapscript address can also be
// spent using a MuSig2 combined key.
func testTaprootMuSig2KeySpendRootHash(ht *lntest.HarnessTest,
alice *node.HarnessNode, version signrpc.MuSig2Version) {
// We're going to commit to a script as well. This is a hash lock with a
// simple preimage of "foobar". We need to know this upfront so, we can
// specify the taproot tweak with the root hash when creating the Musig2
// signing session.
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootTweak := &signrpc.TaprootTweakDesc{
ScriptRoot: rootHash[:],
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ht, alice, version,
)
_, taprootKey, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ht, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys, version,
)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTaprootKeySpendInput(txscript.SigHashDefault)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTaprootSignatureHash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
)
require.NoError(ht, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
req := &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
}
alice.RPC.MuSig2Sign(req)
req = &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
}
signResp2 := alice.RPC.MuSig2Sign(req)
req = &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
Cleanup: true,
}
signResp3 := alice.RPC.MuSig2Sign(req)
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq := &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
signResp3.LocalPartialSignature,
},
}
combineResp := alice.RPC.MuSig2CombineSig(combineReq)
require.Equal(ht, true, combineResp.HaveAllSignatures)
require.NotEmpty(ht, combineResp.FinalSignature)
sig, err := schnorr.ParseSignature(combineResp.FinalSignature)
require.NoError(ht, err)
require.True(ht, sig.Verify(sigHash, taprootKey))
tx.TxIn[0].Witness = wire.TxWitness{
combineResp.FinalSignature,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2ScriptSpend tests that a tapscript address with an internal
// key that is a MuSig2 combined key can also be spent using the script path.
func testTaprootMuSig2ScriptSpend(ht *lntest.HarnessTest,
alice *node.HarnessNode, version signrpc.MuSig2Version) {
// We're going to commit to a script and spend the output using the
// script. This is a hash lock with a simple preimage of "foobar". We
// need to know this upfront so, we can specify the taproot tweak with
// the root hash when creating the Musig2 signing session.
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootTweak := &signrpc.TaprootTweakDesc{
ScriptRoot: rootHash[:],
}
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ht, alice, version,
)
internalKey, taprootKey, _, _, _ := createMuSigSessions(
ht, alice, taprootTweak, keyDesc1, keyDesc2, keyDesc3,
allPubKeys, version,
)
// Because we know the internal key and the script we want to spend, we
// can now create the tapscript struct that's used for assembling the
// control block and fee estimation.
tapscript := input.TapscriptFullTree(internalKey, leaf1)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTapscriptInput(
lntypes.WeightUnit(len([]byte("foobar"))+len(leaf1.Script)+1),
tapscript,
)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
// We can now assemble the witness stack.
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(ht, err)
tx.TxIn[0].Witness = wire.TxWitness{
[]byte("foobar"),
leaf1.Script,
controlBlockBytes,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootMuSig2CombinedLeafKeySpend tests that a MuSig2 combined key can be
// used for an OP_CHECKSIG inside a tap script leaf spend.
func testTaprootMuSig2CombinedLeafKeySpend(ht *lntest.HarnessTest,
alice *node.HarnessNode, version signrpc.MuSig2Version) {
// We're using the combined MuSig2 key in a script leaf. So we need to
// derive the combined key first, before we can build the script.
keyDesc1, keyDesc2, keyDesc3, allPubKeys := deriveSigningKeys(
ht, alice, version,
)
req := &signrpc.MuSig2CombineKeysRequest{
AllSignerPubkeys: allPubKeys,
Version: version,
}
combineResp := alice.RPC.MuSig2CombineKeys(req)
combinedPubKey, err := schnorr.ParsePubKey(combineResp.CombinedKey)
require.NoError(ht, err)
// We're going to commit to a script and spend the output using the
// script. This is just an OP_CHECKSIG with the combined MuSig2 public
// key.
leaf := testScriptSchnorrSig(ht.T, combinedPubKey)
tapscript := input.TapscriptPartialReveal(dummyInternalKey, leaf, nil)
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
// Spend the output again, this time back to a p2wkh address.
p2wkhAddr, p2wkhPkScript := newAddrWithScript(
ht, alice, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
// Create fee estimation for a p2tr input and p2wkh output.
feeRate := chainfee.SatPerKWeight(12500)
estimator := input.TxWeightEstimator{}
estimator.AddTapscriptInput(
input.TaprootSignatureWitnessSize, tapscript,
)
estimator.AddP2WKHOutput()
estimatedWeight := estimator.Weight()
requiredFee := feeRate.FeeForWeight(estimatedWeight)
tx := wire.NewMsgTx(2)
tx.TxIn = []*wire.TxIn{{
PreviousOutPoint: p2trOutpoint,
}}
value := int64(testAmount - requiredFee)
tx.TxOut = []*wire.TxOut{{
PkScript: p2wkhPkScript,
Value: value,
}}
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
utxoInfo := []*signrpc.TxOut{{
PkScript: p2trPkScript,
Value: testAmount,
}}
// Do the actual signing now.
