lnd/chanfitness/chanevent_test.go
carla e05b4a8e2e
chanfitness: refactor to store channels by peer
When dealing with online events, we actually need to track our events
by peer, not by channel. All we need to track channels is to have a
set of online events for a peer which at least contain those events.
This change refactors chanfitness to track by peer.
2020-09-08 13:47:18 +02:00

415 lines
9.5 KiB
Go

package chanfitness
import (
"testing"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/clock"
"github.com/stretchr/testify/require"
)
// TestPeerLog tests the functionality of the peer log struct.
func TestPeerLog(t *testing.T) {
clock := clock.NewTestClock(testNow)
peerLog := newPeerLog(clock)
require.Zero(t, peerLog.channelCount())
require.False(t, peerLog.online)
// Test that looking up an unknown channel fails.
_, _, err := peerLog.channelUptime(wire.OutPoint{Index: 1})
require.Error(t, err)
// Add an offline event, since we have no channels, we do not expect
// to have any online periods recorded for our peer.
peerLog.onlineEvent(false)
require.Len(t, peerLog.getOnlinePeriods(), 0)
// Likewise, if we have an online event, nothing beyond the online state
// of our peer log should change.
peerLog.onlineEvent(true)
require.Len(t, peerLog.getOnlinePeriods(), 0)
// Add a channel and assert that we have one channel listed.
chan1 := wire.OutPoint{
Index: 1,
}
require.NoError(t, peerLog.addChannel(chan1))
require.Equal(t, 1, peerLog.channelCount())
// Assert that we can now successfully get our added channel.
_, _, err = peerLog.channelUptime(chan1)
require.NoError(t, err)
// Bump our test clock's time so that our current time is different to
// channel open time.
now := testNow.Add(time.Hour)
clock.SetTime(now)
// Now that we have added a channel and an hour has passed, we expect
// our uptime and lifetime to both equal an hour.
lifetime, uptime, err := peerLog.channelUptime(chan1)
require.NoError(t, err)
require.Equal(t, time.Hour, lifetime)
require.Equal(t, time.Hour, uptime)
// Add an offline event for our peer.
peerLog.onlineEvent(false)
// Now we add another channel to our store and assert that we now report
// two channels for this peer.
chan2 := wire.OutPoint{
Index: 2,
}
require.NoError(t, peerLog.addChannel(chan2))
require.Equal(t, 2, peerLog.channelCount())
// Progress our time again, so that our peer has now been offline for
// two hours.
now = now.Add(time.Hour * 2)
clock.SetTime(now)
// Our first channel should report as having been monitored for three
// hours, but only online for one of those hours.
lifetime, uptime, err = peerLog.channelUptime(chan1)
require.NoError(t, err)
require.Equal(t, time.Hour*3, lifetime)
require.Equal(t, time.Hour, uptime)
// Remove our first channel and check that we can still correctly query
// uptime for the second channel.
require.NoError(t, peerLog.removeChannel(chan1))
require.Equal(t, 1, peerLog.channelCount())
// Our second channel, which was created when our peer was offline,
// should report as having been monitored for two hours, but have zero
// uptime.
lifetime, uptime, err = peerLog.channelUptime(chan2)
require.NoError(t, err)
require.Equal(t, time.Hour*2, lifetime)
require.Equal(t, time.Duration(0), uptime)
// Finally, remove our second channel and assert that our peer cleans
// up its in memory set of events.
require.NoError(t, peerLog.removeChannel(chan2))
require.Equal(t, 0, peerLog.channelCount())
require.Len(t, peerLog.onlineEvents, 0)
}
// TestGetOnlinePeriod tests the getOnlinePeriod function. It tests the case
// where no events present, and the case where an additional online period
// must be added because the event log ends on an online event.
