lnd/kvdb/etcd/stm.go
Andras Banki-Horvath 2c8d1c878e
kvdb: make etcd calls timeout to ensure liveness
Previously our RPC calls to etcd would hang even in the case of properly
set dial timeouts and even if there was a network partition. To ensure
liveness we need to make sure that calls fail correctly in case of
system failure. To fix this we add a default timeout of 30 seconds to
each etcd RPC call.
2024-08-01 19:04:10 +02:00

1211 lines
29 KiB
Go

//go:build kvdb_etcd
// +build kvdb_etcd
package etcd
import (
"context"
"fmt"
"math"
"strings"
"time"
"github.com/google/btree"
pb "go.etcd.io/etcd/api/v3/etcdserverpb"
v3 "go.etcd.io/etcd/client/v3"
)
const (
// rpcTimeout is the timeout for all RPC calls to etcd. It is set to 30
// seconds to avoid blocking the server for too long but give reasonable
// time for etcd to respond. If any operations would take longer than 30
// seconds that generally means there's a problem with the etcd server
// or the network resulting in degraded performance in which case we
// want LND to fail fast. Due to the underlying gRPC implementation in
// etcd calls without a timeout can hang indefinitely even in the case
// of network partitions or other critical failures.
rpcTimeout = time.Second * 30
)
type CommitStats struct {
Rset int
Wset int
Retries int
}
// KV stores a key/value pair.
type KV struct {
key string
val string
}
// STM is an interface for software transactional memory.
// All calls that return error will do so only if STM is manually handled and
// abort the apply closure otherwise. In both case the returned error is a
// DatabaseError.
type STM interface {
// Get returns the value for a key and inserts the key in the txn's read
// set. Returns nil if there's no matching key, or the key is empty.
Get(key string) ([]byte, error)
// Put adds a value for a key to the txn's write set.
Put(key, val string)
// Del adds a delete operation for the key to the txn's write set.
Del(key string)
// First returns the first k/v that begins with prefix or nil if there's
// no such k/v pair. If the key is found it is inserted to the txn's
// read set. Returns nil if there's no match.
First(prefix string) (*KV, error)
// Last returns the last k/v that begins with prefix or nil if there's
// no such k/v pair. If the key is found it is inserted to the txn's
// read set. Returns nil if there's no match.
Last(prefix string) (*KV, error)
// Prev returns the previous k/v before key that begins with prefix or
// nil if there's no such k/v. If the key is found it is inserted to the
// read set. Returns nil if there's no match.
Prev(prefix, key string) (*KV, error)
// Next returns the next k/v after key that begins with prefix or nil
// if there's no such k/v. If the key is found it is inserted to the
// txn's read set. Returns nil if there's no match.
Next(prefix, key string) (*KV, error)
// Seek will return k/v at key beginning with prefix. If the key doesn't
// exists Seek will return the next k/v after key beginning with prefix.
// If a matching k/v is found it is inserted to the txn's read set. Returns
// nil if there's no match.
Seek(prefix, key string) (*KV, error)
// OnCommit calls the passed callback func upon commit.
OnCommit(func())
// Commit attempts to apply the txn's changes to the server.
// Commit may return CommitError if transaction is outdated and needs retry.
Commit() error
// Rollback entries the read and write sets such that a subsequent commit
// won't alter the database.
Rollback()
// Prefetch prefetches the passed keys and prefixes. For prefixes it'll
// fetch the whole range.
Prefetch(keys []string, prefix []string)
// FetchRangePaginatedRaw will fetch the range with the passed prefix up
// to the passed limit per page.
FetchRangePaginatedRaw(prefix string, limit int64,
cb func(kv KV) error) error
}
// CommitError is used to check if there was an error
// due to stale data in the transaction.
type CommitError struct{}
// Error returns a static string for CommitError for
// debugging/logging purposes.
func (e CommitError) Error() string {
return "commit failed"
}
// DatabaseError is used to wrap errors that are not
// related to stale data in the transaction.
type DatabaseError struct {
msg string
err error
}
// Unwrap returns the wrapped error in a DatabaseError.
func (e *DatabaseError) Unwrap() error {
return e.err
}
// Error simply converts DatabaseError to a string that
// includes both the message and the wrapped error.
