mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-01-19 05:45:21 +01:00
6b0931af82
With the introducation of the `InvoiceUpdater` interface we are now able to move the non-kv parts of `UpdateInvoice` completely under the invoices package. This is a preprequisite for being able to use the same code-base for the sql InvoiceDB implementation of UpdateInvoice.
2364 lines
67 KiB
Go
2364 lines
67 KiB
Go
package channeldb
|
|
|
|
import (
|
|
"bytes"
|
|
"context"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"io"
|
|
"time"
|
|
|
|
"github.com/lightningnetwork/lnd/channeldb/models"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hop"
|
|
invpkg "github.com/lightningnetwork/lnd/invoices"
|
|
"github.com/lightningnetwork/lnd/kvdb"
|
|
"github.com/lightningnetwork/lnd/lntypes"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/record"
|
|
"github.com/lightningnetwork/lnd/tlv"
|
|
)
|
|
|
|
var (
|
|
// invoiceBucket is the name of the bucket within the database that
|
|
// stores all data related to invoices no matter their final state.
|
|
// Within the invoice bucket, each invoice is keyed by its invoice ID
|
|
// which is a monotonically increasing uint32.
|
|
invoiceBucket = []byte("invoices")
|
|
|
|
// paymentHashIndexBucket is the name of the sub-bucket within the
|
|
// invoiceBucket which indexes all invoices by their payment hash. The
|
|
// payment hash is the sha256 of the invoice's payment preimage. This
|
|
// index is used to detect duplicates, and also to provide a fast path
|
|
// for looking up incoming HTLCs to determine if we're able to settle
|
|
// them fully.
|
|
//
|
|
// maps: payHash => invoiceKey
|
|
invoiceIndexBucket = []byte("paymenthashes")
|
|
|
|
// payAddrIndexBucket is the name of the top-level bucket that maps
|
|
// payment addresses to their invoice number. This can be used
|
|
// to efficiently query or update non-legacy invoices. Note that legacy
|
|
// invoices will not be included in this index since they all have the
|
|
// same, all-zero payment address, however all newly generated invoices
|
|
// will end up in this index.
|
|
//
|
|
// maps: payAddr => invoiceKey
|
|
payAddrIndexBucket = []byte("pay-addr-index")
|
|
|
|
// setIDIndexBucket is the name of the top-level bucket that maps set
|
|
// ids to their invoice number. This can be used to efficiently query or
|
|
// update AMP invoice. Note that legacy or MPP invoices will not be
|
|
// included in this index, since their HTLCs do not have a set id.
|
|
//
|
|
// maps: setID => invoiceKey
|
|
setIDIndexBucket = []byte("set-id-index")
|
|
|
|
// numInvoicesKey is the name of key which houses the auto-incrementing
|
|
// invoice ID which is essentially used as a primary key. With each
|
|
// invoice inserted, the primary key is incremented by one. This key is
|
|
// stored within the invoiceIndexBucket. Within the invoiceBucket
|
|
// invoices are uniquely identified by the invoice ID.
|
|
numInvoicesKey = []byte("nik")
|
|
|
|
// addIndexBucket is an index bucket that we'll use to create a
|
|
// monotonically increasing set of add indexes. Each time we add a new
|
|
// invoice, this sequence number will be incremented and then populated
|
|
// within the new invoice.
|
|
//
|
|
// In addition to this sequence number, we map:
|
|
//
|
|
// addIndexNo => invoiceKey
|
|
addIndexBucket = []byte("invoice-add-index")
|
|
|
|
// settleIndexBucket is an index bucket that we'll use to create a
|
|
// monotonically increasing integer for tracking a "settle index". Each
|
|
// time an invoice is settled, this sequence number will be incremented
|
|
// as populate within the newly settled invoice.
|
|
//
|
|
// In addition to this sequence number, we map:
|
|
//
|
|
// settleIndexNo => invoiceKey
|
|
settleIndexBucket = []byte("invoice-settle-index")
|
|
)
|
|
|
|
const (
|
|
// A set of tlv type definitions used to serialize invoice htlcs to the
|
|
// database.
|
|
//
|
|
// NOTE: A migration should be added whenever this list changes. This
|
|
// prevents against the database being rolled back to an older
|
|
// format where the surrounding logic might assume a different set of
|
|
// fields are known.
|
|
chanIDType tlv.Type = 1
|
|
htlcIDType tlv.Type = 3
|
|
amtType tlv.Type = 5
|
|
acceptHeightType tlv.Type = 7
|
|
acceptTimeType tlv.Type = 9
|
|
resolveTimeType tlv.Type = 11
|
|
expiryHeightType tlv.Type = 13
|
|
htlcStateType tlv.Type = 15
|
|
mppTotalAmtType tlv.Type = 17
|
|
htlcAMPType tlv.Type = 19
|
|
htlcHashType tlv.Type = 21
|
|
htlcPreimageType tlv.Type = 23
|
|
|
|
// A set of tlv type definitions used to serialize invoice bodiees.
|
|
//
|
|
// NOTE: A migration should be added whenever this list changes. This
|
|
// prevents against the database being rolled back to an older
|
|
// format where the surrounding logic might assume a different set of
|
|
// fields are known.
|
|
memoType tlv.Type = 0
|
|
payReqType tlv.Type = 1
|
|
createTimeType tlv.Type = 2
|
|
settleTimeType tlv.Type = 3
|
|
addIndexType tlv.Type = 4
|
|
settleIndexType tlv.Type = 5
|
|
preimageType tlv.Type = 6
|
|
valueType tlv.Type = 7
|
|
cltvDeltaType tlv.Type = 8
|
|
expiryType tlv.Type = 9
|
|
paymentAddrType tlv.Type = 10
|
|
featuresType tlv.Type = 11
|
|
invStateType tlv.Type = 12
|
|
amtPaidType tlv.Type = 13
|
|
hodlInvoiceType tlv.Type = 14
|
|
invoiceAmpStateType tlv.Type = 15
|
|
|
|
// A set of tlv type definitions used to serialize the invoice AMP
|
|
// state along-side the main invoice body.
|
|
ampStateSetIDType tlv.Type = 0
|
|
ampStateHtlcStateType tlv.Type = 1
|
|
ampStateSettleIndexType tlv.Type = 2
|
|
ampStateSettleDateType tlv.Type = 3
|
|
ampStateCircuitKeysType tlv.Type = 4
|
|
ampStateAmtPaidType tlv.Type = 5
|
|
)
|
|
|
|
// AddInvoice inserts the targeted invoice into the database. If the invoice has
|
|
// *any* payment hashes which already exists within the database, then the
|
|
// insertion will be aborted and rejected due to the strict policy banning any
|
|
// duplicate payment hashes. A side effect of this function is that it sets
|
|
// AddIndex on newInvoice.
|
|
func (d *DB) AddInvoice(_ context.Context, newInvoice *invpkg.Invoice,
|
|
paymentHash lntypes.Hash) (uint64, error) {
|
|
|
|
if err := invpkg.ValidateInvoice(newInvoice, paymentHash); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
var invoiceAddIndex uint64
|
|
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
|
|
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
invoiceIndex, err := invoices.CreateBucketIfNotExists(
|
|
invoiceIndexBucket,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
addIndex, err := invoices.CreateBucketIfNotExists(
|
|
addIndexBucket,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Ensure that an invoice an identical payment hash doesn't
|
|
// already exist within the index.
|
|
if invoiceIndex.Get(paymentHash[:]) != nil {
|
|
return invpkg.ErrDuplicateInvoice
|
|
}
|
|
|
|
// Check that we aren't inserting an invoice with a duplicate
|
|
// payment address. The all-zeros payment address is
|
|
// special-cased to support legacy keysend invoices which don't
|
|
// assign one. This is safe since later we also will avoid
|
|
// indexing them and avoid collisions.
|
|
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
|
|
if newInvoice.Terms.PaymentAddr != invpkg.BlankPayAddr {
|
|
paymentAddr := newInvoice.Terms.PaymentAddr[:]
|
|
if payAddrIndex.Get(paymentAddr) != nil {
|
|
return invpkg.ErrDuplicatePayAddr
|
|
}
|
|
}
|
|
|
|
// If the current running payment ID counter hasn't yet been
|
|
// created, then create it now.
|
|
var invoiceNum uint32
|
|
invoiceCounter := invoiceIndex.Get(numInvoicesKey)
|
|
if invoiceCounter == nil {
|
|
var scratch [4]byte
|
|
byteOrder.PutUint32(scratch[:], invoiceNum)
|
|
err := invoiceIndex.Put(numInvoicesKey, scratch[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
} else {
|
|
invoiceNum = byteOrder.Uint32(invoiceCounter)
|
|
}
|
|
|
|
newIndex, err := putInvoice(
|
|
invoices, invoiceIndex, payAddrIndex, addIndex,
|
|
newInvoice, invoiceNum, paymentHash,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
invoiceAddIndex = newIndex
|
|
return nil
|
|
}, func() {
|
|
invoiceAddIndex = 0
|
|
})
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
return invoiceAddIndex, err
|
|
}
|
|
|
|
// InvoicesAddedSince can be used by callers to seek into the event time series
|
|
// of all the invoices added in the database. The specified sinceAddIndex
|
|
// should be the highest add index that the caller knows of. This method will
|
|
// return all invoices with an add index greater than the specified
|
|
// sinceAddIndex.
|
|
//
|
|
// NOTE: The index starts from 1, as a result. We enforce that specifying a
|
|
// value below the starting index value is a noop.
|
|
func (d *DB) InvoicesAddedSince(_ context.Context, sinceAddIndex uint64) (
|
|
[]invpkg.Invoice, error) {
|
|
|
|
var newInvoices []invpkg.Invoice
|
|
|
|
// If an index of zero was specified, then in order to maintain
|
|
// backwards compat, we won't send out any new invoices.
|
|
if sinceAddIndex == 0 {
|
|
return newInvoices, nil
|
|
}
|
|
|
|
var startIndex [8]byte
|
|
byteOrder.PutUint64(startIndex[:], sinceAddIndex)
|
|
|
|
err := kvdb.View(d, func(tx kvdb.RTx) error {
|
|
invoices := tx.ReadBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return nil
|
|
}
|
|
|
|
addIndex := invoices.NestedReadBucket(addIndexBucket)
|
|
if addIndex == nil {
|
|
return nil
|
|
}
|
|
|
|
// We'll now run through each entry in the add index starting
|
|
// at our starting index. We'll continue until we reach the
|
|
// very end of the current key space.