_, _, sessResp1, sessResp2, sessResp3 := createMuSigSessions(
ht, alice, nil, keyDesc1, keyDesc2, keyDesc3, allPubKeys,
version,
)
require.NoError(ht, err)
// We now need to create the raw sighash of the transaction, as that
// will be the message we're signing collaboratively.
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
utxoInfo[0].PkScript, utxoInfo[0].Value,
)
sighashes := txscript.NewTxSigHashes(tx, prevOutputFetcher)
sigHash, err := txscript.CalcTapscriptSignaturehash(
sighashes, txscript.SigHashDefault, tx, 0, prevOutputFetcher,
leaf,
)
require.NoError(ht, err)
// Now that we have the transaction prepared, we need to start with the
// signing. We simulate all three parties here, so we need to do
// everything three times. But because we're going to use session 1 to
// combine everything, we don't need its response, as it will store its
// own signature.
signReq := &signrpc.MuSig2SignRequest{
SessionId: sessResp1.SessionId,
MessageDigest: sigHash,
}
alice.RPC.MuSig2Sign(signReq)
signReq = &signrpc.MuSig2SignRequest{
SessionId: sessResp2.SessionId,
MessageDigest: sigHash,
Cleanup: true,
}
signResp2 := alice.RPC.MuSig2Sign(signReq)
// Before we have all partial signatures, we shouldn't get a final
// signature back.
combineReq := &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp2.LocalPartialSignature,
},
}
combineSigResp := alice.RPC.MuSig2CombineSig(combineReq)
require.False(ht, combineSigResp.HaveAllSignatures)
require.Empty(ht, combineSigResp.FinalSignature)
signReq = &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
}
signResp3 := alice.RPC.MuSig2Sign(signReq)
// We manually clean up session 3, just to make sure that works as well.
cleanReq := &signrpc.MuSig2CleanupRequest{
SessionId: sessResp3.SessionId,
}
alice.RPC.MuSig2Cleanup(cleanReq)
// A second call to that cleaned up session should now fail with a
// specific error.
signReq = &signrpc.MuSig2SignRequest{
SessionId: sessResp3.SessionId,
MessageDigest: sigHash,
}
err = alice.RPC.MuSig2SignErr(signReq)
require.Contains(ht, err.Error(), "not found")
// Luckily only one of the signers needs to combine the signature, so
// let's do that now.
combineReq = &signrpc.MuSig2CombineSigRequest{
SessionId: sessResp1.SessionId,
OtherPartialSignatures: [][]byte{
signResp3.LocalPartialSignature,
},
}
combineResp1 := alice.RPC.MuSig2CombineSig(combineReq)
require.Equal(ht, true, combineResp1.HaveAllSignatures)
require.NotEmpty(ht, combineResp1.FinalSignature)
sig, err := schnorr.ParseSignature(combineResp1.FinalSignature)
require.NoError(ht, err)
require.True(ht, sig.Verify(sigHash, combinedPubKey))
// We can now assemble the witness stack.
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(ht, err)
tx.TxIn[0].Witness = wire.TxWitness{
combineResp1.FinalSignature,
leaf.Script,
controlBlockBytes,
}
// Serialize, weigh and publish the TX now, then make sure the
// coins are sent and confirmed to the final sweep destination address.
publishTxAndConfirmSweep(
ht, alice, tx, estimatedWeight,
&chainrpc.SpendRequest{
Outpoint: &chainrpc.Outpoint{
Hash: p2trOutpoint.Hash[:],
Index: p2trOutpoint.Index,
},
Script: p2trPkScript,
},
p2wkhAddr.String(),
)
}
// testTaprootImportTapscriptScriptSpend tests importing p2tr script addresses
// using the script path with the full tree known.
func testTaprootImportTapscriptFullTree(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
// Let's add a second script output as well to test the partial reveal.
leaf2 := testScriptSchnorrSig(ht.T, internalKey)
tapscript := input.TapscriptFullTree(internalKey, leaf1, leaf2)
tree := txscript.AssembleTaprootScriptTree(leaf1, leaf2)
rootHash := tree.RootNode.TapHash()
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Import the scripts and make sure we get the same address back as we
// calculated ourselves.