func (e DatabaseError) Error() string {
return fmt.Sprintf("etcd error: %v - %v", e.msg, e.err)
}
// stmGet is the result of a read operation, a value and the mod revision of the
// key/value.
type stmGet struct {
KV
rev int64
}
// Less implements less operator for btree.BTree.
func (c *stmGet) Less(than btree.Item) bool {
return c.key < than.(*stmGet).key
}
// readSet stores all reads done in an STM.
type readSet struct {
// tree stores the items in the read set.
tree *btree.BTree
// fullRanges stores full range prefixes.
fullRanges map[string]struct{}
}
// stmPut stores a value and an operation (put/delete).
type stmPut struct {
val string
op v3.Op
}
// writeSet stroes all writes done in an STM.
type writeSet map[string]stmPut
// stm implements repeatable-read software transactional memory
// over etcd.
type stm struct {
// client is an etcd client handling all RPC communications
// to the etcd instance/cluster.
client *v3.Client
// manual is set to true for manual transactions which don't
// execute in the STM run loop.
manual bool
// txQueue is lightweight contention manager, which is used to detect
// transaction conflicts and reduce retries.
txQueue *commitQueue
// options stores optional settings passed by the user.
options *STMOptions
// rset holds read key values and revisions.
rset *readSet
// wset holds overwritten keys and their values.
wset writeSet
// getOpts are the opts used for gets.
getOpts []v3.OpOption
// revision stores the snapshot revision after first read.
revision int64
// onCommit gets called upon commit.
onCommit func()
// callCount tracks the number of times we called into etcd.
callCount int
}
// STMOptions can be used to pass optional settings
// when an STM is created.
type STMOptions struct {
// ctx holds an externally provided abort context.
ctx context.Context
commitStatsCallback func(bool, CommitStats)
}
// STMOptionFunc is a function that updates the passed STMOptions.
type STMOptionFunc func(*STMOptions)
// WithAbortContext specifies the context for permanently
// aborting the transaction.
func WithAbortContext(ctx context.Context) STMOptionFunc {
return func(so *STMOptions) {
so.ctx = ctx
}
}
func WithCommitStatsCallback(cb func(bool, CommitStats)) STMOptionFunc {
return func(so *STMOptions) {
so.commitStatsCallback = cb
}
}
// RunSTM runs the apply function by creating an STM using serializable snapshot
// isolation, passing it to the apply and handling commit errors and retries.
func RunSTM(cli *v3.Client, apply func(STM) error, txQueue *commitQueue,
so ...STMOptionFunc) (int, error) {
stm := makeSTM(cli, false, txQueue, so...)
err := runSTM(stm, apply)
return stm.callCount, err
}
// NewSTM creates a new STM instance, using serializable snapshot isolation.
func NewSTM(cli *v3.Client, txQueue *commitQueue, so ...STMOptionFunc) STM {
return makeSTM(cli, true, txQueue, so...)
}
// makeSTM is the actual constructor of the stm. It first apply all passed
// options then creates the stm object and resets it before returning.
func makeSTM(cli *v3.Client, manual bool, txQueue *commitQueue,
so ...STMOptionFunc) *stm {
opts := &STMOptions{
ctx: cli.Ctx(),
}
// Apply all functional options.
for _, fo := range so {
fo(opts)
}
s := &stm{
client: cli,
manual: manual,
txQueue: txQueue,
options: opts,
rset: newReadSet(),
}
// Reset read and write set.
s.rollback(true)
return s
}
// runSTM implements the run loop of the STM, running the apply func, catching
// errors and handling commit. The loop will quit on every error except
// CommitError which is used to indicate a necessary retry.
func runSTM(s *stm, apply func(STM) error) error {
var (
retries int
stats CommitStats
executeErr error
)
done := make(chan struct{})
execute := func() {
defer close(done)
for {
select {
// Check if the STM is aborted and break the retry loop
// if it is.
case <-s.options.ctx.Done():
executeErr = fmt.Errorf("aborted")
return
default:
}
stats, executeErr = s.commit()
// Re-apply only upon commit error (meaning the
// keys were changed).
if _, ok := executeErr.(CommitError); !ok {
// Anything that's not a CommitError
// aborts the transaction.
return
}
// Rollback the write set before trying to re-apply.
// Upon commit we retrieved the latest version of all
// previously fetched keys and ranges so we don't need
// to rollback the read set.
s.rollback(false)
retries++
// Re-apply the transaction closure.
if executeErr = apply(s); executeErr != nil {
return
}
}
}
// Run the tx closure to construct the read and write sets.