|
|
invoiceCursor := addIndex.ReadCursor()
|
|
|
|
// We'll seek to the starting index, then manually advance the
|
|
// cursor in order to skip the entry with the since add index.
|
|
invoiceCursor.Seek(startIndex[:])
|
|
addSeqNo, invoiceKey := invoiceCursor.Next()
|
|
|
|
for ; addSeqNo != nil && bytes.Compare(addSeqNo, startIndex[:]) > 0; addSeqNo, invoiceKey = invoiceCursor.Next() {
|
|
|
|
// For each key found, we'll look up the actual
|
|
// invoice, then accumulate it into our return value.
|
|
invoice, err := fetchInvoice(invoiceKey, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
newInvoices = append(newInvoices, invoice)
|
|
}
|
|
|
|
return nil
|
|
}, func() {
|
|
newInvoices = nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return newInvoices, nil
|
|
}
|
|
|
|
// LookupInvoice attempts to look up an invoice according to its 32 byte
|
|
// payment hash. If an invoice which can settle the HTLC identified by the
|
|
// passed payment hash isn't found, then an error is returned. Otherwise, the
|
|
// full invoice is returned. Before setting the incoming HTLC, the values
|
|
// SHOULD be checked to ensure the payer meets the agreed upon contractual
|
|
// terms of the payment.
|
|
func (d *DB) LookupInvoice(_ context.Context, ref invpkg.InvoiceRef) (
|
|
invpkg.Invoice, error) {
|
|
|
|
var invoice invpkg.Invoice
|
|
err := kvdb.View(d, func(tx kvdb.RTx) error {
|
|
invoices := tx.ReadBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
|
|
if invoiceIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
|
|
setIDIndex := tx.ReadBucket(setIDIndexBucket)
|
|
|
|
// Retrieve the invoice number for this invoice using
|
|
// the provided invoice reference.
|
|
invoiceNum, err := fetchInvoiceNumByRef(
|
|
invoiceIndex, payAddrIndex, setIDIndex, ref,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var setID *invpkg.SetID
|
|
switch {
|
|
// If this is a payment address ref, and the blank modified was
|
|
// specified, then we'll use the zero set ID to indicate that
|
|
// we won't want any HTLCs returned.
|
|
case ref.PayAddr() != nil &&
|
|
ref.Modifier() == invpkg.HtlcSetBlankModifier:
|
|
|
|
var zeroSetID invpkg.SetID
|
|
setID = &zeroSetID
|
|
|
|
// If this is a set ID ref, and the htlc set only modified was
|
|
// specified, then we'll pass through the specified setID so
|
|
// only that will be returned.
|
|
case ref.SetID() != nil &&
|
|
ref.Modifier() == invpkg.HtlcSetOnlyModifier:
|
|
|
|
setID = (*invpkg.SetID)(ref.SetID())
|
|
}
|
|
|
|
// An invoice was found, retrieve the remainder of the invoice
|
|
// body.
|
|
i, err := fetchInvoice(invoiceNum, invoices, setID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
invoice = i
|
|
|
|
return nil
|
|
}, func() {})
|
|
if err != nil {
|
|
return invoice, err
|
|
}
|
|
|
|
return invoice, nil
|
|
}
|
|
|
|
// fetchInvoiceNumByRef retrieve the invoice number for the provided invoice
|
|
// reference. The payment address will be treated as the primary key, falling
|
|
// back to the payment hash if nothing is found for the payment address. An
|
|
// error is returned if the invoice is not found.
|
|
func fetchInvoiceNumByRef(invoiceIndex, payAddrIndex, setIDIndex kvdb.RBucket,
|
|
ref invpkg.InvoiceRef) ([]byte, error) {
|
|
|
|
// If the set id is present, we only consult the set id index for this
|
|
// invoice. This type of query is only used to facilitate user-facing
|
|
// requests to lookup, settle or cancel an AMP invoice.
|
|
setID := ref.SetID()
|
|
if setID != nil {
|
|
invoiceNumBySetID := setIDIndex.Get(setID[:])
|
|
if invoiceNumBySetID == nil {
|
|
return nil, invpkg.ErrInvoiceNotFound
|
|
}
|
|
|
|
return invoiceNumBySetID, nil
|
|
}
|
|
|
|
payHash := ref.PayHash()
|
|
payAddr := ref.PayAddr()
|
|
|
|
getInvoiceNumByHash := func() []byte {
|
|
if payHash != nil {
|
|
return invoiceIndex.Get(payHash[:])
|
|
}
|
|
return nil
|
|
}
|
|
|
|
getInvoiceNumByAddr := func() []byte {
|
|
if payAddr != nil {
|
|
// Only allow lookups for payment address if it is not a
|
|
// blank payment address, which is a special-cased value
|
|
// for legacy keysend invoices.
|
|
if *payAddr != invpkg.BlankPayAddr {
|
|
return payAddrIndex.Get(payAddr[:])
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
invoiceNumByHash := getInvoiceNumByHash()
|
|
invoiceNumByAddr := getInvoiceNumByAddr()
|
|
switch {
|
|
// If payment address and payment hash both reference an existing
|
|
// invoice, ensure they reference the _same_ invoice.
|
|
case invoiceNumByAddr != nil && invoiceNumByHash != nil:
|
|
if !bytes.Equal(invoiceNumByAddr, invoiceNumByHash) {
|
|
return nil, invpkg.ErrInvRefEquivocation
|
|
}
|
|
|
|
return invoiceNumByAddr, nil
|
|
|
|
// Return invoices by payment addr only.
|
|
//
|
|
// NOTE: We constrain this lookup to only apply if the invoice ref does
|
|
// not contain a payment hash. Legacy and MPP payments depend on the
|
|
// payment hash index to enforce that the HTLCs payment hash matches the
|
|
// payment hash for the invoice, without this check we would
|
|
// inadvertently assume the invoice contains the correct preimage for
|
|
// the HTLC, which we only enforce via the lookup by the invoice index.
|
|
case invoiceNumByAddr != nil && payHash == nil:
|
|
return invoiceNumByAddr, nil
|
|
|
|
// If we were only able to reference the invoice by hash, return the
|
|
// corresponding invoice number. This can happen when no payment address
|
|
// was provided, or if it didn't match anything in our records.
|
|
case invoiceNumByHash != nil:
|
|
return invoiceNumByHash, nil
|
|
|
|
// Otherwise we don't know of the target invoice.
|
|
default:
|
|
return nil, invpkg.ErrInvoiceNotFound
|
|
}
|
|
}
|
|
|
|
// FetchPendingInvoices returns all invoices that have not yet been settled or
|
|
// canceled. The returned map is keyed by the payment hash of each respective
|
|
// invoice.
|
|
func (d *DB) FetchPendingInvoices(_ context.Context) (
|
|
map[lntypes.Hash]invpkg.Invoice, error) {
|
|
|
|
result := make(map[lntypes.Hash]invpkg.Invoice)
|
|
|
|
err := kvdb.View(d, func(tx kvdb.RTx) error {
|
|
invoices := tx.ReadBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return nil
|
|
}
|
|
|
|
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
|
|
if invoiceIndex == nil {
|
|
// Mask the error if there's no invoice
|
|
// index as that simply means there are no
|
|
// invoices added yet to the DB. In this case
|
|
// we simply return an empty list.
|
|
return nil
|
|
}
|
|
|
|
return invoiceIndex.ForEach(func(k, v []byte) error {
|
|
// Skip the special numInvoicesKey as that does not
|
|
// point to a valid invoice.
|
|
if bytes.Equal(k, numInvoicesKey) {
|
|
return nil
|
|
}
|
|
|
|
// Skip sub-buckets.
|
|
if v == nil {
|
|
return nil
|
|
}
|
|
|
|
invoice, err := fetchInvoice(v, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if invoice.IsPending() {
|
|
var paymentHash lntypes.Hash
|
|
copy(paymentHash[:], k)
|
|
result[paymentHash] = invoice
|
|
}
|
|
|
|
return nil
|
|
})
|
|
}, func() {
|
|
result = make(map[lntypes.Hash]invpkg.Invoice)
|
|
})
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return result, nil
|
|
}
|
|
|
|
// QueryInvoices allows a caller to query the invoice database for invoices
|
|
// within the specified add index range.
|
|
func (d *DB) QueryInvoices(_ context.Context, q invpkg.InvoiceQuery) (
|
|
invpkg.InvoiceSlice, error) {
|
|
|
|
var resp invpkg.InvoiceSlice
|
|
|
|
err := kvdb.View(d, func(tx kvdb.RTx) error {
|
|
// If the bucket wasn't found, then there aren't any invoices
|
|
// within the database yet, so we can simply exit.
|
|
invoices := tx.ReadBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
// Get the add index bucket which we will use to iterate through
|
|
// our indexed invoices.
|
|
invoiceAddIndex := invoices.NestedReadBucket(addIndexBucket)
|
|
if invoiceAddIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
// Create a paginator which reads from our add index bucket with
|
|
// the parameters provided by the invoice query.
|
|
paginator := newPaginator(
|
|
invoiceAddIndex.ReadCursor(), q.Reversed, q.IndexOffset,
|
|
q.NumMaxInvoices,
|
|
)
|
|
|
|
// accumulateInvoices looks up an invoice based on the index we
|
|
// are given, adds it to our set of invoices if it has the right
|
|
// characteristics for our query and returns the number of items
|
|
// we have added to our set of invoices.
|
|
accumulateInvoices := func(_, indexValue []byte) (bool, error) {
|
|
invoice, err := fetchInvoice(indexValue, invoices)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
|
|
// Skip any settled or canceled invoices if the caller
|
|
// is only interested in pending ones.
|
|
if q.PendingOnly && !invoice.IsPending() {
|
|
return false, nil
|
|
}
|
|
|
|
// Get the creation time in Unix seconds, this always
|
|
// rounds down the nanoseconds to full seconds.
|
|
createTime := invoice.CreationDate.Unix()
|
|
|
|
// Skip any invoices that were created before the
|
|
// specified time.
|
|
if createTime < q.CreationDateStart {
|
|
return false, nil
|
|
}
|
|
|
|
// Skip any invoices that were created after the
|
|
// specified time.