req := &walletrpc.ImportTapscriptRequest{
InternalPublicKey: schnorr.SerializePubKey(internalKey),
Script: &walletrpc.ImportTapscriptRequest_FullTree{
FullTree: &walletrpc.TapscriptFullTree{
AllLeaves: []*walletrpc.TapLeaf{{
LeafVersion: uint32(
leaf1.LeafVersion,
),
Script: leaf1.Script,
}, {
LeafVersion: uint32(
leaf2.LeafVersion,
),
Script: leaf2.Script,
}},
},
},
}
importResp := alice.RPC.ImportTapscript(req)
calculatedAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
require.Equal(ht, calculatedAddr.String(), importResp.P2TrAddress)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
p2trOutputRPC := &lnrpc.OutPoint{
TxidBytes: p2trOutpoint.Hash[:],
OutputIndex: p2trOutpoint.Index,
}
ht.AssertUTXOInWallet(alice, p2trOutputRPC, "imported")
ht.AssertWalletAccountBalance(alice, "imported", testAmount, 0)
// Funding a PSBT from an imported script is not yet possible. So we
// basically need to add all information manually for the wallet to be
// able to sign for it.
utxo := &wire.TxOut{
Value: testAmount,
PkScript: p2trPkScript,
}
clearWalletImportedTapscriptBalance(
ht, alice, utxo, p2trOutpoint, internalKey, derivationPath,
rootHash[:],
)
}
// testTaprootImportTapscriptPartialReveal tests importing p2tr script addresses
// for which we only know part of the tree.
func testTaprootImportTapscriptPartialReveal(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
// Let's add a second script output as well to test the partial reveal.
leaf2 := testScriptSchnorrSig(ht.T, internalKey)
leaf2Hash := leaf2.TapHash()
tapscript := input.TapscriptPartialReveal(
internalKey, leaf1, leaf2Hash[:],
)
rootHash := tapscript.ControlBlock.RootHash(leaf1.Script)
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Import the scripts and make sure we get the same address back as we
// calculated ourselves.
req := &walletrpc.ImportTapscriptRequest{
InternalPublicKey: schnorr.SerializePubKey(internalKey),
Script: &walletrpc.ImportTapscriptRequest_PartialReveal{
PartialReveal: &walletrpc.TapscriptPartialReveal{
RevealedLeaf: &walletrpc.TapLeaf{
LeafVersion: uint32(leaf1.LeafVersion),
Script: leaf1.Script,
},
FullInclusionProof: leaf2Hash[:],
},
},
}
importResp := alice.RPC.ImportTapscript(req)
calculatedAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
require.Equal(ht, calculatedAddr.String(), importResp.P2TrAddress)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
p2trOutputRPC := &lnrpc.OutPoint{
TxidBytes: p2trOutpoint.Hash[:],
OutputIndex: p2trOutpoint.Index,
}
ht.AssertUTXOInWallet(alice, p2trOutputRPC, "imported")
ht.AssertWalletAccountBalance(alice, "imported", testAmount, 0)
// Funding a PSBT from an imported script is not yet possible. So we
// basically need to add all information manually for the wallet to be
// able to sign for it.
utxo := &wire.TxOut{
Value: testAmount,
PkScript: p2trPkScript,
}
clearWalletImportedTapscriptBalance(
ht, alice, utxo, p2trOutpoint, internalKey, derivationPath,
rootHash,
)
}
// testTaprootImportTapscriptRootHashOnly tests importing p2tr script addresses
// for which we only know the root hash.
func testTaprootImportTapscriptRootHashOnly(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
tapscript := input.TapscriptRootHashOnly(internalKey, rootHash[:])
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Import the scripts and make sure we get the same address back as we
// calculated ourselves.
req := &walletrpc.ImportTapscriptRequest{
InternalPublicKey: schnorr.SerializePubKey(internalKey),
Script: &walletrpc.ImportTapscriptRequest_RootHashOnly{
RootHashOnly: rootHash[:],
},
}
importResp := alice.RPC.ImportTapscript(req)
calculatedAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
require.Equal(ht, calculatedAddr.String(), importResp.P2TrAddress)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
p2trOutputRPC := &lnrpc.OutPoint{
TxidBytes: p2trOutpoint.Hash[:],
OutputIndex: p2trOutpoint.Index,
}
ht.AssertUTXOInWallet(alice, p2trOutputRPC, "imported")
ht.AssertWalletAccountBalance(alice, "imported", testAmount, 0)
// Funding a PSBT from an imported script is not yet possible. So we
// basically need to add all information manually for the wallet to be
// able to sign for it.
utxo := &wire.TxOut{
Value: testAmount,
PkScript: p2trPkScript,
}
clearWalletImportedTapscriptBalance(
ht, alice, utxo, p2trOutpoint, internalKey, derivationPath,
rootHash[:],
)
}
// testTaprootImportTapscriptFullKey tests importing p2tr script addresses for
// which we only know the full Taproot key.
func testTaprootImportTapscriptFullKey(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// For the next step, we need a public key. Let's use a special family
// for this.