// Also we expect that if there are no conflicting transactions
// in the queue, then we only run apply once.
if preApplyErr := apply(s); preApplyErr != nil {
return preApplyErr
}
// Make a copy of the read/write set keys here. The reason why we need
// to do this is because subsequent applies may change (shrink) these
// sets and so when we decrease reference counts in the commit queue in
// done(...) we'd potentially miss removing references which would
// result in queueing up transactions and contending DB access.
// Copying these strings is cheap due to Go's immutable string which is
// always a reference.
rkeys := make([]string, s.rset.tree.Len())
wkeys := make([]string, len(s.wset))
i := 0
s.rset.tree.Ascend(func(item btree.Item) bool {
rkeys[i] = item.(*stmGet).key
i++
return true
})
i = 0
for key := range s.wset {
wkeys[i] = key
i++
}
// Queue up the transaction for execution.
s.txQueue.Add(execute, rkeys, wkeys)
// Wait for the transaction to execute, or break if aborted.
select {
case <-done:
case <-s.options.ctx.Done():
return context.Canceled
}
if s.options.commitStatsCallback != nil {
stats.Retries = retries
s.options.commitStatsCallback(executeErr == nil, stats)
}
return executeErr
}
func newReadSet() *readSet {
return &readSet{
tree: btree.New(5),
fullRanges: make(map[string]struct{}),
}
}
// add inserts key/values to to read set.
func (rs *readSet) add(responses []*pb.ResponseOp) {
for _, resp := range responses {
getResp := resp.GetResponseRange()
for _, kv := range getResp.Kvs {
rs.addItem(
string(kv.Key), string(kv.Value), kv.ModRevision,
)
}
}
}
// addFullRange adds all full ranges to the read set.
func (rs *readSet) addFullRange(prefixes []string, responses []*pb.ResponseOp) {
for i, resp := range responses {
getResp := resp.GetResponseRange()
for _, kv := range getResp.Kvs {
rs.addItem(
string(kv.Key), string(kv.Value), kv.ModRevision,
)
}
rs.fullRanges[prefixes[i]] = struct{}{}
}
}
// presetItem presets a key to zero revision if not already present in the read
// set.
func (rs *readSet) presetItem(key string) {
item := &stmGet{
KV: KV{
key: key,
},
rev: 0,
}
if !rs.tree.Has(item) {
rs.tree.ReplaceOrInsert(item)
}
}
// addItem adds a single new key/value to the read set (if not already present).
func (rs *readSet) addItem(key, val string, modRevision int64) {
item := &stmGet{
KV: KV{
key: key,
val: val,
},
rev: modRevision,
}
rs.tree.ReplaceOrInsert(item)
}
// hasFullRange checks if the read set has a full range prefetched.
func (rs *readSet) hasFullRange(prefix string) bool {
_, ok := rs.fullRanges[prefix]
return ok
}
// next returns the pre-fetched next value of the prefix. If matchKey is true,
// it'll simply return the key/value that matches the passed key.
func (rs *readSet) next(prefix, key string, matchKey bool) (*stmGet, bool) {
pivot := &stmGet{
KV: KV{
key: key,
},
}
var result *stmGet
rs.tree.AscendGreaterOrEqual(
pivot,
func(item btree.Item) bool {
next := item.(*stmGet)
if (!matchKey && next.key == key) || next.rev == 0 {
return true
}
if strings.HasPrefix(next.key, prefix) {
result = next
}
return false
},
)
return result, result != nil
}
// prev returns the pre-fetched prev key/value of the prefix from key.
func (rs *readSet) prev(prefix, key string) (*stmGet, bool) {
pivot := &stmGet{
KV: KV{
key: key,
},
}
var result *stmGet
rs.tree.DescendLessOrEqual(
pivot, func(item btree.Item) bool {
prev := item.(*stmGet)
if prev.key == key || prev.rev == 0 {
return true
}
if strings.HasPrefix(prev.key, prefix) {
result = prev
}
return false
},
)
return result, result != nil
}
// last returns the last key/value of the passed range (if prefetched).
func (rs *readSet) last(prefix string) (*stmGet, bool) {
// We create an artificial key here that is just one step away from the
// prefix. This way when we try to get the first item with our prefix
// before this newly crafted key we'll make sure it's the last element
// of our range.