|
|
if q.CreationDateEnd != 0 &&
|
|
createTime > q.CreationDateEnd {
|
|
|
|
return false, nil
|
|
}
|
|
|
|
// At this point, we've exhausted the offset, so we'll
|
|
// begin collecting invoices found within the range.
|
|
resp.Invoices = append(resp.Invoices, invoice)
|
|
|
|
return true, nil
|
|
}
|
|
|
|
// Query our paginator using accumulateInvoices to build up a
|
|
// set of invoices.
|
|
if err := paginator.query(accumulateInvoices); err != nil {
|
|
return err
|
|
}
|
|
|
|
// If we iterated through the add index in reverse order, then
|
|
// we'll need to reverse the slice of invoices to return them in
|
|
// forward order.
|
|
if q.Reversed {
|
|
numInvoices := len(resp.Invoices)
|
|
for i := 0; i < numInvoices/2; i++ {
|
|
reverse := numInvoices - i - 1
|
|
resp.Invoices[i], resp.Invoices[reverse] =
|
|
resp.Invoices[reverse], resp.Invoices[i]
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}, func() {
|
|
resp = invpkg.InvoiceSlice{
|
|
InvoiceQuery: q,
|
|
}
|
|
})
|
|
if err != nil && !errors.Is(err, invpkg.ErrNoInvoicesCreated) {
|
|
return resp, err
|
|
}
|
|
|
|
// Finally, record the indexes of the first and last invoices returned
|
|
// so that the caller can resume from this point later on.
|
|
if len(resp.Invoices) > 0 {
|
|
resp.FirstIndexOffset = resp.Invoices[0].AddIndex
|
|
lastIdx := len(resp.Invoices) - 1
|
|
resp.LastIndexOffset = resp.Invoices[lastIdx].AddIndex
|
|
}
|
|
|
|
return resp, nil
|
|
}
|
|
|
|
// UpdateInvoice attempts to update an invoice corresponding to the passed
|
|
// payment hash. If an invoice matching the passed payment hash doesn't exist
|
|
// within the database, then the action will fail with a "not found" error.
|
|
//
|
|
// The update is performed inside the same database transaction that fetches the
|
|
// invoice and is therefore atomic. The fields to update are controlled by the
|
|
// supplied callback. When updating an invoice, the update itself happens
|
|
// in-memory on a copy of the invoice. Once it is written successfully to the
|
|
// database, the in-memory copy is returned to the caller.
|
|
func (d *DB) UpdateInvoice(_ context.Context, ref invpkg.InvoiceRef,
|
|
setIDHint *invpkg.SetID, callback invpkg.InvoiceUpdateCallback) (
|
|
*invpkg.Invoice, error) {
|
|
|
|
var updatedInvoice *invpkg.Invoice
|
|
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
|
|
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
invoiceIndex, err := invoices.CreateBucketIfNotExists(
|
|
invoiceIndexBucket,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
settleIndex, err := invoices.CreateBucketIfNotExists(
|
|
settleIndexBucket,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
|
|
setIDIndex := tx.ReadWriteBucket(setIDIndexBucket)
|
|
|
|
// Retrieve the invoice number for this invoice using the
|
|
// provided invoice reference.
|
|
invoiceNum, err := fetchInvoiceNumByRef(
|
|
invoiceIndex, payAddrIndex, setIDIndex, ref,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If the set ID hint is non-nil, then we'll use that to filter
|
|
// out the HTLCs for AMP invoice so we don't need to read them
|
|
// all out to satisfy the invoice callback below. If it's nil,
|
|
// then we pass in the zero set ID which means no HTLCs will be
|
|
// read out.
|
|
var invSetID invpkg.SetID
|
|
|
|
if setIDHint != nil {
|
|
invSetID = *setIDHint
|
|
}
|
|
invoice, err := fetchInvoice(invoiceNum, invoices, &invSetID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
now := d.clock.Now()
|
|
updater := &kvInvoiceUpdater{
|
|
db: d,
|
|
invoicesBucket: invoices,
|
|
settleIndexBucket: settleIndex,
|
|
setIDIndexBucket: setIDIndex,
|
|
updateTime: now,
|
|
invoiceNum: invoiceNum,
|
|
invoice: &invoice,
|
|
updatedAmpHtlcs: make(ampHTLCsMap),
|
|
settledSetIDs: make(map[invpkg.SetID]struct{}),
|
|
}
|
|
|
|
payHash := ref.PayHash()
|
|
updatedInvoice, err = invpkg.UpdateInvoice(
|
|
payHash, updater.invoice, now, callback, updater,
|
|
)
|
|
|
|
return err
|
|
}, func() {
|
|
updatedInvoice = nil
|
|
})
|
|
|
|
return updatedInvoice, err
|
|
}
|
|
|
|
// ampHTLCsMap is a map of AMP HTLCs affected by an invoice update.
|
|
type ampHTLCsMap map[invpkg.SetID]map[models.CircuitKey]*invpkg.InvoiceHTLC
|
|
|
|
// kvInvoiceUpdater is an implementation of the InvoiceUpdater interface that
|
|
// is used with the kv implementation of the invoice database. Note that this
|
|
// updater is not concurrency safe and synchronizaton is expected to be handled
|
|
// on the DB level.
|
|
type kvInvoiceUpdater struct {
|
|
db *DB
|
|
invoicesBucket kvdb.RwBucket
|
|
settleIndexBucket kvdb.RwBucket
|
|
setIDIndexBucket kvdb.RwBucket
|
|
|
|
// updateTime is the timestamp for the update.
|
|
updateTime time.Time
|
|
|
|
// invoiceNum is a legacy key similar to the add index that is used
|
|
// only in the kv implementation.
|
|
invoiceNum []byte
|
|
|
|
// invoice is the invoice that we're updating. As a side effect of the
|
|
// update this invoice will be mutated.
|
|
invoice *invpkg.Invoice
|
|
|
|
// updatedAmpHtlcs holds the set of AMP HTLCs that were added or
|
|
// cancelled as part of this update.
|
|
updatedAmpHtlcs ampHTLCsMap
|
|
|
|
// settledSetIDs holds the set IDs that are settled with this update.
|
|
settledSetIDs map[invpkg.SetID]struct{}
|
|
}
|
|
|
|
// NOTE: this method does nothing in the k/v implementation of InvoiceUpdater.
|
|
func (k *kvInvoiceUpdater) AddHtlc(_ models.CircuitKey,
|
|
_ *invpkg.InvoiceHTLC) error {
|
|
|
|
return nil
|
|
}
|
|
|
|
// NOTE: this method does nothing in the k/v implementation of InvoiceUpdater.
|
|
func (k *kvInvoiceUpdater) ResolveHtlc(_ models.CircuitKey, _ invpkg.HtlcState,
|
|
_ time.Time) error {
|
|
|
|
return nil
|
|
}
|
|
|
|
// NOTE: this method does nothing in the k/v implementation of InvoiceUpdater.
|
|
func (k *kvInvoiceUpdater) AddAmpHtlcPreimage(_ [32]byte, _ models.CircuitKey,
|
|
_ lntypes.Preimage) error {
|
|
|
|
return nil
|
|
}
|
|
|
|
// NOTE: this method does nothing in the k/v implementation of InvoiceUpdater.
|
|
func (k *kvInvoiceUpdater) UpdateInvoiceState(_ invpkg.ContractState,
|
|
_ *lntypes.Preimage) error {
|
|
|
|
return nil
|
|
}
|
|
|
|
// NOTE: this method does nothing in the k/v implementation of InvoiceUpdater.
|
|
func (k *kvInvoiceUpdater) UpdateInvoiceAmtPaid(_ lnwire.MilliSatoshi) error {
|
|
return nil
|
|
}
|
|
|
|
// UpdateAmpState updates the state of the AMP invoice identified by the setID.
|
|
func (k *kvInvoiceUpdater) UpdateAmpState(setID [32]byte,
|
|
state invpkg.InvoiceStateAMP, circuitKey models.CircuitKey) error {
|
|
|
|
if _, ok := k.updatedAmpHtlcs[setID]; !ok {
|
|
switch state.State {
|
|
case invpkg.HtlcStateAccepted:
|
|
// If we're just now creating the HTLCs for this set
|
|
// then we'll also pull in the existing HTLCs that are
|
|
// part of this set, so we can write them all to disk
|
|
// together (same value)
|
|
k.updatedAmpHtlcs[setID] = k.invoice.HTLCSet(
|
|
&setID, invpkg.HtlcStateAccepted,
|
|
)
|
|
|
|
case invpkg.HtlcStateCanceled:
|
|
// Only HTLCs in the accepted state, can be cancelled,
|
|
// but we also want to merge that with HTLCs that may be
|
|
// canceled as well since it can be cancelled one by
|
|
// one.
|
|
k.updatedAmpHtlcs[setID] = k.invoice.HTLCSet(
|
|
&setID, invpkg.HtlcStateAccepted,
|
|
)
|
|
|
|
cancelledHtlcs := k.invoice.HTLCSet(
|
|
&setID, invpkg.HtlcStateCanceled,
|
|
)
|
|
for htlcKey, htlc := range cancelledHtlcs {
|
|
k.updatedAmpHtlcs[setID][htlcKey] = htlc
|
|
}
|
|
|
|
case invpkg.HtlcStateSettled:
|
|
k.updatedAmpHtlcs[setID] = make(
|
|
map[models.CircuitKey]*invpkg.InvoiceHTLC,
|
|
)
|
|
}
|
|
}
|
|
|
|
if state.State == invpkg.HtlcStateSettled {
|
|
// Add the set ID to the set that was settled in this invoice
|
|
// update. We'll use this later to update the settle index.
|
|
k.settledSetIDs[setID] = struct{}{}
|
|
}
|
|
|
|
k.updatedAmpHtlcs[setID][circuitKey] = k.invoice.Htlcs[circuitKey]
|
|
|
|
return nil
|
|
}
|
|
|
|
// Finalize finalizes the update before it is written to the database.
|
|
func (k *kvInvoiceUpdater) Finalize(updateType invpkg.UpdateType) error {
|
|
switch updateType {
|
|
case invpkg.AddHTLCsUpdate:
|
|
return k.storeAddHtlcsUpdate()
|
|
|
|
case invpkg.CancelHTLCsUpdate:
|
|
return k.storeCancelHtlcsUpdate()
|
|
|
|
case invpkg.SettleHodlInvoiceUpdate:
|
|
return k.storeSettleHodlInvoiceUpdate()
|
|
|
|
case invpkg.CancelInvoiceUpdate:
|
|
return k.serializeAndStoreInvoice()
|
|
}
|
|
|
|
return fmt.Errorf("unknown update type: %v", updateType)
|
|
}
|
|
|
|
// storeCancelHtlcsUpdate updates the invoice in the database after cancelling a
|
|
// set of HTLCs.