_, internalKey, derivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
tapscript := input.TapscriptFullTree(internalKey, leaf1)
rootHash := leaf1.TapHash()
taprootKey, err := tapscript.TaprootKey()
require.NoError(ht, err)
// Import the scripts and make sure we get the same address back as we
// calculated ourselves.
req := &walletrpc.ImportTapscriptRequest{
InternalPublicKey: schnorr.SerializePubKey(taprootKey),
Script: &walletrpc.ImportTapscriptRequest_FullKeyOnly{
FullKeyOnly: true,
},
}
importResp := alice.RPC.ImportTapscript(req)
calculatedAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
require.Equal(ht, calculatedAddr.String(), importResp.P2TrAddress)
// Send some coins to the generated tapscript address.
p2trOutpoint, p2trPkScript := sendToTaprootOutput(ht, alice, taprootKey)
p2trOutputRPC := &lnrpc.OutPoint{
TxidBytes: p2trOutpoint.Hash[:],
OutputIndex: p2trOutpoint.Index,
}
ht.AssertUTXOInWallet(alice, p2trOutputRPC, "imported")
ht.AssertWalletAccountBalance(alice, "imported", testAmount, 0)
// Funding a PSBT from an imported script is not yet possible. So we
// basically need to add all information manually for the wallet to be
// able to sign for it.
utxo := &wire.TxOut{
Value: testAmount,
PkScript: p2trPkScript,
}
clearWalletImportedTapscriptBalance(
ht, alice, utxo, p2trOutpoint, internalKey, derivationPath,
rootHash[:],
)
}
// clearWalletImportedTapscriptBalance manually assembles and then attempts to
// sign a TX to sweep funds from an imported tapscript address.
func clearWalletImportedTapscriptBalance(ht *lntest.HarnessTest,
hn *node.HarnessNode, utxo *wire.TxOut, outPoint wire.OutPoint,
internalKey *btcec.PublicKey, derivationPath []uint32,
rootHash []byte) {
_, sweepPkScript := newAddrWithScript(
ht, hn, lnrpc.AddressType_WITNESS_PUBKEY_HASH,
)
output := &wire.TxOut{
PkScript: sweepPkScript,
Value: utxo.Value - 1000,
}
packet, err := psbt.New(
[]*wire.OutPoint{&outPoint}, []*wire.TxOut{output}, 2, 0,
[]uint32{0},
)
require.NoError(ht, err)
// We have everything we need to know to sign the PSBT.
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: internalKey.SerializeCompressed(),
Bip32Path: derivationPath,
}}
in.TaprootBip32Derivation = []*psbt.TaprootBip32Derivation{{
XOnlyPubKey: schnorr.SerializePubKey(internalKey),
Bip32Path: derivationPath,
}}
in.SighashType = txscript.SigHashDefault
in.TaprootMerkleRoot = rootHash
in.WitnessUtxo = utxo
var buf bytes.Buffer
require.NoError(ht, packet.Serialize(&buf))
// Sign the manually funded PSBT now.
signResp := hn.RPC.SignPsbt(&walletrpc.SignPsbtRequest{
FundedPsbt: buf.Bytes(),
})
signedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(signResp.SignedPsbt), false,
)
require.NoError(ht, err)
// We should be able to finalize the PSBT and extract the sweep TX now.
err = psbt.MaybeFinalizeAll(signedPacket)
require.NoError(ht, err)
sweepTx, err := psbt.Extract(signedPacket)
require.NoError(ht, err)
buf.Reset()
err = sweepTx.Serialize(&buf)
require.NoError(ht, err)
// Publish the sweep transaction and then mine it as well.
hn.RPC.PublishTransaction(&walletrpc.Transaction{
TxHex: buf.Bytes(),
})
// Mine one block which should contain the sweep transaction.
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
sweepTxHash := sweepTx.TxHash()
ht.AssertTxInBlock(block, sweepTxHash)
}
// testScriptHashLock returns a simple bitcoin script that locks the funds to
// a hash lock of the given preimage.
func testScriptHashLock(t *testing.T, preimage []byte) txscript.TapLeaf {
builder := txscript.NewScriptBuilder()
builder.AddOp(txscript.OP_DUP)
builder.AddOp(txscript.OP_HASH160)
builder.AddData(btcutil.Hash160(preimage))
builder.AddOp(txscript.OP_EQUALVERIFY)
script1, err := builder.Script()
require.NoError(t, err)
return txscript.NewBaseTapLeaf(script1)
}
// testScriptSchnorrSig returns a simple bitcoin script that locks the funds to
// a Schnorr signature of the given public key.
