lnd/lntest/itest/lnd_channel_graph_test.go
yyforyongyu 5a94919b7e
itest: manage context timeout inside network harness
This is the last commit to refactor the context management such that all
the timeout are managed inside the network harness.
2021-08-24 12:28:35 +08:00

752 lines
22 KiB
Go

package itest
import (
"bytes"
"context"
"fmt"
"testing"
"time"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/stretchr/testify/require"
)
// testUpdateChanStatus checks that calls to the UpdateChanStatus RPC update
// the channel graph as expected, and that channel state is properly updated
// in the presence of interleaved node disconnects / reconnects.
func testUpdateChanStatus(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
// Create two fresh nodes and open a channel between them.
alice := net.NewNode(
t.t, "Alice", []string{
"--minbackoff=10s",
"--chan-enable-timeout=1.5s",
"--chan-disable-timeout=3s",
"--chan-status-sample-interval=.5s",
},
)
defer shutdownAndAssert(net, t, alice)
bob := net.NewNode(
t.t, "Bob", []string{
"--minbackoff=10s",
"--chan-enable-timeout=1.5s",
"--chan-disable-timeout=3s",
"--chan-status-sample-interval=.5s",
},
)
defer shutdownAndAssert(net, t, bob)
// Connect Alice to Bob.
net.ConnectNodes(t.t, alice, bob)
// Give Alice some coins so she can fund a channel.
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, alice)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
chanPoint := openChannelAndAssert(
t, net, alice, bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Wait for Alice and Bob to receive the channel edge from the
// funding manager.
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
err := alice.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("alice didn't see the alice->bob channel before "+
"timeout: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = bob.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("bob didn't see the bob->alice channel before "+
"timeout: %v", err)
}
// Launch a node for Carol which will connect to Alice and Bob in
// order to receive graph updates. This will ensure that the
// channel updates are propagated throughout the network.
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
net.ConnectNodes(t.t, alice, carol)
net.ConnectNodes(t.t, bob, carol)
carolSub := subscribeGraphNotifications(ctxb, t, carol)
defer close(carolSub.quit)
// sendReq sends an UpdateChanStatus request to the given node.
sendReq := func(node *lntest.HarnessNode, chanPoint *lnrpc.ChannelPoint,
action routerrpc.ChanStatusAction) {
req := &routerrpc.UpdateChanStatusRequest{
ChanPoint: chanPoint,
Action: action,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
_, err = node.RouterClient.UpdateChanStatus(ctxt, req)
if err != nil {
t.Fatalf("unable to call UpdateChanStatus for %s's node: %v",
node.Name(), err)
}
}
// assertEdgeDisabled ensures that a given node has the correct
// Disabled state for a channel.
assertEdgeDisabled := func(node *lntest.HarnessNode,
chanPoint *lnrpc.ChannelPoint, disabled bool) {
var predErr error
err = wait.Predicate(func() bool {
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := node.DescribeGraph(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query node %v's graph: %v", node, err)
return false
}
numEdges := len(chanGraph.Edges)
if numEdges != 1 {
predErr = fmt.Errorf("expected to find 1 edge in the graph, found %d", numEdges)
return false
}
edge := chanGraph.Edges[0]
if edge.ChanPoint != chanPoint.GetFundingTxidStr() {
predErr = fmt.Errorf("expected chan_point %v, got %v",
chanPoint.GetFundingTxidStr(), edge.ChanPoint)
}
var policy *lnrpc.RoutingPolicy
if node.PubKeyStr == edge.Node1Pub {
policy = edge.Node1Policy
} else {
policy = edge.Node2Policy
}
if disabled != policy.Disabled {
predErr = fmt.Errorf("expected policy.Disabled to be %v, "+
"but policy was %v", disabled, policy)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
}
// When updating the state of the channel between Alice and Bob, we
// should expect to see channel updates with the default routing
// policy. The value of "Disabled" will depend on the specific
// scenario being tested.