|
|
func (k *kvInvoiceUpdater) storeCancelHtlcsUpdate() error {
|
|
err := k.serializeAndStoreInvoice()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If this is an AMP invoice, then we'll actually store the rest
|
|
// of the HTLCs in-line with the invoice, using the invoice ID
|
|
// as a prefix, and the AMP key as a suffix: invoiceNum ||
|
|
// setID.
|
|
if k.invoice.IsAMP() {
|
|
return k.updateAMPInvoices()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// storeAddHtlcsUpdate updates the invoice in the database after adding a set of
|
|
// HTLCs.
|
|
func (k *kvInvoiceUpdater) storeAddHtlcsUpdate() error {
|
|
invoiceIsAMP := k.invoice.IsAMP()
|
|
|
|
for htlcSetID := range k.updatedAmpHtlcs {
|
|
// Check if this SetID already exist.
|
|
setIDInvNum := k.setIDIndexBucket.Get(htlcSetID[:])
|
|
|
|
if setIDInvNum == nil {
|
|
err := k.setIDIndexBucket.Put(
|
|
htlcSetID[:], k.invoiceNum,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
} else if !bytes.Equal(setIDInvNum, k.invoiceNum) {
|
|
return invpkg.ErrDuplicateSetID{
|
|
SetID: htlcSetID,
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a non-AMP invoice, then the state can eventually go to
|
|
// ContractSettled, so we pass in nil value as part of
|
|
// setSettleMetaFields.
|
|
if !invoiceIsAMP && k.invoice.State == invpkg.ContractSettled {
|
|
err := k.setSettleMetaFields(nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// As we don't update the settle index above for AMP invoices, we'll do
|
|
// it here for each sub-AMP invoice that was settled.
|
|
for settledSetID := range k.settledSetIDs {
|
|
settledSetID := settledSetID
|
|
err := k.setSettleMetaFields(&settledSetID)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
err := k.serializeAndStoreInvoice()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If this is an AMP invoice, then we'll actually store the rest of the
|
|
// HTLCs in-line with the invoice, using the invoice ID as a prefix,
|
|
// and the AMP key as a suffix: invoiceNum || setID.
|
|
if invoiceIsAMP {
|
|
return k.updateAMPInvoices()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// storeSettleHodlInvoiceUpdate updates the invoice in the database after
|
|
// settling a hodl invoice.
|
|
func (k *kvInvoiceUpdater) storeSettleHodlInvoiceUpdate() error {
|
|
err := k.setSettleMetaFields(nil)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return k.serializeAndStoreInvoice()
|
|
}
|
|
|
|
// setSettleMetaFields updates the metadata associated with settlement of an
|
|
// invoice. If a non-nil setID is passed in, then the value will be append to
|
|
// the invoice number as well, in order to allow us to detect repeated payments
|
|
// to the same AMP invoices "across time".
|
|
func (k *kvInvoiceUpdater) setSettleMetaFields(setID *invpkg.SetID) error {
|
|
// Now that we know the invoice hasn't already been settled, we'll
|
|
// update the settle index so we can place this settle event in the
|
|
// proper location within our time series.
|
|
nextSettleSeqNo, err := k.settleIndexBucket.NextSequence()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Make a new byte array on the stack that can potentially store the 4
|
|
// byte invoice number along w/ the 32 byte set ID. We capture valueLen
|
|
// here which is the number of bytes copied so we can only store the 4
|
|
// bytes if this is a non-AMP invoice.
|
|
var indexKey [invoiceSetIDKeyLen]byte
|
|
valueLen := copy(indexKey[:], k.invoiceNum)
|
|
|
|
if setID != nil {
|
|
valueLen += copy(indexKey[valueLen:], setID[:])
|
|
}
|
|
|
|
var seqNoBytes [8]byte
|
|
byteOrder.PutUint64(seqNoBytes[:], nextSettleSeqNo)
|
|
err = k.settleIndexBucket.Put(seqNoBytes[:], indexKey[:valueLen])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If the setID is nil, then this means that this is a non-AMP settle,
|
|
// so we'll update the invoice settle index directly.
|
|
if setID == nil {
|
|
k.invoice.SettleDate = k.updateTime
|
|
k.invoice.SettleIndex = nextSettleSeqNo
|
|
} else {
|
|
// If the set ID isn't blank, we'll update the AMP state map
|
|
// which tracks when each of the setIDs associated with a given
|
|
// AMP invoice are settled.
|
|
ampState := k.invoice.AMPState[*setID]
|
|
|
|
ampState.SettleDate = k.updateTime
|
|
ampState.SettleIndex = nextSettleSeqNo
|
|
|
|
k.invoice.AMPState[*setID] = ampState
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// updateAMPInvoices updates the set of AMP invoices in-place. For AMP, rather
|
|
// then continually write the invoices to the end of the invoice value, we
|
|
// instead write the invoices into a new key preifx that follows the main
|
|
// invoice number. This ensures that we don't need to continually decode a
|
|
// potentially massive HTLC set, and also allows us to quickly find the HLTCs
|
|
// associated with a particular HTLC set.
|
|
func (k *kvInvoiceUpdater) updateAMPInvoices() error {
|
|
for setID, htlcSet := range k.updatedAmpHtlcs {
|
|
// First write out the set of HTLCs including all the relevant
|
|
// TLV values.
|
|
var b bytes.Buffer
|
|
if err := serializeHtlcs(&b, htlcSet); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Next store each HTLC in-line, using a prefix based off the
|
|
// invoice number.
|
|
invoiceSetIDKey := makeInvoiceSetIDKey(k.invoiceNum, setID[:])
|
|
|
|
err := k.invoicesBucket.Put(invoiceSetIDKey[:], b.Bytes())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// serializeAndStoreInvoice is a helper function used to store invoices.
|
|
func (k *kvInvoiceUpdater) serializeAndStoreInvoice() error {
|
|
var buf bytes.Buffer
|
|
if err := serializeInvoice(&buf, k.invoice); err != nil {
|
|
return err
|
|
}
|
|
|
|
return k.invoicesBucket.Put(k.invoiceNum, buf.Bytes())
|
|
}
|
|
|
|
// InvoicesSettledSince can be used by callers to catch up any settled invoices
|
|
// they missed within the settled invoice time series. We'll return all known
|
|
// settled invoice that have a settle index higher than the passed
|
|
// sinceSettleIndex.
|
|
//
|
|
// NOTE: The index starts from 1, as a result. We enforce that specifying a
|
|
// value below the starting index value is a noop.
|
|
func (d *DB) InvoicesSettledSince(_ context.Context, sinceSettleIndex uint64) (
|
|
[]invpkg.Invoice, error) {
|
|
|
|
var settledInvoices []invpkg.Invoice
|
|
|
|
// If an index of zero was specified, then in order to maintain
|
|
// backwards compat, we won't send out any new invoices.
|
|
if sinceSettleIndex == 0 {
|
|
return settledInvoices, nil
|
|
}
|
|
|
|
var startIndex [8]byte
|
|
byteOrder.PutUint64(startIndex[:], sinceSettleIndex)
|
|
|
|
err := kvdb.View(d, func(tx kvdb.RTx) error {
|
|
invoices := tx.ReadBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return nil
|
|
}
|
|
|
|
settleIndex := invoices.NestedReadBucket(settleIndexBucket)
|
|
if settleIndex == nil {
|
|
return nil
|
|
}
|
|
|
|
// We'll now run through each entry in the add index starting
|
|
// at our starting index. We'll continue until we reach the
|
|
// very end of the current key space.
|
|
invoiceCursor := settleIndex.ReadCursor()
|
|
|
|
// We'll seek to the starting index, then manually advance the
|
|
// cursor in order to skip the entry with the since add index.
|
|
invoiceCursor.Seek(startIndex[:])
|
|
seqNo, indexValue := invoiceCursor.Next()
|
|
|
|
for ; seqNo != nil && bytes.Compare(seqNo, startIndex[:]) > 0; seqNo, indexValue = invoiceCursor.Next() {
|
|
// Depending on the length of the index value, this may
|
|
// or may not be an AMP invoice, so we'll extract the
|
|
// invoice value into two components: the invoice num,
|
|
// and the setID (may not be there).
|
|
var (
|
|
invoiceKey [4]byte
|
|
setID *invpkg.SetID
|
|
)
|
|
|
|
valueLen := copy(invoiceKey[:], indexValue)
|
|
if len(indexValue) == invoiceSetIDKeyLen {
|
|
setID = new(invpkg.SetID)
|
|
copy(setID[:], indexValue[valueLen:])
|
|
}
|
|
|
|
// For each key found, we'll look up the actual
|
|
// invoice, then accumulate it into our return value.
|
|
invoice, err := fetchInvoice(
|
|
invoiceKey[:], invoices, setID,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
settledInvoices = append(settledInvoices, invoice)
|
|
}
|
|
|
|
return nil
|
|
}, func() {
|
|
settledInvoices = nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return settledInvoices, nil
|
|
}
|
|
|
|
func putInvoice(invoices, invoiceIndex, payAddrIndex, addIndex kvdb.RwBucket,
|
|
i *invpkg.Invoice, invoiceNum uint32, paymentHash lntypes.Hash) (
|
|
uint64, error) {
|
|
|
|
// Create the invoice key which is just the big-endian representation
|
|
// of the invoice number.
|
|
var invoiceKey [4]byte
|
|
byteOrder.PutUint32(invoiceKey[:], invoiceNum)
|
|
|
|
// Increment the num invoice counter index so the next invoice bares
|
|
// the proper ID.
|
|
var scratch [4]byte
|
|
invoiceCounter := invoiceNum + 1
|
|
byteOrder.PutUint32(scratch[:], invoiceCounter)
|
|
if err := invoiceIndex.Put(numInvoicesKey, scratch[:]); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Add the payment hash to the invoice index. This will let us quickly
|
|
// identify if we can settle an incoming payment, and also to possibly
|
|
// allow a single invoice to have multiple payment installations.