func TestGetOnlinePeriod(t *testing.T) {
fourHoursAgo := testNow.Add(time.Hour * -4)
threeHoursAgo := testNow.Add(time.Hour * -3)
twoHoursAgo := testNow.Add(time.Hour * -2)
tests := []struct {
name string
events []*event
expectedOnline []*onlinePeriod
}{
{
name: "no events",
},
{
name: "start on online period",
events: []*event{
{
timestamp: threeHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: twoHoursAgo,
eventType: peerOfflineEvent,
},
},
expectedOnline: []*onlinePeriod{
{
start: threeHoursAgo,
end: twoHoursAgo,
},
},
},
{
name: "start on offline period",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOfflineEvent,
},
},
},
{
name: "end on an online period",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOnlineEvent,
},
},
expectedOnline: []*onlinePeriod{
{
start: fourHoursAgo,
end: testNow,
},
},
},
{
name: "duplicate online events",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: threeHoursAgo,
eventType: peerOnlineEvent,
},
},
expectedOnline: []*onlinePeriod{
{
start: fourHoursAgo,
end: testNow,
},
},
},
{
name: "duplicate offline events",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOfflineEvent,
},
{
timestamp: threeHoursAgo,
eventType: peerOfflineEvent,
},
},
expectedOnline: nil,
},
{
name: "duplicate online then offline",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: threeHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: twoHoursAgo,
eventType: peerOfflineEvent,
},
},
expectedOnline: []*onlinePeriod{
{
start: fourHoursAgo,
end: twoHoursAgo,
},
},
},
{
name: "duplicate offline then online",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOfflineEvent,
},
{
timestamp: threeHoursAgo,
eventType: peerOfflineEvent,
},
{
timestamp: twoHoursAgo,
eventType: peerOnlineEvent,
},
},
expectedOnline: []*onlinePeriod{
{
start: twoHoursAgo,
end: testNow,
},
},
},
}
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
score := &peerLog{
onlineEvents: test.events,
clock: clock.NewTestClock(testNow),
}
online := score.getOnlinePeriods()
require.Equal(t, test.expectedOnline, online)
})
}
}
// TestUptime tests channel uptime calculation based on its event log.
func TestUptime(t *testing.T) {
fourHoursAgo := testNow.Add(time.Hour * -4)
threeHoursAgo := testNow.Add(time.Hour * -3)
twoHoursAgo := testNow.Add(time.Hour * -2)
oneHourAgo := testNow.Add(time.Hour * -1)
tests := []struct {
name string
// events is the set of event log that we are calculating uptime
// for.
events []*event
// startTime is the beginning of the period that we are
// calculating uptime for, it cannot have a zero value.
startTime time.Time
// endTime is the end of the period that we are calculating
// uptime for, it cannot have a zero value.
endTime time.Time
// expectedUptime is the amount of uptime we expect to be
// calculated over the period specified by startTime and
// endTime.
expectedUptime time.Duration
// expectErr is set to true if we expect an error to be returned
// when calling the uptime function.
expectErr bool
}{
{
name: "End before start",
endTime: threeHoursAgo,
startTime: testNow,
expectErr: true,
},
{
name: "Zero end time",
expectErr: true,
},
{
name: "online event and no offline",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOnlineEvent,
},
},
startTime: fourHoursAgo,
endTime: testNow,
expectedUptime: time.Hour * 4,
},
{
name: "online then offline event",
events: []*event{
{
timestamp: threeHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: twoHoursAgo,
eventType: peerOfflineEvent,
},
},
startTime: fourHoursAgo,
endTime: testNow,
expectedUptime: time.Hour,
},
{
name: "online event before uptime period",
events: []*event{
{
timestamp: threeHoursAgo,
eventType: peerOnlineEvent,
},
},
startTime: twoHoursAgo,
endTime: testNow,
expectedUptime: time.Hour * 2,
},
{
name: "offline event after uptime period",
events: []*event{
{
timestamp: fourHoursAgo,
eventType: peerOnlineEvent,
},
{
timestamp: testNow.Add(time.Hour),
eventType: peerOfflineEvent,
},
},
startTime: twoHoursAgo,
endTime: testNow,
expectedUptime: time.Hour * 2,
},
{
name: "all events within period",
events: []*event{
{
timestamp: twoHoursAgo,
eventType: peerOnlineEvent,
},
},
startTime: threeHoursAgo,
endTime: oneHourAgo,
expectedUptime: time.Hour,
},
{
name: "multiple online and offline",
events: []*event{
{
timestamp: testNow.Add(time.Hour * -7),
eventType: peerOnlineEvent,
},
{
timestamp: testNow.Add(time.Hour * -6),
eventType: peerOfflineEvent,
},
{
timestamp: testNow.Add(time.Hour * -5),
eventType: peerOnlineEvent,
},
{
timestamp: testNow.Add(time.Hour * -4),
eventType: peerOfflineEvent,
},
{
timestamp: testNow.Add(time.Hour * -3),
eventType: peerOnlineEvent,
},
},
startTime: testNow.Add(time.Hour * -8),
endTime: oneHourAgo,
expectedUptime: time.Hour * 4,
},
}
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
score := &peerLog{
onlineEvents: test.events,
clock: clock.NewTestClock(testNow),
}
uptime, err := score.uptime(
test.startTime, test.endTime,
)
require.Equal(t, test.expectErr, err != nil)
require.Equal(t, test.expectedUptime, uptime)
})
}
}