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: int64(chainreg.DefaultBitcoinBaseFeeMSat),
FeeRateMilliMsat: int64(chainreg.DefaultBitcoinFeeRate),
TimeLockDelta: chainreg.DefaultBitcoinTimeLockDelta,
MinHtlc: 1000, // default value
MaxHtlcMsat: calculateMaxHtlc(chanAmt),
}
// Initially, the channel between Alice and Bob should not be
// disabled.
assertEdgeDisabled(alice, chanPoint, false)
// Manually disable the channel and ensure that a "Disabled = true"
// update is propagated.
sendReq(alice, chanPoint, routerrpc.ChanStatusAction_DISABLE)
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
},
)
// Re-enable the channel and ensure that a "Disabled = false" update
// is propagated.
sendReq(alice, chanPoint, routerrpc.ChanStatusAction_ENABLE)
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
},
)
// Manually enabling a channel should NOT prevent subsequent
// disconnections from automatically disabling the channel again
// (we don't want to clutter the network with channels that are
// falsely advertised as enabled when they don't work).
if err := net.DisconnectNodes(alice, bob); err != nil {
t.Fatalf("unable to disconnect Alice from Bob: %v", err)
}
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
// Reconnecting the nodes should propagate a "Disabled = false" update.
net.EnsureConnected(t.t, alice, bob)
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
// Manually disabling the channel should prevent a subsequent
// disconnect / reconnect from re-enabling the channel on
// Alice's end. Note the asymmetry between manual enable and
// manual disable!
sendReq(alice, chanPoint, routerrpc.ChanStatusAction_DISABLE)
// Alice sends out the "Disabled = true" update in response to
// the ChanStatusAction_DISABLE request.
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
},
)
if err := net.DisconnectNodes(alice, bob); err != nil {
t.Fatalf("unable to disconnect Alice from Bob: %v", err)
}
// Bob sends a "Disabled = true" update upon detecting the
// disconnect.
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
// Bob sends a "Disabled = false" update upon detecting the
// reconnect.
net.EnsureConnected(t.t, alice, bob)
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
// However, since we manually disabled the channel on Alice's end,
// the policy on Alice's end should still be "Disabled = true". Again,
// note the asymmetry between manual enable and manual disable!
assertEdgeDisabled(alice, chanPoint, true)
if err := net.DisconnectNodes(alice, bob); err != nil {
t.Fatalf("unable to disconnect Alice from Bob: %v", err)
}
// Bob sends a "Disabled = true" update upon detecting the
// disconnect.
expectedPolicy.Disabled = true
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
// After restoring automatic channel state management on Alice's end,
// BOTH Alice and Bob should set the channel state back to "enabled"
// on reconnect.
sendReq(alice, chanPoint, routerrpc.ChanStatusAction_AUTO)
net.EnsureConnected(t.t, alice, bob)
expectedPolicy.Disabled = false
waitForChannelUpdate(
t, carolSub,
[]expectedChanUpdate{
{alice.PubKeyStr, expectedPolicy, chanPoint},
{bob.PubKeyStr, expectedPolicy, chanPoint},
},
)
assertEdgeDisabled(alice, chanPoint, false)
}
// testUnannouncedChannels checks unannounced channels are not returned by
// describeGraph RPC request unless explicitly asked for.
func testUnannouncedChannels(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
amount := funding.MaxBtcFundingAmount
// Open a channel between Alice and Bob, ensuring the
// channel has been opened properly.
chanOpenUpdate := openChannelStream(
t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: amount,
},
)
// Mine 2 blocks, and check that the channel is opened but not yet
// announced to the network.
mineBlocks(t, net, 2, 1)
// One block is enough to make the channel ready for use, since the
// nodes have defaultNumConfs=1 set.
fundingChanPoint, err := net.WaitForChannelOpen(chanOpenUpdate)
if err != nil {
t.Fatalf("error while waiting for channel open: %v", err)
}
// Alice should have 1 edge in her graph.