|
|
err := invoiceIndex.Put(paymentHash[:], invoiceKey[:])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// Add the invoice to the payment address index, but only if the invoice
|
|
// has a non-zero payment address. The all-zero payment address is still
|
|
// in use by legacy keysend, so we special-case here to avoid
|
|
// collisions.
|
|
if i.Terms.PaymentAddr != invpkg.BlankPayAddr {
|
|
err = payAddrIndex.Put(i.Terms.PaymentAddr[:], invoiceKey[:])
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
}
|
|
|
|
// Next, we'll obtain the next add invoice index (sequence
|
|
// number), so we can properly place this invoice within this
|
|
// event stream.
|
|
nextAddSeqNo, err := addIndex.NextSequence()
|
|
if err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
// With the next sequence obtained, we'll updating the event series in
|
|
// the add index bucket to map this current add counter to the index of
|
|
// this new invoice.
|
|
var seqNoBytes [8]byte
|
|
byteOrder.PutUint64(seqNoBytes[:], nextAddSeqNo)
|
|
if err := addIndex.Put(seqNoBytes[:], invoiceKey[:]); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
i.AddIndex = nextAddSeqNo
|
|
|
|
// Finally, serialize the invoice itself to be written to the disk.
|
|
var buf bytes.Buffer
|
|
if err := serializeInvoice(&buf, i); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
if err := invoices.Put(invoiceKey[:], buf.Bytes()); err != nil {
|
|
return 0, err
|
|
}
|
|
|
|
return nextAddSeqNo, nil
|
|
}
|
|
|
|
// recordSize returns the amount of bytes this TLV record will occupy when
|
|
// encoded.
|
|
func ampRecordSize(a *invpkg.AMPInvoiceState) func() uint64 {
|
|
var (
|
|
b bytes.Buffer
|
|
buf [8]byte
|
|
)
|
|
|
|
// We know that encoding works since the tests pass in the build this
|
|
// file is checked into, so we'll simplify things and simply encode it
|
|
// ourselves then report the total amount of bytes used.
|
|
if err := ampStateEncoder(&b, a, &buf); err != nil {
|
|
// This should never error out, but we log it just in case it
|
|
// does.
|
|
log.Errorf("encoding the amp invoice state failed: %v", err)
|
|
}
|
|
|
|
return func() uint64 {
|
|
return uint64(len(b.Bytes()))
|
|
}
|
|
}
|
|
|
|
// serializeInvoice serializes an invoice to a writer.
|
|
//
|
|
// Note: this function is in use for a migration. Before making changes that
|
|
// would modify the on disk format, make a copy of the original code and store
|
|
// it with the migration.
|
|
func serializeInvoice(w io.Writer, i *invpkg.Invoice) error {
|
|
creationDateBytes, err := i.CreationDate.MarshalBinary()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
settleDateBytes, err := i.SettleDate.MarshalBinary()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var fb bytes.Buffer
|
|
err = i.Terms.Features.EncodeBase256(&fb)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
featureBytes := fb.Bytes()
|
|
|
|
preimage := [32]byte(invpkg.UnknownPreimage)
|
|
if i.Terms.PaymentPreimage != nil {
|
|
preimage = *i.Terms.PaymentPreimage
|
|
if preimage == invpkg.UnknownPreimage {
|
|
return errors.New("cannot use all-zeroes preimage")
|
|
}
|
|
}
|
|
value := uint64(i.Terms.Value)
|
|
cltvDelta := uint32(i.Terms.FinalCltvDelta)
|
|
expiry := uint64(i.Terms.Expiry)
|
|
|
|
amtPaid := uint64(i.AmtPaid)
|
|
state := uint8(i.State)
|
|
|
|
var hodlInvoice uint8
|
|
if i.HodlInvoice {
|
|
hodlInvoice = 1
|
|
}
|
|
|
|
tlvStream, err := tlv.NewStream(
|
|
// Memo and payreq.
|
|
tlv.MakePrimitiveRecord(memoType, &i.Memo),
|
|
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
|
|
|
|
// Add/settle metadata.
|
|
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
|
|
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
|
|
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
|
|
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
|
|
|
|
// Terms.
|
|
tlv.MakePrimitiveRecord(preimageType, &preimage),
|
|
tlv.MakePrimitiveRecord(valueType, &value),
|
|
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
|
|
tlv.MakePrimitiveRecord(expiryType, &expiry),
|
|
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
|
|
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
|
|
|
|
// Invoice state.
|
|
tlv.MakePrimitiveRecord(invStateType, &state),
|
|
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
|
|
|
|
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
|
|
|
|
// Invoice AMP state.
|
|
tlv.MakeDynamicRecord(
|
|
invoiceAmpStateType, &i.AMPState,
|
|
ampRecordSize(&i.AMPState),
|
|
ampStateEncoder, ampStateDecoder,
|
|
),
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var b bytes.Buffer
|
|
if err = tlvStream.Encode(&b); err != nil {
|
|
return err
|
|
}
|
|
|
|
err = binary.Write(w, byteOrder, uint64(b.Len()))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if _, err = w.Write(b.Bytes()); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Only if this is a _non_ AMP invoice do we serialize the HTLCs
|
|
// in-line with the rest of the invoice.
|
|
if i.IsAMP() {
|
|
return nil
|
|
}
|
|
|
|
return serializeHtlcs(w, i.Htlcs)
|
|
}
|
|
|
|
// serializeHtlcs serializes a map containing circuit keys and invoice htlcs to
|
|
// a writer.
|
|
func serializeHtlcs(w io.Writer,
|
|
htlcs map[models.CircuitKey]*invpkg.InvoiceHTLC) error {
|
|
|
|
for key, htlc := range htlcs {
|
|
// Encode the htlc in a tlv stream.
|
|
chanID := key.ChanID.ToUint64()
|
|
amt := uint64(htlc.Amt)
|
|
mppTotalAmt := uint64(htlc.MppTotalAmt)
|
|
acceptTime := putNanoTime(htlc.AcceptTime)
|
|
resolveTime := putNanoTime(htlc.ResolveTime)
|
|
state := uint8(htlc.State)
|
|
|
|
var records []tlv.Record
|
|
records = append(records,
|
|
tlv.MakePrimitiveRecord(chanIDType, &chanID),
|
|
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
|
|
tlv.MakePrimitiveRecord(amtType, &amt),
|
|
tlv.MakePrimitiveRecord(
|
|
acceptHeightType, &htlc.AcceptHeight,
|
|
),
|
|
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
|
|
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
|
|
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
|
|
tlv.MakePrimitiveRecord(htlcStateType, &state),
|
|
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
|
|
)
|
|
|
|
if htlc.AMP != nil {
|
|
setIDRecord := tlv.MakeDynamicRecord(
|
|
htlcAMPType, &htlc.AMP.Record,
|
|
htlc.AMP.Record.PayloadSize,
|
|
record.AMPEncoder, record.AMPDecoder,
|
|
)
|
|
records = append(records, setIDRecord)
|
|
|
|
hash32 := [32]byte(htlc.AMP.Hash)
|
|
hashRecord := tlv.MakePrimitiveRecord(
|
|
htlcHashType, &hash32,
|
|
)
|
|
records = append(records, hashRecord)
|
|
|
|
if htlc.AMP.Preimage != nil {
|
|
preimage32 := [32]byte(*htlc.AMP.Preimage)
|
|
preimageRecord := tlv.MakePrimitiveRecord(
|
|
htlcPreimageType, &preimage32,
|
|
)
|
|
records = append(records, preimageRecord)
|
|
}
|
|
}
|
|
|
|
// Convert the custom records to tlv.Record types that are ready
|
|
// for serialization.
|
|
customRecords := tlv.MapToRecords(htlc.CustomRecords)
|
|
|
|
// Append the custom records. Their ids are in the experimental
|
|
// range and sorted, so there is no need to sort again.
|
|
records = append(records, customRecords...)
|
|
|
|
tlvStream, err := tlv.NewStream(records...)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var b bytes.Buffer
|
|
if err := tlvStream.Encode(&b); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Write the length of the tlv stream followed by the stream
|
|
// bytes.
|
|
err = binary.Write(w, byteOrder, uint64(b.Len()))
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if _, err := w.Write(b.Bytes()); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// putNanoTime returns the unix nano time for the passed timestamp. A zero-value
|
|
// timestamp will be mapped to 0, since calling UnixNano in that case is
|
|
// undefined.
|
|
func putNanoTime(t time.Time) uint64 {
|
|
if t.IsZero() {
|
|
return 0
|
|
}
|
|
return uint64(t.UnixNano())
|
|
}
|
|
|
|
// getNanoTime returns a timestamp for the given number of nano seconds. If zero
|
|
// is provided, an zero-value time stamp is returned.
|
|
func getNanoTime(ns uint64) time.Time {
|
|
if ns == 0 {
|
|
return time.Time{}
|
|
}
|
|
return time.Unix(0, int64(ns))
|
|
}
|
|
|
|
// fetchFilteredAmpInvoices retrieves only a select set of AMP invoices
|
|
// identified by the setID value.
|
|
func fetchFilteredAmpInvoices(invoiceBucket kvdb.RBucket, invoiceNum []byte,
|
|
setIDs ...*invpkg.SetID) (map[models.CircuitKey]*invpkg.InvoiceHTLC,
|
|
error) {
|
|
|
|
htlcs := make(map[models.CircuitKey]*invpkg.InvoiceHTLC)
|
|
for _, setID := range setIDs {
|
|
invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:])
|
|
|
|
htlcSetBytes := invoiceBucket.Get(invoiceSetIDKey[:])
|
|
if htlcSetBytes == nil {
|
|
// A set ID was passed in, but we don't have this
|
|
// stored yet, meaning that the setID is being added
|
|
// for the first time.
|
|
return htlcs, invpkg.ErrInvoiceNotFound
|
|
}
|
|
|
|
htlcSetReader := bytes.NewReader(htlcSetBytes)
|
|
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
for key, htlc := range htlcsBySetID {
|
|
htlcs[key] = htlc
|
|
}
|
|
}
|
|
|
|
return htlcs, nil
|
|
}
|
|
|
|
// forEachAMPInvoice is a helper function that attempts to iterate over each of
|
|
// the HTLC sets (based on their set ID) for the given AMP invoice identified
|
|
// by its invoiceNum. The callback closure is called for each key within the
|
|
// prefix range.