key := []byte(prefix)
key[len(key)-1] += 1
return rs.prev(prefix, string(key))
}
// clear completely clears the readset.
func (rs *readSet) clear() {
rs.tree.Clear(false)
rs.fullRanges = make(map[string]struct{})
}
// getItem returns the matching key/value from the readset.
func (rs *readSet) getItem(key string) (*stmGet, bool) {
pivot := &stmGet{
KV: KV{
key: key,
},
rev: 0,
}
item := rs.tree.Get(pivot)
if item != nil {
return item.(*stmGet), true
}
// It's possible that although this key isn't in the read set, we
// fetched a full range the key is prefixed with. In this case we'll
// insert the key with zero revision.
for prefix := range rs.fullRanges {
if strings.HasPrefix(key, prefix) {
rs.tree.ReplaceOrInsert(pivot)
return pivot, true
}
}
return nil, false
}
// prefetchSet is a helper to create an op slice of all OpGet's that represent
// fetched keys appended with a slice of all OpGet's representing all prefetched
// full ranges.
func (rs *readSet) prefetchSet() []v3.Op {
ops := make([]v3.Op, 0, rs.tree.Len())
rs.tree.Ascend(func(item btree.Item) bool {
key := item.(*stmGet).key
for prefix := range rs.fullRanges {
// Do not add the key if it has been prefetched in a
// full range.
if strings.HasPrefix(key, prefix) {
return true
}
}
ops = append(ops, v3.OpGet(key))
return true
})
for prefix := range rs.fullRanges {
ops = append(ops, v3.OpGet(prefix, v3.WithPrefix()))
}
return ops
}
// getFullRanges returns all prefixes that we prefetched.
func (rs *readSet) getFullRanges() []string {
prefixes := make([]string, 0, len(rs.fullRanges))
for prefix := range rs.fullRanges {
prefixes = append(prefixes, prefix)
}
return prefixes
}
// cmps returns a compare list which will serve as a precondition testing that
// the values in the read set didn't change.
func (rs *readSet) cmps() []v3.Cmp {
cmps := make([]v3.Cmp, 0, rs.tree.Len())
rs.tree.Ascend(func(item btree.Item) bool {
get := item.(*stmGet)
cmps = append(
cmps, v3.Compare(v3.ModRevision(get.key), "=", get.rev),
)
return true
})
return cmps
}
// cmps returns a cmp list testing no writes have happened past rev.
func (ws writeSet) cmps(rev int64) []v3.Cmp {
cmps := make([]v3.Cmp, 0, len(ws))
for key := range ws {
cmps = append(cmps, v3.Compare(v3.ModRevision(key), "<", rev))
}
return cmps
}
// puts is the list of ops for all pending writes.
func (ws writeSet) puts() []v3.Op {
puts := make([]v3.Op, 0, len(ws))
for _, v := range ws {
puts = append(puts, v.op)
}
return puts
}
// FetchRangePaginatedRaw will fetch the range with the passed prefix up to the
// passed limit per page.
func (s *stm) FetchRangePaginatedRaw(prefix string, limit int64,
cb func(kv KV) error) error {
s.callCount++
opts := []v3.OpOption{
v3.WithSort(v3.SortByKey, v3.SortAscend),
v3.WithRange(v3.GetPrefixRangeEnd(prefix)),
v3.WithLimit(limit),
}
key := prefix
for {
timeoutCtx, cancel := context.WithTimeout(
s.options.ctx, rpcTimeout,
)
defer cancel()
resp, err := s.client.Get(
timeoutCtx, key, append(opts, s.getOpts...)...,
)
if err != nil {
return DatabaseError{
msg: "stm.fetch() failed",
err: err,
}
}
// Fill the read set with key/values returned.
for _, kv := range resp.Kvs {
err := cb(KV{string(kv.Key), string(kv.Value)})
if err != nil {
return err
}
}
// We've reached the range end.
if !resp.More {
break
}
// Continue from the page end + "\x00".
key = string(resp.Kvs[len(resp.Kvs)-1].Key) + "\x00"
}
return nil
}
// fetch is a helper to fetch key/value given options. If a value is returned
// then fetch will try to fix the STM's snapshot revision (if not already set).