func testScriptSchnorrSig(t *testing.T,
pubKey *btcec.PublicKey) txscript.TapLeaf {
builder := txscript.NewScriptBuilder()
builder.AddData(schnorr.SerializePubKey(pubKey))
builder.AddOp(txscript.OP_CHECKSIG)
script2, err := builder.Script()
require.NoError(t, err)
return txscript.NewBaseTapLeaf(script2)
}
// newAddrWithScript returns a new address and its pkScript.
func newAddrWithScript(ht *lntest.HarnessTest, node *node.HarnessNode,
addrType lnrpc.AddressType) (btcutil.Address, []byte) {
p2wkhResp := node.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: addrType,
})
p2wkhAddr, err := btcutil.DecodeAddress(
p2wkhResp.Address, harnessNetParams,
)
require.NoError(ht, err)
p2wkhPkScript, err := txscript.PayToAddrScript(p2wkhAddr)
require.NoError(ht, err)
return p2wkhAddr, p2wkhPkScript
}
// sendToTaprootOutput sends coins to a p2tr output of the given taproot key and
// mines a block to confirm the coins.
func sendToTaprootOutput(ht *lntest.HarnessTest, hn *node.HarnessNode,
taprootKey *btcec.PublicKey) (wire.OutPoint, []byte) {
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(ht, err)
// Send some coins to the generated tapscript address.
req := &lnrpc.SendCoinsRequest{
Addr: tapScriptAddr.String(),
Amount: testAmount,
TargetConf: 6,
}
hn.RPC.SendCoins(req)
// Wait until the TX is found in the mempool.
txid := ht.AssertNumTxsInMempool(1)[0]
p2trOutputIndex := ht.GetOutputIndex(txid, tapScriptAddr.String())
p2trOutpoint := wire.OutPoint{
Hash: txid,
Index: uint32(p2trOutputIndex),
}
// Make sure the transaction is recognized by our wallet and has the
// correct output type.
var outputDetail *lnrpc.OutputDetail
walletTxns := hn.RPC.GetTransactions(&lnrpc.GetTransactionsRequest{
StartHeight: 0,
EndHeight: -1,
})
require.NotEmpty(ht, walletTxns.Transactions)
for _, tx := range walletTxns.Transactions {
if tx.TxHash != txid.String() {
continue
}
for outputIdx, out := range tx.OutputDetails {
if out.Address != tapScriptAddr.String() {
continue
}
outputDetail = tx.OutputDetails[outputIdx]
break
}
}
require.NotNil(ht, outputDetail, "transaction not found in wallet")
require.Equal(
ht, lnrpc.OutputScriptType_SCRIPT_TYPE_WITNESS_V1_TAPROOT,
outputDetail.OutputType,
)
// Clear the mempool.
ht.MineBlocksAndAssertNumTxes(1, 1)
return p2trOutpoint, p2trPkScript
}
// publishTxAndConfirmSweep is a helper function that publishes a transaction
// after checking its weight against an estimate. After asserting the given
// spend request, the given sweep address' balance is verified to be seen as
// funds belonging to the wallet.
func publishTxAndConfirmSweep(ht *lntest.HarnessTest, node *node.HarnessNode,
tx *wire.MsgTx, estimatedWeight lntypes.WeightUnit,
spendRequest *chainrpc.SpendRequest, sweepAddr string) {
ht.Helper()
// Before we publish the tx that spends the p2tr transaction, we want to
// register a spend listener that we expect to fire after mining the
// block.
currentHeight := ht.CurrentHeight()
// For a Taproot output we cannot leave the outpoint empty. Let's make
// sure the API returns the correct error here.
req := &chainrpc.SpendRequest{
Script: spendRequest.Script,
HeightHint: currentHeight,
}
spendClient := node.RPC.RegisterSpendNtfn(req)
// The error is only thrown when trying to read a message.
_, err := spendClient.Recv()
require.Contains(
ht, err.Error(),
"cannot register witness v1 spend request without outpoint",
)
// Now try again, this time with the outpoint set.
req = &chainrpc.SpendRequest{
Outpoint: spendRequest.Outpoint,
Script: spendRequest.Script,
HeightHint: currentHeight,
}
spendClient = node.RPC.RegisterSpendNtfn(req)
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
// Since Schnorr signatures are fixed size, we must be able to estimate
// the size of this transaction exactly.
txWeight := blockchain.GetTransactionWeight(btcutil.NewTx(tx))
require.EqualValues(ht, estimatedWeight, txWeight)
txReq := &walletrpc.Transaction{
TxHex: buf.Bytes(),
}
node.RPC.PublishTransaction(txReq)
// Make sure the coins sent to the address are confirmed correctly,
// including the confirmation notification.
confirmAddress(ht, node, sweepAddr)
// We now expect our spend event to go through.