|
|
func forEachAMPInvoice(invoiceBucket kvdb.RBucket, invoiceNum []byte,
|
|
callback func(key, htlcSet []byte) error) error {
|
|
|
|
invoiceCursor := invoiceBucket.ReadCursor()
|
|
|
|
// Seek to the first key that includes the invoice data itself.
|
|
invoiceCursor.Seek(invoiceNum)
|
|
|
|
// Advance to the very first key _after_ the invoice data, as this is
|
|
// where we'll encounter our first HTLC (if any are present).
|
|
cursorKey, htlcSet := invoiceCursor.Next()
|
|
|
|
// If at this point, the cursor key doesn't match the invoice num
|
|
// prefix, then we know that this HTLC doesn't have any set ID HTLCs
|
|
// associated with it.
|
|
if !bytes.HasPrefix(cursorKey, invoiceNum) {
|
|
return nil
|
|
}
|
|
|
|
// Otherwise continue to iterate until we no longer match the prefix,
|
|
// executing the call back at each step.
|
|
for ; cursorKey != nil && bytes.HasPrefix(cursorKey, invoiceNum); cursorKey, htlcSet = invoiceCursor.Next() {
|
|
err := callback(cursorKey, htlcSet)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// fetchAmpSubInvoices attempts to use the invoiceNum as a prefix within the
|
|
// AMP bucket to find all the individual HTLCs (by setID) associated with a
|
|
// given invoice. If a list of set IDs are specified, then only HTLCs
|
|
// associated with that setID will be retrieved.
|
|
func fetchAmpSubInvoices(invoiceBucket kvdb.RBucket, invoiceNum []byte,
|
|
setIDs ...*invpkg.SetID) (map[models.CircuitKey]*invpkg.InvoiceHTLC,
|
|
error) {
|
|
|
|
// If a set of setIDs was specified, then we can skip the cursor and
|
|
// just read out exactly what we need.
|
|
if len(setIDs) != 0 && setIDs[0] != nil {
|
|
return fetchFilteredAmpInvoices(
|
|
invoiceBucket, invoiceNum, setIDs...,
|
|
)
|
|
}
|
|
|
|
// Otherwise, iterate over all the htlc sets that are prefixed beside
|
|
// this invoice in the main invoice bucket.
|
|
htlcs := make(map[models.CircuitKey]*invpkg.InvoiceHTLC)
|
|
err := forEachAMPInvoice(invoiceBucket, invoiceNum,
|
|
func(key, htlcSet []byte) error {
|
|
htlcSetReader := bytes.NewReader(htlcSet)
|
|
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for key, htlc := range htlcsBySetID {
|
|
htlcs[key] = htlc
|
|
}
|
|
|
|
return nil
|
|
},
|
|
)
|
|
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return htlcs, nil
|
|
}
|
|
|
|
// fetchInvoice attempts to read out the relevant state for the invoice as
|
|
// specified by the invoice number. If the setID fields are set, then only the
|
|
// HTLC information pertaining to those set IDs is returned.
|
|
func fetchInvoice(invoiceNum []byte, invoices kvdb.RBucket,
|
|
setIDs ...*invpkg.SetID) (invpkg.Invoice, error) {
|
|
|
|
invoiceBytes := invoices.Get(invoiceNum)
|
|
if invoiceBytes == nil {
|
|
return invpkg.Invoice{}, invpkg.ErrInvoiceNotFound
|
|
}
|
|
|
|
invoiceReader := bytes.NewReader(invoiceBytes)
|
|
|
|
invoice, err := deserializeInvoice(invoiceReader)
|
|
if err != nil {
|
|
return invpkg.Invoice{}, err
|
|
}
|
|
|
|
// If this is an AMP invoice we'll also attempt to read out the set of
|
|
// HTLCs that were paid to prior set IDs, if needed.
|
|
if !invoice.IsAMP() {
|
|
return invoice, nil
|
|
}
|
|
|
|
if shouldFetchAMPHTLCs(invoice, setIDs) {
|
|
invoice.Htlcs, err = fetchAmpSubInvoices(
|
|
invoices, invoiceNum, setIDs...,
|
|
)
|
|
// TODO(positiveblue): we should fail when we are not able to
|
|
// fetch all the HTLCs for an AMP invoice. Multiple tests in
|
|
// the invoice and channeldb package break if we return this
|
|
// error. We need to update them when we migrate this logic to
|
|
// the sql implementation.
|
|
if err != nil {
|
|
log.Errorf("unable to fetch amp htlcs for inv "+
|
|
"%v and setIDs %v: %w", invoiceNum, setIDs, err)
|
|
}
|
|
}
|
|
|
|
return invoice, nil
|
|
}
|
|
|
|
// shouldFetchAMPHTLCs returns true if we need to fetch the set of HTLCs that
|
|
// were paid to the relevant set IDs.
|
|
func shouldFetchAMPHTLCs(invoice invpkg.Invoice, setIDs []*invpkg.SetID) bool {
|
|
// For AMP invoice that already have HTLCs populated (created before
|
|
// recurring invoices), then we don't need to read from the prefix
|
|
// keyed section of the bucket.
|
|
if len(invoice.Htlcs) != 0 {
|
|
return false
|
|
}
|
|
|
|
// If the "zero" setID was specified, then this means that no HTLC data
|
|
// should be returned alongside of it.
|
|
if len(setIDs) != 0 && setIDs[0] != nil &&
|
|
*setIDs[0] == invpkg.BlankPayAddr {
|
|
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// fetchInvoiceStateAMP retrieves the state of all the relevant sub-invoice for
|
|
// an AMP invoice. This methods only decode the relevant state vs the entire
|
|
// invoice.
|
|
func fetchInvoiceStateAMP(invoiceNum []byte,
|
|
invoices kvdb.RBucket) (invpkg.AMPInvoiceState, error) {
|
|
|
|
// Fetch the raw invoice bytes.
|
|
invoiceBytes := invoices.Get(invoiceNum)
|
|
if invoiceBytes == nil {
|
|
return nil, invpkg.ErrInvoiceNotFound
|
|
}
|
|
|
|
r := bytes.NewReader(invoiceBytes)
|
|
|
|
var bodyLen int64
|
|
err := binary.Read(r, byteOrder, &bodyLen)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Next, we'll make a new TLV stream that only attempts to decode the
|
|
// bytes we actually need.
|
|
ampState := make(invpkg.AMPInvoiceState)
|
|
tlvStream, err := tlv.NewStream(
|
|
// Invoice AMP state.
|
|
tlv.MakeDynamicRecord(
|
|
invoiceAmpStateType, &State, nil,
|
|
ampStateEncoder, ampStateDecoder,
|
|
),
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
invoiceReader := io.LimitReader(r, bodyLen)
|
|
if err = tlvStream.Decode(invoiceReader); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return ampState, nil
|
|
}
|
|
|
|
func deserializeInvoice(r io.Reader) (invpkg.Invoice, error) {
|
|
var (
|
|
preimageBytes [32]byte
|
|
value uint64
|
|
cltvDelta uint32
|
|
expiry uint64
|
|
amtPaid uint64
|
|
state uint8
|
|
hodlInvoice uint8
|
|
|
|
creationDateBytes []byte
|
|
settleDateBytes []byte
|
|
featureBytes []byte
|
|
)
|
|
|
|
var i invpkg.Invoice
|
|
i.AMPState = make(invpkg.AMPInvoiceState)
|
|
tlvStream, err := tlv.NewStream(
|
|
// Memo and payreq.
|
|
tlv.MakePrimitiveRecord(memoType, &i.Memo),
|
|
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
|
|
|
|
// Add/settle metadata.
|
|
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
|
|
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
|
|
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
|
|
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
|
|
|
|
// Terms.
|
|
tlv.MakePrimitiveRecord(preimageType, &preimageBytes),
|
|
tlv.MakePrimitiveRecord(valueType, &value),
|
|
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
|
|
tlv.MakePrimitiveRecord(expiryType, &expiry),
|
|
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
|
|
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
|
|
|
|
// Invoice state.
|
|
tlv.MakePrimitiveRecord(invStateType, &state),
|
|
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
|
|
|
|
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
|
|
|
|
// Invoice AMP state.
|
|
tlv.MakeDynamicRecord(
|
|
invoiceAmpStateType, &i.AMPState, nil,
|
|
ampStateEncoder, ampStateDecoder,
|
|
),
|
|
)
|
|
if err != nil {
|
|
return i, err
|
|
}
|
|
|
|
var bodyLen int64
|
|
err = binary.Read(r, byteOrder, &bodyLen)
|
|
if err != nil {
|
|
return i, err
|
|
}
|
|
|
|
lr := io.LimitReader(r, bodyLen)
|
|
if err = tlvStream.Decode(lr); err != nil {
|
|
return i, err
|
|
}
|
|
|
|
preimage := lntypes.Preimage(preimageBytes)
|
|
if preimage != invpkg.UnknownPreimage {
|
|
i.Terms.PaymentPreimage = &preimage
|
|
}
|
|
|
|
i.Terms.Value = lnwire.MilliSatoshi(value)
|
|
i.Terms.FinalCltvDelta = int32(cltvDelta)
|
|
i.Terms.Expiry = time.Duration(expiry)
|
|
i.AmtPaid = lnwire.MilliSatoshi(amtPaid)
|
|
i.State = invpkg.ContractState(state)
|
|
|
|
if hodlInvoice != 0 {
|
|
i.HodlInvoice = true
|
|
}
|
|
|
|
err = i.CreationDate.UnmarshalBinary(creationDateBytes)
|
|
if err != nil {
|
|
return i, err
|
|
}
|
|
|
|
err = i.SettleDate.UnmarshalBinary(settleDateBytes)
|
|
if err != nil {
|
|
return i, err
|
|
}
|
|
|
|
rawFeatures := lnwire.NewRawFeatureVector()
|
|
err = rawFeatures.DecodeBase256(
|
|
bytes.NewReader(featureBytes), len(featureBytes),
|
|
)
|
|
if err != nil {
|
|
return i, err
|
|
}
|
|
|
|
i.Terms.Features = lnwire.NewFeatureVector(
|
|
rawFeatures, lnwire.Features,
|
|
)
|
|
|
|
i.Htlcs, err = deserializeHtlcs(r)
|
|
return i, err
|
|
}
|
|
|
|
func encodeCircuitKeys(w io.Writer, val interface{}, buf *[8]byte) error {
|
|
if v, ok := val.(*map[models.CircuitKey]struct{}); ok {
|
|
// We encode the set of circuit keys as a varint length prefix.