// We'll also cache the returned key/value in the read set.
func (s *stm) fetch(key string, opts ...v3.OpOption) ([]KV, error) {
s.callCount++
timeoutCtx, cancel := context.WithTimeout(s.options.ctx, rpcTimeout)
defer cancel()
resp, err := s.client.Get(
timeoutCtx, key, append(opts, s.getOpts...)...,
)
if err != nil {
return nil, DatabaseError{
msg: "stm.fetch() failed",
err: err,
}
}
// Set revision and serializable options upon first fetch
// for any subsequent fetches.
if s.getOpts == nil {
s.revision = resp.Header.Revision
s.getOpts = []v3.OpOption{
v3.WithRev(s.revision),
v3.WithSerializable(),
}
}
if len(resp.Kvs) == 0 {
// Add assertion to the read set which will extend our commit
// constraint such that the commit will fail if the key is
// present in the database.
s.rset.addItem(key, "", 0)
}
var result []KV
// Fill the read set with key/values returned.
for _, kv := range resp.Kvs {
key := string(kv.Key)
val := string(kv.Value)
// Add to read set.
s.rset.addItem(key, val, kv.ModRevision)
result = append(result, KV{key, val})
}
return result, nil
}
// Get returns the value for key. If there's no such
// key/value in the database or the passed key is empty
// Get will return nil.
func (s *stm) Get(key string) ([]byte, error) {
if key == "" {
return nil, nil
}
// Return freshly written value if present.
if put, ok := s.wset[key]; ok {
if put.op.IsDelete() {
return nil, nil
}
return []byte(put.val), nil
}
// Return value if alread in read set.
if getValue, ok := s.rset.getItem(key); ok {
// Return the value if the rset contains an existing key.
if getValue.rev != 0 {
return []byte(getValue.val), nil
} else {
return nil, nil
}
}
// Fetch and return value.
kvs, err := s.fetch(key)
if err != nil {
return nil, err
}
if len(kvs) > 0 {
return []byte(kvs[0].val), nil
}
// Return empty result if key not in DB.
return nil, nil
}
// First returns the first key/value matching prefix. If there's no key starting
// with prefix, Last will return nil.
func (s *stm) First(prefix string) (*KV, error) {
return s.next(prefix, prefix, true)
}
// Last returns the last key/value with prefix. If there's no key starting with
// prefix, Last will return nil.
func (s *stm) Last(prefix string) (*KV, error) {
var (
kv KV
found bool
)
if s.rset.hasFullRange(prefix) {
if item, ok := s.rset.last(prefix); ok {
kv = item.KV
found = true
}
} else {
// As we don't know the full range, fetch the last
// key/value with this prefix first.
resp, err := s.fetch(prefix, v3.WithLastKey()...)
if err != nil {
return nil, err
}
if len(resp) > 0 {
kv = resp[0]
found = true
}
}
// Now make sure there's nothing in the write set
// that is a better match, meaning it has the same
// prefix but is greater or equal than the current
// best candidate. Note that this is not efficient
// when the write set is large!
for k, put := range s.wset {
if put.op.IsDelete() {
continue
}
if strings.HasPrefix(k, prefix) && k >= kv.key {
kv.key = k
kv.val = put.val
found = true
}
}
if found {
return &kv, nil
}
return nil, nil
}
// Prev returns the prior key/value before key (with prefix). If there's no such
// key Prev will return nil.
func (s *stm) Prev(prefix, startKey string) (*KV, error) {
var kv, result KV
fetchKey := startKey
matchFound := false
for {
if s.rset.hasFullRange(prefix) {
if item, ok := s.rset.prev(prefix, fetchKey); ok {
kv = item.KV
} else {
break
}
} else {
// Ask etcd to retrieve one key that is a
// match in descending order from the passed key.
opts := []v3.OpOption{
v3.WithRange(fetchKey),
v3.WithSort(v3.SortByKey, v3.SortDescend),
v3.WithLimit(1),
}
kvs, err := s.fetch(prefix, opts...)
if err != nil {
return nil, err
}
if len(kvs) == 0 {
break
}
kv = kvs[0]
}
// WithRange and WithPrefix can't be used
// together, so check prefix here. If the
// returned key no longer has the prefix,
// then break out.
if !strings.HasPrefix(kv.key, prefix) {
break
}
// Fetch the prior key if this is deleted.