spendMsg, err := spendClient.Recv()
require.NoError(ht, err)
spend := spendMsg.GetSpend()
require.NotNil(ht, spend)
require.Equal(ht, spend.SpendingHeight, currentHeight+1)
}
// confirmAddress makes sure that a transaction in the mempool spends funds to
// the given address. It also checks that a confirmation notification for the
// address is triggered when the transaction is mined.
func confirmAddress(ht *lntest.HarnessTest, hn *node.HarnessNode,
addrString string) {
// Wait until the tx that sends to the address is found.
txid := ht.AssertNumTxsInMempool(1)[0]
// Wait until bob has seen the tx and considers it as owned.
addrOutputIndex := ht.GetOutputIndex(txid, addrString)
op := &lnrpc.OutPoint{
TxidBytes: txid[:],
OutputIndex: uint32(addrOutputIndex),
}
ht.AssertUTXOInWallet(hn, op, "")
// Before we confirm the transaction, let's register a confirmation
// listener for it, which we expect to fire after mining a block.
parsedAddr, err := btcutil.DecodeAddress(addrString, harnessNetParams)
require.NoError(ht, err)
addrPkScript, err := txscript.PayToAddrScript(parsedAddr)
require.NoError(ht, err)
currentHeight := ht.CurrentHeight()
req := &chainrpc.ConfRequest{
Script: addrPkScript,
Txid: txid[:],
HeightHint: currentHeight,
NumConfs: 1,
IncludeBlock: true,
}
confClient := hn.RPC.RegisterConfirmationsNtfn(req)
// Mine another block to clean up the mempool.
ht.MineBlocksAndAssertNumTxes(1, 1)
// We now expect our confirmation to go through, and also that the
// block was specified.
confMsg, err := confClient.Recv()
require.NoError(ht, err)
conf := confMsg.GetConf()
require.NotNil(ht, conf)
require.Equal(ht, conf.BlockHeight, currentHeight+1)
require.NotNil(ht, conf.RawBlock)
// We should also be able to decode the raw block.
var blk wire.MsgBlock
require.NoError(ht, blk.Deserialize(bytes.NewReader(conf.RawBlock)))
}
// deriveSigningKeys derives three signing keys and returns their descriptors,
// as well as the public keys in the Schnorr serialized format.
func deriveSigningKeys(ht *lntest.HarnessTest, node *node.HarnessNode,
version signrpc.MuSig2Version) (*signrpc.KeyDescriptor,
*signrpc.KeyDescriptor, *signrpc.KeyDescriptor, [][]byte) {
// For muSig2 we need multiple keys. We derive three of them from the
// same wallet, just so we know we can also sign for them again.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc1 := node.RPC.DeriveNextKey(req)
pubKey1, err := btcec.ParsePubKey(keyDesc1.RawKeyBytes)
require.NoError(ht, err)
keyDesc2 := node.RPC.DeriveNextKey(req)
pubKey2, err := btcec.ParsePubKey(keyDesc2.RawKeyBytes)
require.NoError(ht, err)
keyDesc3 := node.RPC.DeriveNextKey(req)
pubKey3, err := btcec.ParsePubKey(keyDesc3.RawKeyBytes)
require.NoError(ht, err)
// Now that we have all three keys we can create three sessions, one
// for each of the signers. This would of course normally not happen on
// the same node.
var allPubKeys [][]byte
switch version {
case signrpc.MuSig2Version_MUSIG2_VERSION_V040:
allPubKeys = [][]byte{
schnorr.SerializePubKey(pubKey1),
schnorr.SerializePubKey(pubKey2),
schnorr.SerializePubKey(pubKey3),
}
case signrpc.MuSig2Version_MUSIG2_VERSION_V100RC2:
allPubKeys = [][]byte{
pubKey1.SerializeCompressed(),
pubKey2.SerializeCompressed(),
pubKey3.SerializeCompressed(),
}
}
return keyDesc1, keyDesc2, keyDesc3, allPubKeys
}
// createMuSigSessions creates a MuSig2 session with three keys that are
// combined into a single key. The same node is used for the three signing
// participants but a separate key is generated for each session. So the result
// should be the same as if it were three different nodes.
func createMuSigSessions(ht *lntest.HarnessTest, node *node.HarnessNode,
taprootTweak *signrpc.TaprootTweakDesc,
keyDesc1, keyDesc2, keyDesc3 *signrpc.KeyDescriptor,
allPubKeys [][]byte, version signrpc.MuSig2Version) (*btcec.PublicKey,
*btcec.PublicKey, *signrpc.MuSig2SessionResponse,
*signrpc.MuSig2SessionResponse, *signrpc.MuSig2SessionResponse) {
// Make sure that when not specifying a version we get an error, since
// it is mandatory.
err := node.RPC.MuSig2CreateSessionErr(&signrpc.MuSig2SessionRequest{})
require.ErrorContains(ht, err, "unknown MuSig2 version")
// Create the actual session with the version specified.