|
|
// followed by a series of fixed sized uint8 integers.
|
|
numKeys := uint64(len(*v))
|
|
|
|
if err := tlv.WriteVarInt(w, numKeys, buf); err != nil {
|
|
return err
|
|
}
|
|
|
|
for key := range *v {
|
|
scidInt := key.ChanID.ToUint64()
|
|
|
|
if err := tlv.EUint64(w, &scidInt, buf); err != nil {
|
|
return err
|
|
}
|
|
if err := tlv.EUint64(w, &key.HtlcID, buf); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
return tlv.NewTypeForEncodingErr(val, "*map[CircuitKey]struct{}")
|
|
}
|
|
|
|
func decodeCircuitKeys(r io.Reader, val interface{}, buf *[8]byte,
|
|
l uint64) error {
|
|
|
|
if v, ok := val.(*map[models.CircuitKey]struct{}); ok {
|
|
// First, we'll read out the varint that encodes the number of
|
|
// circuit keys encoded.
|
|
numKeys, err := tlv.ReadVarInt(r, buf)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Now that we know how many keys to expect, iterate reading
|
|
// each one until we're done.
|
|
for i := uint64(0); i < numKeys; i++ {
|
|
var (
|
|
key models.CircuitKey
|
|
scid uint64
|
|
)
|
|
|
|
if err := tlv.DUint64(r, &scid, buf, 8); err != nil {
|
|
return err
|
|
}
|
|
|
|
key.ChanID = lnwire.NewShortChanIDFromInt(scid)
|
|
|
|
err := tlv.DUint64(r, &key.HtlcID, buf, 8)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
(*v)[key] = struct{}{}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
return tlv.NewTypeForDecodingErr(val, "*map[CircuitKey]struct{}", l, l)
|
|
}
|
|
|
|
// ampStateEncoder is a custom TLV encoder for the AMPInvoiceState record.
|
|
func ampStateEncoder(w io.Writer, val interface{}, buf *[8]byte) error {
|
|
if v, ok := val.(*invpkg.AMPInvoiceState); ok {
|
|
// We'll encode the AMP state as a series of KV pairs on the
|
|
// wire with a length prefix.
|
|
numRecords := uint64(len(*v))
|
|
|
|
// First, we'll write out the number of records as a var int.
|
|
if err := tlv.WriteVarInt(w, numRecords, buf); err != nil {
|
|
return err
|
|
}
|
|
|
|
// With that written out, we'll now encode the entries
|
|
// themselves as a sub-TLV record, which includes its _own_
|
|
// inner length prefix.
|
|
for setID, ampState := range *v {
|
|
setID := [32]byte(setID)
|
|
ampState := ampState
|
|
|
|
htlcState := uint8(ampState.State)
|
|
settleDate := ampState.SettleDate
|
|
settleDateBytes, err := settleDate.MarshalBinary()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
amtPaid := uint64(ampState.AmtPaid)
|
|
|
|
var ampStateTlvBytes bytes.Buffer
|
|
tlvStream, err := tlv.NewStream(
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSetIDType, &setID,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateHtlcStateType, &htlcState,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSettleIndexType,
|
|
&State.SettleIndex,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSettleDateType,
|
|
&settleDateBytes,
|
|
),
|
|
tlv.MakeDynamicRecord(
|
|
ampStateCircuitKeysType,
|
|
&State.InvoiceKeys,
|
|
func() uint64 {
|
|
// The record takes 8 bytes to
|
|
// encode the set of circuits,
|
|
// 8 bytes for the scid for the
|
|
// key, and 8 bytes for the HTLC
|
|
// index.
|
|
keys := ampState.InvoiceKeys
|
|
numKeys := uint64(len(keys))
|
|
size := tlv.VarIntSize(numKeys)
|
|
dataSize := (numKeys * 16)
|
|
|
|
return size + dataSize
|
|
},
|
|
encodeCircuitKeys, decodeCircuitKeys,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateAmtPaidType, &amtPaid,
|
|
),
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = tlvStream.Encode(&StateTlvBytes)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// We encode the record with a varint length followed by
|
|
// the _raw_ TLV bytes.
|
|
tlvLen := uint64(len(ampStateTlvBytes.Bytes()))
|
|
if err := tlv.WriteVarInt(w, tlvLen, buf); err != nil {
|
|
return err
|
|
}
|
|
|
|
_, err = w.Write(ampStateTlvBytes.Bytes())
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
return tlv.NewTypeForEncodingErr(val, "channeldb.AMPInvoiceState")
|
|
}
|
|
|
|
// ampStateDecoder is a custom TLV decoder for the AMPInvoiceState record.
|
|
func ampStateDecoder(r io.Reader, val interface{}, buf *[8]byte,
|
|
l uint64) error {
|
|
|
|
if v, ok := val.(*invpkg.AMPInvoiceState); ok {
|
|
// First, we'll decode the varint that encodes how many set IDs
|
|
// are encoded within the greater map.
|
|
numRecords, err := tlv.ReadVarInt(r, buf)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Now that we know how many records we'll need to read, we can
|
|
// iterate and read them all out in series.
|
|
for i := uint64(0); i < numRecords; i++ {
|
|
// Read out the varint that encodes the size of this
|
|
// inner TLV record.
|
|
stateRecordSize, err := tlv.ReadVarInt(r, buf)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Using this information, we'll create a new limited
|
|
// reader that'll return an EOF once the end has been
|
|
// reached so the stream stops consuming bytes.
|
|
innerTlvReader := io.LimitedReader{
|
|
R: r,
|
|
N: int64(stateRecordSize),
|
|
}
|
|
|
|
var (
|
|
setID [32]byte
|
|
htlcState uint8
|
|
settleIndex uint64
|
|
settleDateBytes []byte
|
|
invoiceKeys = make(
|
|
map[models.CircuitKey]struct{},
|
|
)
|
|
amtPaid uint64
|
|
)
|
|
tlvStream, err := tlv.NewStream(
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSetIDType, &setID,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateHtlcStateType, &htlcState,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSettleIndexType, &settleIndex,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateSettleDateType,
|
|
&settleDateBytes,
|
|
),
|
|
tlv.MakeDynamicRecord(
|
|
ampStateCircuitKeysType,
|
|
&invoiceKeys, nil,
|
|
encodeCircuitKeys, decodeCircuitKeys,
|
|
),
|
|
tlv.MakePrimitiveRecord(
|
|
ampStateAmtPaidType, &amtPaid,
|
|
),
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
err = tlvStream.Decode(&innerTlvReader)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
var settleDate time.Time
|
|
err = settleDate.UnmarshalBinary(settleDateBytes)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
(*v)[setID] = invpkg.InvoiceStateAMP{
|
|
State: invpkg.HtlcState(htlcState),
|
|
SettleIndex: settleIndex,
|
|
SettleDate: settleDate,
|
|
InvoiceKeys: invoiceKeys,
|
|
AmtPaid: lnwire.MilliSatoshi(amtPaid),
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
return tlv.NewTypeForDecodingErr(
|
|
val, "channeldb.AMPInvoiceState", l, l,
|
|
)
|
|
}
|
|
|
|
// deserializeHtlcs reads a list of invoice htlcs from a reader and returns it
|
|
// as a map.
|
|
func deserializeHtlcs(r io.Reader) (map[models.CircuitKey]*invpkg.InvoiceHTLC,
|
|
error) {
|
|
|
|
htlcs := make(map[models.CircuitKey]*invpkg.InvoiceHTLC)
|
|
for {
|
|
// Read the length of the tlv stream for this htlc.
|
|
var streamLen int64
|
|
if err := binary.Read(r, byteOrder, &streamLen); err != nil {
|
|
if err == io.EOF {
|
|
break
|
|
}
|
|
|
|
return nil, err
|
|
}
|
|
|
|
// Limit the reader so that it stops at the end of this htlc's
|
|
// stream.
|
|
htlcReader := io.LimitReader(r, streamLen)
|
|
|
|
// Decode the contents into the htlc fields.
|
|
var (
|
|
htlc invpkg.InvoiceHTLC
|
|
key models.CircuitKey
|
|
chanID uint64
|
|
state uint8
|
|
acceptTime, resolveTime uint64
|
|
amt, mppTotalAmt uint64
|
|
amp = &record.AMP{}
|
|
hash32 = &[32]byte{}
|
|
preimage32 = &[32]byte{}
|
|
)
|
|
tlvStream, err := tlv.NewStream(
|
|
tlv.MakePrimitiveRecord(chanIDType, &chanID),
|
|
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
|
|
tlv.MakePrimitiveRecord(amtType, &amt),
|
|
tlv.MakePrimitiveRecord(
|
|
acceptHeightType, &htlc.AcceptHeight,
|
|
),
|
|
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
|
|
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
|
|
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
|
|
tlv.MakePrimitiveRecord(htlcStateType, &state),
|
|
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
|
|
tlv.MakeDynamicRecord(
|
|
htlcAMPType, amp, amp.PayloadSize,
|
|
record.AMPEncoder, record.AMPDecoder,
|
|
),
|
|
tlv.MakePrimitiveRecord(htlcHashType, hash32),
|
|
tlv.MakePrimitiveRecord(htlcPreimageType, preimage32),
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
parsedTypes, err := tlvStream.DecodeWithParsedTypes(htlcReader)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if _, ok := parsedTypes[htlcAMPType]; !ok {
|
|
amp = nil
|
|
}
|
|
|
|
var preimage *lntypes.Preimage
|
|
if _, ok := parsedTypes[htlcPreimageType]; ok {
|
|
pimg := lntypes.Preimage(*preimage32)
|
|
preimage = &pimg
|
|
}
|
|
|
|
var hash *lntypes.Hash
|
|
if _, ok := parsedTypes[htlcHashType]; ok {
|
|
h := lntypes.Hash(*hash32)
|
|
hash = &h
|
|
}
|
|
|
|
key.ChanID = lnwire.NewShortChanIDFromInt(chanID)
|
|
htlc.AcceptTime = getNanoTime(acceptTime)
|
|
htlc.ResolveTime = getNanoTime(resolveTime)
|
|
htlc.State = invpkg.HtlcState(state)
|
|
htlc.Amt = lnwire.MilliSatoshi(amt)
|
|
htlc.MppTotalAmt = lnwire.MilliSatoshi(mppTotalAmt)
|
|
if amp != nil && hash != nil {
|
|
htlc.AMP = &invpkg.InvoiceHtlcAMPData{
|
|
Record: *amp,
|
|
Hash: *hash,
|
|
Preimage: preimage,
|
|
}
|
|
}
|
|
|
|
// Reconstruct the custom records fields from the parsed types
|
|
// map return from the tlv parser.