if put, ok := s.wset[kv.key]; ok && put.op.IsDelete() {
fetchKey = kv.key
continue
}
result = kv
matchFound = true
break
}
// Closure holding all checks to find a possibly
// better match.
matches := func(key string) bool {
if !strings.HasPrefix(key, prefix) {
return false
}
if !matchFound {
return key < startKey
}
// matchFound == true
return result.key <= key && key < startKey
}
// Now go trough the write set and check
// if there's an even better match.
for k, put := range s.wset {
if !put.op.IsDelete() && matches(k) {
result.key = k
result.val = put.val
matchFound = true
}
}
if !matchFound {
return nil, nil
}
return &result, nil
}
// Next returns the next key/value after key (with prefix). If there's no such
// key Next will return nil.
func (s *stm) Next(prefix string, key string) (*KV, error) {
return s.next(prefix, key, false)
}
// Seek "seeks" to the key (with prefix). If the key doesn't exists it'll get
// the next key with the same prefix. If no key fills this criteria, Seek will
// return nil.
func (s *stm) Seek(prefix, key string) (*KV, error) {
return s.next(prefix, key, true)
}
// next will try to retrieve the next match that has prefix and starts with the
// passed startKey. If includeStartKey is set to true, it'll return the value
// of startKey (essentially implementing seek).
func (s *stm) next(prefix, startKey string, includeStartKey bool) (*KV, error) {
var kv, result KV
fetchKey := startKey
firstFetch := true
matchFound := false
for {
if s.rset.hasFullRange(prefix) {
matchKey := includeStartKey && firstFetch
firstFetch = false
if item, ok := s.rset.next(
prefix, fetchKey, matchKey,
); ok {
kv = item.KV
} else {
break
}
} else {
// Ask etcd to retrieve one key that is a
// match in ascending order from the passed key.
opts := []v3.OpOption{
v3.WithFromKey(),
v3.WithSort(v3.SortByKey, v3.SortAscend),
v3.WithLimit(1),
}
// By default we include the start key too
// if it is a full match.
if includeStartKey && firstFetch {
firstFetch = false
} else {
// If we'd like to retrieve the first key
// after the start key.
fetchKey += "\x00"
}
kvs, err := s.fetch(fetchKey, opts...)
if err != nil {
return nil, err
}
if len(kvs) == 0 {
break
}
kv = kvs[0]
// WithRange and WithPrefix can't be used
// together, so check prefix here. If the
// returned key no longer has the prefix,
// then break the fetch loop.
if !strings.HasPrefix(kv.key, prefix) {
break
}
}
// Move on to fetch starting with the next
// key if this one is marked deleted.
if put, ok := s.wset[kv.key]; ok && put.op.IsDelete() {
fetchKey = kv.key
continue
}
result = kv
matchFound = true
break
}
// Closure holding all checks to find a possibly
// better match.
matches := func(k string) bool {
if !strings.HasPrefix(k, prefix) {
return false
}
if includeStartKey && !matchFound {
return startKey <= k
}
if !includeStartKey && !matchFound {
return startKey < k
}
if includeStartKey && matchFound {
return startKey <= k && k <= result.key
}
// !includeStartKey && matchFound.
return startKey < k && k <= result.key
}
// Now go trough the write set and check
// if there's an even better match.
for k, put := range s.wset {
if !put.op.IsDelete() && matches(k) {
result.key = k
result.val = put.val
matchFound = true
}
}
if !matchFound {
return nil, nil
}
return &result, nil
}
// Put sets the value of the passed key. The actual put will happen upon commit.
func (s *stm) Put(key, val string) {
s.wset[key] = stmPut{
val: val,
op: v3.OpPut(key, val),
}
}
// Del marks a key as deleted. The actual delete will happen upon commit.
func (s *stm) Del(key string) {
s.wset[key] = stmPut{
val: "",
op: v3.OpDelete(key),
}
}
// OnCommit sets the callback that is called upon committing the STM
// transaction.
func (s *stm) OnCommit(cb func()) {
s.onCommit = cb
}
// Prefetch will prefetch the passed keys and prefixes in one transaction.