req := &lnrpc.ChannelGraphRequest{
IncludeUnannounced: true,
}
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err := net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges := len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find 1 edge in the graph, found %d", numEdges)
}
// Channels should not be announced yet, hence Alice should have no
// announced edges in her graph.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges = len(chanGraph.Edges)
if numEdges != 0 {
t.Fatalf("expected to find 0 announced edges in the graph, found %d",
numEdges)
}
// Mine 4 more blocks, and check that the channel is now announced.
mineBlocks(t, net, 4, 0)
// Give the network a chance to learn that auth proof is confirmed.
var predErr error
err = wait.Predicate(func() bool {
// The channel should now be announced. Check that Alice has 1
// announced edge.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
predErr = fmt.Errorf("unable to query alice's graph: %v", err)
return false
}
numEdges = len(chanGraph.Edges)
if numEdges != 1 {
predErr = fmt.Errorf("expected to find 1 announced edge in "+
"the graph, found %d", numEdges)
return false
}
return true
}, defaultTimeout)
if err != nil {
t.Fatalf("%v", predErr)
}
// The channel should now be announced. Check that Alice has 1 announced
// edge.
req.IncludeUnannounced = false
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
chanGraph, err = net.Alice.DescribeGraph(ctxt, req)
if err != nil {
t.Fatalf("unable to query alice's graph: %v", err)
}
numEdges = len(chanGraph.Edges)
if numEdges != 1 {
t.Fatalf("expected to find 1 announced edge in the graph, found %d",
numEdges)
}
// Close the channel used during the test.
closeChannelAndAssert(t, net, net.Alice, fundingChanPoint, false)
}
func testGraphTopologyNotifications(net *lntest.NetworkHarness, t *harnessTest) {
t.t.Run("pinned", func(t *testing.T) {
ht := newHarnessTest(t, net)
testGraphTopologyNtfns(net, ht, true)
})
t.t.Run("unpinned", func(t *testing.T) {
ht := newHarnessTest(t, net)
testGraphTopologyNtfns(net, ht, false)
})
}
func testGraphTopologyNtfns(net *lntest.NetworkHarness, t *harnessTest, pinned bool) {
ctxb := context.Background()
const chanAmt = funding.MaxBtcFundingAmount
// Spin up Bob first, since we will need to grab his pubkey when
// starting Alice to test pinned syncing.
bob := net.NewNode(t.t, "bob", nil)
defer shutdownAndAssert(net, t, bob)
ctxt, _ := context.WithTimeout(ctxb, defaultTimeout)
bobInfo, err := bob.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
require.NoError(t.t, err)
bobPubkey := bobInfo.IdentityPubkey
// For unpinned syncing, start Alice as usual. Otherwise grab Bob's
// pubkey to include in his pinned syncer set.
var aliceArgs []string
if pinned {
aliceArgs = []string{
"--numgraphsyncpeers=0",
fmt.Sprintf("--gossip.pinned-syncers=%s", bobPubkey),
}
}
alice := net.NewNode(t.t, "alice", aliceArgs)
defer shutdownAndAssert(net, t, alice)
// Connect Alice and Bob.
net.EnsureConnected(t.t, alice, bob)
// Alice stimmy.
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, alice)
// Bob stimmy.
net.SendCoins(t.t, btcutil.SatoshiPerBitcoin, bob)
// Assert that Bob has the correct sync type before proceeeding.
if pinned {
assertSyncType(t, alice, bobPubkey, lnrpc.Peer_PINNED_SYNC)
} else {
assertSyncType(t, alice, bobPubkey, lnrpc.Peer_ACTIVE_SYNC)
}
// Regardless of syncer type, ensure that both peers report having
// completed their initial sync before continuing to make a channel.
waitForGraphSync(t, alice)
// Let Alice subscribe to graph notifications.
graphSub := subscribeGraphNotifications(ctxb, t, alice)
defer close(graphSub.quit)
// Open a new channel between Alice and Bob.