sessResp1 := node.RPC.MuSig2CreateSession(&signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc1.KeyLoc,
AllSignerPubkeys: allPubKeys,
TaprootTweak: taprootTweak,
Version: version,
})
require.Equal(ht, version, sessResp1.Version)
// Make sure the version is returned correctly.
require.Equal(ht, version, sessResp1.Version)
// Now that we have the three keys in a combined form, we want to make
// sure the tweaking for the taproot key worked correctly. We first need
// to parse the combined key without any tweaks applied to it. That will
// be our internal key. Once we know that, we can tweak it with the
// tapHash of the script root hash. We should arrive at the same result
// as the API.
combinedKey, err := schnorr.ParsePubKey(sessResp1.CombinedKey)
require.NoError(ht, err)
// When combining the key without creating a session, we expect the same
// combined key to be created.
expectedCombinedKey := combinedKey
// Without a tweak, the internal key is equal to the combined key.
internalKey := combinedKey
// If there is a tweak, then there is the internal, pre-tweaked combined
// key and the taproot key which is fully tweaked.
if taprootTweak != nil {
internalKey, err = schnorr.ParsePubKey(
sessResp1.TaprootInternalKey,
)
require.NoError(ht, err)
// We now know the taproot key. The session with the tweak
// applied should produce the same key!
expectedCombinedKey = txscript.ComputeTaprootOutputKey(
internalKey, taprootTweak.ScriptRoot,
)
require.Equal(
ht, schnorr.SerializePubKey(expectedCombinedKey),
schnorr.SerializePubKey(combinedKey),
)
}
// Same with the combine keys RPC, no version specified should give us
// an error.
err = node.RPC.MuSig2CombineKeysErr(&signrpc.MuSig2CombineKeysRequest{})
require.ErrorContains(ht, err, "unknown MuSig2 version")
// We should also get the same keys when just calling the
// MuSig2CombineKeys RPC.
combineReq := &signrpc.MuSig2CombineKeysRequest{
AllSignerPubkeys: allPubKeys,
TaprootTweak: taprootTweak,
Version: version,
}
combineResp := node.RPC.MuSig2CombineKeys(combineReq)
require.Equal(
ht, schnorr.SerializePubKey(expectedCombinedKey),
combineResp.CombinedKey,
)
require.Equal(
ht, schnorr.SerializePubKey(internalKey),
combineResp.TaprootInternalKey,
)
require.Equal(ht, version, combineResp.Version)
// Everything is good so far, let's continue with creating the signing
// session for the other two participants.
req := &signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc2.KeyLoc,
AllSignerPubkeys: allPubKeys,
OtherSignerPublicNonces: [][]byte{
sessResp1.LocalPublicNonces,
},
TaprootTweak: taprootTweak,
Version: version,
}
sessResp2 := node.RPC.MuSig2CreateSession(req)
require.Equal(ht, sessResp1.CombinedKey, sessResp2.CombinedKey)
require.Equal(ht, version, sessResp2.Version)
req = &signrpc.MuSig2SessionRequest{
KeyLoc: keyDesc3.KeyLoc,
AllSignerPubkeys: allPubKeys,
OtherSignerPublicNonces: [][]byte{
sessResp1.LocalPublicNonces,
sessResp2.LocalPublicNonces,
},
TaprootTweak: taprootTweak,
Version: version,
}
sessResp3 := node.RPC.MuSig2CreateSession(req)
require.Equal(ht, sessResp2.CombinedKey, sessResp3.CombinedKey)
require.Equal(ht, version, sessResp3.Version)
require.Equal(ht, true, sessResp3.HaveAllNonces)
// We need to distribute the rest of the nonces.
nonceReq := &signrpc.MuSig2RegisterNoncesRequest{
SessionId: sessResp1.SessionId,
OtherSignerPublicNonces: [][]byte{
sessResp2.LocalPublicNonces,
sessResp3.LocalPublicNonces,
},
}
nonceResp1 := node.RPC.MuSig2RegisterNonces(nonceReq)
require.True(ht, nonceResp1.HaveAllNonces)
nonceReq = &signrpc.MuSig2RegisterNoncesRequest{
SessionId: sessResp2.SessionId,
OtherSignerPublicNonces: [][]byte{
sessResp3.LocalPublicNonces,
},
}
nonceResp2 := node.RPC.MuSig2RegisterNonces(nonceReq)
require.True(ht, nonceResp2.HaveAllNonces)
return internalKey, combinedKey, sessResp1, sessResp2, sessResp3
}
// testTaprootCoopClose asserts that if both peers signal ShutdownAnySegwit,
// then a taproot closing addr is used. Otherwise, we shouldn't expect one to
// be used.