// Keys and prefixes that we already have will be skipped.
func (s *stm) Prefetch(keys []string, prefixes []string) {
fetchKeys := make([]string, 0, len(keys))
for _, key := range keys {
if _, ok := s.rset.getItem(key); !ok {
fetchKeys = append(fetchKeys, key)
}
}
fetchPrefixes := make([]string, 0, len(prefixes))
for _, prefix := range prefixes {
if s.rset.hasFullRange(prefix) {
continue
}
fetchPrefixes = append(fetchPrefixes, prefix)
}
if len(fetchKeys) == 0 && len(fetchPrefixes) == 0 {
return
}
prefixOpts := append(
[]v3.OpOption{v3.WithPrefix()}, s.getOpts...,
)
timeoutCtx, cancel := context.WithTimeout(s.options.ctx, rpcTimeout)
defer cancel()
txn := s.client.Txn(timeoutCtx)
ops := make([]v3.Op, 0, len(fetchKeys)+len(fetchPrefixes))
for _, key := range fetchKeys {
ops = append(ops, v3.OpGet(key, s.getOpts...))
}
for _, key := range fetchPrefixes {
ops = append(ops, v3.OpGet(key, prefixOpts...))
}
txn.Then(ops...)
txnresp, err := txn.Commit()
s.callCount++
if err != nil {
return
}
// Set revision and serializable options upon first fetch for any
// subsequent fetches.
if s.getOpts == nil {
s.revision = txnresp.Header.Revision
s.getOpts = []v3.OpOption{
v3.WithRev(s.revision),
v3.WithSerializable(),
}
}
// Preset keys to "not-present" (revision set to zero).
for _, key := range fetchKeys {
s.rset.presetItem(key)
}
// Set prefetched keys.
s.rset.add(txnresp.Responses[:len(fetchKeys)])
// Set prefetched ranges.
s.rset.addFullRange(fetchPrefixes, txnresp.Responses[len(fetchKeys):])
}
// commit builds the final transaction and tries to execute it. If commit fails
// because the keys have changed return a CommitError, otherwise return a
// DatabaseError.
func (s *stm) commit() (CommitStats, error) {
rset := s.rset.cmps()
wset := s.wset.cmps(s.revision + 1)
stats := CommitStats{
Rset: len(rset),
Wset: len(wset),
}
// Create the compare set.
cmps := append(rset, wset...)
// Create a transaction with the optional abort context.
timeoutCtx, cancel := context.WithTimeout(s.options.ctx, rpcTimeout)
defer cancel()
txn := s.client.Txn(timeoutCtx)
// If the compare set holds, try executing the puts.
txn = txn.If(cmps...)
txn = txn.Then(s.wset.puts()...)
// Prefetch keys and ranges in case of conflict to save as many
// round-trips as possible.
txn = txn.Else(s.rset.prefetchSet()...)
s.callCount++
txnresp, err := txn.Commit()
if err != nil {
return stats, DatabaseError{
msg: "stm.Commit() failed",
err: err,
}
}
// Call the commit callback if the transaction was successful.
if txnresp.Succeeded {
if s.onCommit != nil {
s.onCommit()
}
return stats, nil
}
// Determine where our fetched full ranges begin in the response.
prefixes := s.rset.getFullRanges()
firstPrefixResp := len(txnresp.Responses) - len(prefixes)
// Clear reload and preload it with the prefetched keys and ranges.
s.rset.clear()
s.rset.add(txnresp.Responses[:firstPrefixResp])
s.rset.addFullRange(prefixes, txnresp.Responses[firstPrefixResp:])
// Set our revision boundary.
s.revision = txnresp.Header.Revision
s.getOpts = []v3.OpOption{
v3.WithRev(s.revision),
v3.WithSerializable(),
}
// Return CommitError indicating that the transaction can be retried.
return stats, CommitError{}
}
// Commit simply calls commit and the commit stats callback if set.
func (s *stm) Commit() error {
stats, err := s.commit()
if s.options.commitStatsCallback != nil {
s.options.commitStatsCallback(err == nil, stats)
}
return err
}
// Rollback resets the STM. This is useful for uncommitted transaction rollback
// and also used in the STM main loop to reset state if commit fails.
func (s *stm) Rollback() {
s.rollback(true)
}
// rollback will reset the read and write sets. If clearReadSet is false we'll
// only reset the write set.
func (s *stm) rollback(clearReadSet bool) {
if clearReadSet {
s.rset.clear()
s.revision = math.MaxInt64 - 1
s.getOpts = nil
}
s.wset = make(map[string]stmPut)
}