chanPoint := openChannelAndAssert(
t, net, alice, bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// The channel opening above should have triggered a few notifications
// sent to the notification client. We'll expect two channel updates,
// and two node announcements.
var numChannelUpds int
var numNodeAnns int
for numChannelUpds < 2 && numNodeAnns < 2 {
select {
// Ensure that a new update for both created edges is properly
// dispatched to our registered client.
case graphUpdate := <-graphSub.updateChan:
// Process all channel updates prsented in this update
// message.
for _, chanUpdate := range graphUpdate.ChannelUpdates {
switch chanUpdate.AdvertisingNode {
case alice.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case alice.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
numChannelUpds++
}
for _, nodeUpdate := range graphUpdate.NodeUpdates {
switch nodeUpdate.IdentityKey {
case alice.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown node: %v",
nodeUpdate.IdentityKey)
}
numNodeAnns++
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notifications, "+
"only received %d/2 chanupds and %d/2 nodeanns",
numChannelUpds, numNodeAnns)
}
}
_, blockHeight, err := net.Miner.Client.GetBestBlock()
if err != nil {
t.Fatalf("unable to get current blockheight %v", err)
}
// Now we'll test that updates are properly sent after channels are closed
// within the network.
closeChannelAndAssert(t, net, alice, chanPoint, false)
// Now that the channel has been closed, we should receive a
// notification indicating so.
out:
for {
select {
case graphUpdate := <-graphSub.updateChan:
if len(graphUpdate.ClosedChans) != 1 {
continue
}
closedChan := graphUpdate.ClosedChans[0]
if closedChan.ClosedHeight != uint32(blockHeight+1) {
t.Fatalf("close heights of channel mismatch: "+
"expected %v, got %v", blockHeight+1,
closedChan.ClosedHeight)
}
chanPointTxid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
closedChanTxid, err := lnrpc.GetChanPointFundingTxid(
closedChan.ChanPoint,
)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
if !bytes.Equal(closedChanTxid[:], chanPointTxid[:]) {
t.Fatalf("channel point hash mismatch: "+
"expected %v, got %v", chanPointTxid,
closedChanTxid)
}
if closedChan.ChanPoint.OutputIndex != chanPoint.OutputIndex {
t.Fatalf("output index mismatch: expected %v, "+
"got %v", chanPoint.OutputIndex,
closedChan.ChanPoint)
}
break out
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("notification for channel closure not " +
"sent")
}
}
// For the final portion of the test, we'll ensure that once a new node
// appears in the network, the proper notification is dispatched. Note
// that a node that does not have any channels open is ignored, so first
// we disconnect Alice and Bob, open a channel between Bob and Carol,
// and finally connect Alice to Bob again.
if err := net.DisconnectNodes(alice, bob); err != nil {
t.Fatalf("unable to disconnect alice and bob: %v", err)
}
carol := net.NewNode(t.t, "Carol", nil)
defer shutdownAndAssert(net, t, carol)
net.ConnectNodes(t.t, bob, carol)
chanPoint = openChannelAndAssert(
t, net, bob, carol,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Reconnect Alice and Bob. This should result in the nodes syncing up
// their respective graph state, with the new addition being the
// existence of Carol in the graph, and also the channel between Bob
// and Carol. Note that we will also receive a node announcement from
// Bob, since a node will update its node announcement after a new
// channel is opened.
net.EnsureConnected(t.t, alice, bob)
// We should receive an update advertising the newly connected node,
// Bob's new node announcement, and the channel between Bob and Carol.