|
|
htlc.CustomRecords = hop.NewCustomRecords(parsedTypes)
|
|
|
|
htlcs[key] = &htlc
|
|
}
|
|
|
|
return htlcs, nil
|
|
}
|
|
|
|
// invoiceSetIDKeyLen is the length of the key that's used to store the
|
|
// individual HTLCs prefixed by their ID along side the main invoice within the
|
|
// invoiceBytes. We use 4 bytes for the invoice number, and 32 bytes for the
|
|
// set ID.
|
|
const invoiceSetIDKeyLen = 4 + 32
|
|
|
|
// makeInvoiceSetIDKey returns the prefix key, based on the set ID and invoice
|
|
// number where the HTLCs for this setID will be stored udner.
|
|
func makeInvoiceSetIDKey(invoiceNum, setID []byte) [invoiceSetIDKeyLen]byte {
|
|
// Construct the prefix key we need to obtain the invoice information:
|
|
// invoiceNum || setID.
|
|
var invoiceSetIDKey [invoiceSetIDKeyLen]byte
|
|
copy(invoiceSetIDKey[:], invoiceNum)
|
|
copy(invoiceSetIDKey[len(invoiceNum):], setID)
|
|
|
|
return invoiceSetIDKey
|
|
}
|
|
|
|
// delAMPInvoices attempts to delete all the "sub" invoices associated with a
|
|
// greater AMP invoices. We do this by deleting the set of keys that share the
|
|
// invoice number as a prefix.
|
|
func delAMPInvoices(invoiceNum []byte, invoiceBucket kvdb.RwBucket) error {
|
|
// Since it isn't safe to delete using an active cursor, we'll use the
|
|
// cursor simply to collect the set of keys we need to delete, _then_
|
|
// delete them in another pass.
|
|
var keysToDel [][]byte
|
|
err := forEachAMPInvoice(
|
|
invoiceBucket, invoiceNum,
|
|
func(cursorKey, v []byte) error {
|
|
keysToDel = append(keysToDel, cursorKey)
|
|
return nil
|
|
},
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// In this next phase, we'll then delete all the relevant invoices.
|
|
for _, keyToDel := range keysToDel {
|
|
if err := invoiceBucket.Delete(keyToDel); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// delAMPSettleIndex removes all the entries in the settle index associated
|
|
// with a given AMP invoice.
|
|
func delAMPSettleIndex(invoiceNum []byte, invoices,
|
|
settleIndex kvdb.RwBucket) error {
|
|
|
|
// First, we need to grab the AMP invoice state to see if there's
|
|
// anything that we even need to delete.
|
|
ampState, err := fetchInvoiceStateAMP(invoiceNum, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// If there's no AMP state at all (non-AMP invoice), then we can return
|
|
// early.
|
|
if len(ampState) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// Otherwise, we'll need to iterate and delete each settle index within
|
|
// the set of returned entries.
|
|
var settleIndexKey [8]byte
|
|
for _, subState := range ampState {
|
|
byteOrder.PutUint64(
|
|
settleIndexKey[:], subState.SettleIndex,
|
|
)
|
|
|
|
if err := settleIndex.Delete(settleIndexKey[:]); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// DeleteCanceledInvoices deletes all canceled invoices from the database.
|
|
func (d *DB) DeleteCanceledInvoices(_ context.Context) error {
|
|
return kvdb.Update(d, func(tx kvdb.RwTx) error {
|
|
invoices := tx.ReadWriteBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return nil
|
|
}
|
|
|
|
invoiceIndex := invoices.NestedReadWriteBucket(
|
|
invoiceIndexBucket,
|
|
)
|
|
if invoiceIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
invoiceAddIndex := invoices.NestedReadWriteBucket(
|
|
addIndexBucket,
|
|
)
|
|
if invoiceAddIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
|
|
|
|
return invoiceIndex.ForEach(func(k, v []byte) error {
|
|
// Skip the special numInvoicesKey as that does not
|
|
// point to a valid invoice.
|
|
if bytes.Equal(k, numInvoicesKey) {
|
|
return nil
|
|
}
|
|
|
|
// Skip sub-buckets.
|
|
if v == nil {
|
|
return nil
|
|
}
|
|
|
|
invoice, err := fetchInvoice(v, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if invoice.State != invpkg.ContractCanceled {
|
|
return nil
|
|
}
|
|
|
|
// Delete the payment hash from the invoice index.
|
|
err = invoiceIndex.Delete(k)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Delete payment address index reference if there's a
|
|
// valid payment address.
|
|
if invoice.Terms.PaymentAddr != invpkg.BlankPayAddr {
|
|
// To ensure consistency check that the already
|
|
// fetched invoice key matches the one in the
|
|
// payment address index.
|
|
key := payAddrIndex.Get(
|
|
invoice.Terms.PaymentAddr[:],
|
|
)
|
|
if bytes.Equal(key, k) {
|
|
// Delete from the payment address
|
|
// index.
|
|
if err := payAddrIndex.Delete(
|
|
invoice.Terms.PaymentAddr[:],
|
|
); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove from the add index.
|
|
var addIndexKey [8]byte
|
|
byteOrder.PutUint64(addIndexKey[:], invoice.AddIndex)
|
|
err = invoiceAddIndex.Delete(addIndexKey[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Note that we don't need to delete the invoice from
|
|
// the settle index as it is not added until the
|
|
// invoice is settled.
|
|
|
|
// Now remove all sub invoices.
|
|
err = delAMPInvoices(k, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Finally remove the serialized invoice from the
|
|
// invoice bucket.
|
|
return invoices.Delete(k)
|
|
})
|
|
}, func() {})
|
|
}
|
|
|
|
// DeleteInvoice attempts to delete the passed invoices from the database in
|
|
// one transaction. The passed delete references hold all keys required to
|
|
// delete the invoices without also needing to deserialize them.
|
|
func (d *DB) DeleteInvoice(_ context.Context,
|
|
invoicesToDelete []invpkg.InvoiceDeleteRef) error {
|
|
|
|
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
|
|
invoices := tx.ReadWriteBucket(invoiceBucket)
|
|
if invoices == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
invoiceIndex := invoices.NestedReadWriteBucket(
|
|
invoiceIndexBucket,
|
|
)
|
|
if invoiceIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
invoiceAddIndex := invoices.NestedReadWriteBucket(
|
|
addIndexBucket,
|
|
)
|
|
if invoiceAddIndex == nil {
|
|
return invpkg.ErrNoInvoicesCreated
|
|
}
|
|
|
|
// settleIndex can be nil, as the bucket is created lazily
|
|
// when the first invoice is settled.
|
|
settleIndex := invoices.NestedReadWriteBucket(settleIndexBucket)
|
|
|
|
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
|
|
|
|
for _, ref := range invoicesToDelete {
|
|
// Fetch the invoice key for using it to check for
|
|
// consistency and also to delete from the invoice
|
|
// index.
|
|
invoiceKey := invoiceIndex.Get(ref.PayHash[:])
|
|
if invoiceKey == nil {
|
|
return invpkg.ErrInvoiceNotFound
|
|
}
|
|
|
|
err := invoiceIndex.Delete(ref.PayHash[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Delete payment address index reference if there's a
|
|
// valid payment address passed.
|
|
if ref.PayAddr != nil {
|
|
// To ensure consistency check that the already
|
|
// fetched invoice key matches the one in the
|
|
// payment address index.
|
|
key := payAddrIndex.Get(ref.PayAddr[:])
|
|
if bytes.Equal(key, invoiceKey) {
|
|
// Delete from the payment address
|
|
// index. Note that since the payment
|
|
// address index has been introduced
|
|
// with an empty migration it may be
|
|
// possible that the index doesn't have
|
|
// an entry for this invoice.
|
|
// ref: https://github.com/lightningnetwork/lnd/pull/4285/commits/cbf71b5452fa1d3036a43309e490787c5f7f08dc#r426368127
|
|
if err := payAddrIndex.Delete(
|
|
ref.PayAddr[:],
|
|
); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
}
|
|
|
|
var addIndexKey [8]byte
|
|
byteOrder.PutUint64(addIndexKey[:], ref.AddIndex)
|
|
|
|
// To ensure consistency check that the key stored in
|
|
// the add index also matches the previously fetched
|
|
// invoice key.
|
|
key := invoiceAddIndex.Get(addIndexKey[:])
|
|
if !bytes.Equal(key, invoiceKey) {
|
|
return fmt.Errorf("unknown invoice " +
|
|
"in add index")
|
|
}
|
|
|
|
// Remove from the add index.
|
|
err = invoiceAddIndex.Delete(addIndexKey[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Remove from the settle index if available and
|
|
// if the invoice is settled.
|
|
if settleIndex != nil && ref.SettleIndex > 0 {
|
|
var settleIndexKey [8]byte
|
|
byteOrder.PutUint64(
|
|
settleIndexKey[:], ref.SettleIndex,
|
|
)
|
|
|
|
// To ensure consistency check that the already
|
|
// fetched invoice key matches the one in the
|
|
// settle index
|
|
key := settleIndex.Get(settleIndexKey[:])
|
|
if !bytes.Equal(key, invoiceKey) {
|
|
return fmt.Errorf("unknown invoice " +
|
|
"in settle index")
|
|
}
|
|
|
|
err = settleIndex.Delete(settleIndexKey[:])
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
// In addition to deleting the main invoice state, if
|
|
// this is an AMP invoice, then we'll also need to
|
|
// delete the set HTLC set stored as a key prefix. For
|
|
// non-AMP invoices, this'll be a noop.
|
|
err = delAMPSettleIndex(
|
|
invoiceKey, invoices, settleIndex,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
err = delAMPInvoices(invoiceKey, invoices)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Finally remove the serialized invoice from the
|
|
// invoice bucket.
|
|
err = invoices.Delete(invoiceKey)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}, func() {})
|
|
|
|
return err
|
|
}
|