func testTaprootCoopClose(ht *lntest.HarnessTest) {
// We'll start by making two new nodes, and funding a channel between
// them.
carol := ht.NewNode("Carol", nil)
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
dave := ht.NewNode("Dave", nil)
ht.EnsureConnected(carol, dave)
chanAmt := funding.MaxBtcFundingAmount
pushAmt := btcutil.Amount(100000)
satPerVbyte := btcutil.Amount(1)
// We'll now open a channel between Carol and Dave.
chanPoint := ht.OpenChannel(
carol, dave, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
SatPerVByte: satPerVbyte,
},
)
// We'll now close out the channel and obtain the closing TXID.
closingTxid := ht.CloseChannel(carol, chanPoint)
// assertTaprootDeliveryUsed returns true if a Taproot addr was used in
// the co-op close transaction.
assertTaprootDeliveryUsed := func(closingTxid chainhash.Hash) bool {
tx := ht.GetRawTransaction(closingTxid)
for _, txOut := range tx.MsgTx().TxOut {
if !txscript.IsPayToTaproot(txOut.PkScript) {
return false
}
}
return true
}
// We expect that the closing transaction only has P2TR addresses.
require.True(ht, assertTaprootDeliveryUsed(closingTxid),
"taproot addr not used!")
// Now we'll bring Eve into the mix, Eve is running older software that
// doesn't understand Taproot.
eveArgs := []string{"--protocol.no-any-segwit"}
eve := ht.NewNode("Eve", eveArgs)
ht.EnsureConnected(carol, eve)
// We'll now open up a chanel again between Carol and Eve.
chanPoint = ht.OpenChannel(
carol, eve, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
SatPerVByte: satPerVbyte,
},
)
// We'll now close out this channel and expect that no Taproot
// addresses are used in the co-op close transaction.
closingTxid = ht.CloseChannel(carol, chanPoint)
require.False(ht, assertTaprootDeliveryUsed(closingTxid),
"taproot addr shouldn't be used!")
}
// testMuSig2CombineKey makes sure that combining a key with MuSig2 returns the
// correct result according to the MuSig2 version specified.
func testMuSig2CombineKey(ht *lntest.HarnessTest, alice *node.HarnessNode,
version signrpc.MuSig2Version) {
testVector040Key1 := hexDecode(
"F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE0" +
"36F9",
)
testVector040Key2 := hexDecode(
"DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502B" +
"A659",
)
testVector040Key3 := hexDecode(
"3590A94E768F8E1815C2F24B4D80A8E3149316C3518CE7B7AD338368D038" +
"CA66",
)
testVector100Key1 := hexDecode(
"02F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BC" +
"E036F9",
)
testVector100Key2 := hexDecode(
"03DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B50" +
"2BA659",
)
testVector100Key3 := hexDecode(
"023590A94E768F8E1815C2F24B4D80A8E3149316C3518CE7B7AD338368D0" +
"38CA66",
)
var allPubKeys [][]byte
switch version {
case signrpc.MuSig2Version_MUSIG2_VERSION_V040:
allPubKeys = [][]byte{
testVector040Key1, testVector040Key2, testVector040Key3,
}
case signrpc.MuSig2Version_MUSIG2_VERSION_V100RC2:
allPubKeys = [][]byte{
testVector100Key1, testVector100Key2, testVector100Key3,
}
}
resp := alice.RPC.MuSig2CombineKeys(&signrpc.MuSig2CombineKeysRequest{
AllSignerPubkeys: allPubKeys,
TaprootTweak: &signrpc.TaprootTweakDesc{
KeySpendOnly: true,
},
Version: version,
})
expectedFinalKey040 := hexDecode(
"5b257b4e785d61157ef5303051f45184bd5cb47bc4b4069ed4dd453645" +
"9cb83b",
)
expectedPreTweakKey040 := hexDecode(
"d70cd69a2647f7390973df48cbfa2ccc407b8b2d60b08c5f1641185c79" +
"98a290",
)
expectedFinalKey100 := hexDecode(
"79e6c3e628c9bfbce91de6b7fb28e2aec7713d377cf260ab599dcbc40e54" +
"2312",
)
expectedPreTweakKey100 := hexDecode(
"789d937bade6673538f3e28d8368dda4d0512f94da44cf477a505716d26a" +
"1575",
)
switch version {
case signrpc.MuSig2Version_MUSIG2_VERSION_V040:
require.Equal(ht, expectedFinalKey040, resp.CombinedKey)
require.Equal(
ht, expectedPreTweakKey040, resp.TaprootInternalKey,
)
case signrpc.MuSig2Version_MUSIG2_VERSION_V100RC2:
require.Equal(ht, expectedFinalKey100, resp.CombinedKey)
require.Equal(
ht, expectedPreTweakKey100, resp.TaprootInternalKey,
)
}
}