numNodeAnns = 0
numChannelUpds = 0
for numChannelUpds < 2 && numNodeAnns < 1 {
select {
case graphUpdate := <-graphSub.updateChan:
for _, nodeUpdate := range graphUpdate.NodeUpdates {
switch nodeUpdate.IdentityKey {
case carol.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown node update pubey: %v",
nodeUpdate.IdentityKey)
}
numNodeAnns++
}
for _, chanUpdate := range graphUpdate.ChannelUpdates {
switch chanUpdate.AdvertisingNode {
case carol.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown advertising node: %v",
chanUpdate.AdvertisingNode)
}
switch chanUpdate.ConnectingNode {
case carol.PubKeyStr:
case bob.PubKeyStr:
default:
t.Fatalf("unknown connecting node: %v",
chanUpdate.ConnectingNode)
}
if chanUpdate.Capacity != int64(chanAmt) {
t.Fatalf("channel capacities mismatch:"+
" expected %v, got %v", chanAmt,
btcutil.Amount(chanUpdate.Capacity))
}
numChannelUpds++
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(time.Second * 10):
t.Fatalf("timeout waiting for graph notifications, "+
"only received %d/2 chanupds and %d/2 nodeanns",
numChannelUpds, numNodeAnns)
}
}
// Close the channel between Bob and Carol.
closeChannelAndAssert(t, net, bob, chanPoint, false)
}
// testNodeAnnouncement ensures that when a node is started with one or more
// external IP addresses specified on the command line, that those addresses
// announced to the network and reported in the network graph.
func testNodeAnnouncement(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
aliceSub := subscribeGraphNotifications(ctxb, t, net.Alice)
defer close(aliceSub.quit)
advertisedAddrs := []string{
"192.168.1.1:8333",
"[2001:db8:85a3:8d3:1319:8a2e:370:7348]:8337",
"bkb6azqggsaiskzi.onion:9735",
"fomvuglh6h6vcag73xo5t5gv56ombih3zr2xvplkpbfd7wrog4swjwid.onion:1234",
}
var lndArgs []string
for _, addr := range advertisedAddrs {
lndArgs = append(lndArgs, "--externalip="+addr)
}
dave := net.NewNode(t.t, "Dave", lndArgs)
defer shutdownAndAssert(net, t, dave)
// We must let Dave have an open channel before he can send a node
// announcement, so we open a channel with Bob,
net.ConnectNodes(t.t, net.Bob, dave)
// Alice shouldn't receive any new updates yet since the channel has yet
// to be opened.
select {
case <-aliceSub.updateChan:
t.Fatalf("received unexpected update from dave")
case <-time.After(time.Second):
}
// We'll then go ahead and open a channel between Bob and Dave. This
// ensures that Alice receives the node announcement from Bob as part of
// the announcement broadcast.
chanPoint := openChannelAndAssert(
t, net, net.Bob, dave,
lntest.OpenChannelParams{
Amt: 1000000,
},
)
assertAddrs := func(addrsFound []string, targetAddrs ...string) {
addrs := make(map[string]struct{}, len(addrsFound))
for _, addr := range addrsFound {
addrs[addr] = struct{}{}
}
for _, addr := range targetAddrs {
if _, ok := addrs[addr]; !ok {
t.Fatalf("address %v not found in node "+
"announcement", addr)
}
}
}
waitForAddrsInUpdate := func(graphSub graphSubscription,
nodePubKey string, targetAddrs ...string) {
for {
select {
case graphUpdate := <-graphSub.updateChan:
for _, update := range graphUpdate.NodeUpdates {
if update.IdentityKey == nodePubKey {
assertAddrs(
update.Addresses, // nolint:staticcheck
targetAddrs...,
)
return
}
}
case err := <-graphSub.errChan:
t.Fatalf("unable to recv graph update: %v", err)
case <-time.After(defaultTimeout):
t.Fatalf("did not receive node ann update")
}
}
}
// We'll then wait for Alice to receive Dave's node announcement
// including the expected advertised addresses from Bob since they
// should already be connected.
waitForAddrsInUpdate(
aliceSub, dave.PubKeyStr, advertisedAddrs...,
)
// Close the channel between Bob and Dave.
closeChannelAndAssert(t, net, net.Bob, chanPoint, false)
}