lnd/lnwallet/wallet.go
Olaoluwa Osuntokun 4b316d97c8
lnwallet: add new WithCoinSelectLock method to fix coin select race conditions
In this commit, we add a new method WithCoinSelectLock. This method will
allow us to fix bugs in the project atm that can arise if a channel
funding is attempted (either manually or by autopilot) while a users is
attempting to send an on-chain transaction. If this happens
concurrently, then both contexts will grab the set of UTXOs and attempt
to lock them one by one. However, since they didn't obtain an exclusive
snapshot of the UTXO set of the wallet, they may both attempt to lock
the same input.

We also ensure that calls to SendMany cannot run into this issue by
using the WithCoinSelectLock synchronization when attempting to instruct
the internal wallet to send payments.
2019-01-09 15:55:24 -08:00

1450 lines
49 KiB
Go

package lnwallet
import (
"bytes"
"crypto/sha256"
"errors"
"fmt"
"math"
"net"
"sync"
"sync/atomic"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/txsort"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/shachain"
)
const (
// The size of the buffered queue of requests to the wallet from the
// outside word.
msgBufferSize = 100
)
// ErrInsufficientFunds is a type matching the error interface which is
// returned when coin selection for a new funding transaction fails to due
// having an insufficient amount of confirmed funds.
type ErrInsufficientFunds struct {
amountAvailable btcutil.Amount
amountSelected btcutil.Amount
}
func (e *ErrInsufficientFunds) Error() string {
return fmt.Sprintf("not enough witness outputs to create funding transaction,"+
" need %v only have %v available", e.amountAvailable,
e.amountSelected)
}
// InitFundingReserveMsg is the first message sent to initiate the workflow
// required to open a payment channel with a remote peer. The initial required
// parameters are configurable across channels. These parameters are to be
// chosen depending on the fee climate within the network, and time value of
// funds to be locked up within the channel. Upon success a ChannelReservation
// will be created in order to track the lifetime of this pending channel.
// Outputs selected will be 'locked', making them unavailable, for any other
// pending reservations. Therefore, all channels in reservation limbo will be
// periodically timed out after an idle period in order to avoid "exhaustion"
// attacks.
type InitFundingReserveMsg struct {
// ChainHash denotes that chain to be used to ultimately open the
// target channel.
ChainHash *chainhash.Hash
// NodeID is the ID of the remote node we would like to open a channel
// with.
NodeID *btcec.PublicKey
// NodeAddr is the address port that we used to either establish or
// accept the connection which led to the negotiation of this funding
// workflow.
NodeAddr net.Addr
// FundingAmount is the amount of funds requested for this channel.
FundingAmount btcutil.Amount
// Capacity is the total capacity of the channel which includes the
// amount of funds the remote party contributes (if any).
Capacity btcutil.Amount
// CommitFeePerKw is the starting accepted satoshis/Kw fee for the set
// of initial commitment transactions. In order to ensure timely
// confirmation, it is recommended that this fee should be generous,
// paying some multiple of the accepted base fee rate of the network.
CommitFeePerKw SatPerKWeight
// FundingFeePerKw is the fee rate in sat/kw to use for the initial
// funding transaction.
FundingFeePerKw SatPerKWeight
// PushMSat is the number of milli-satoshis that should be pushed over
// the responder as part of the initial channel creation.
PushMSat lnwire.MilliSatoshi
// Flags are the channel flags specified by the initiator in the
// open_channel message.
Flags lnwire.FundingFlag
// MinConfs indicates the minimum number of confirmations that each
// output selected to fund the channel should satisfy.
MinConfs int32
// err is a channel in which all errors will be sent across. Will be
// nil if this initial set is successful.
//
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
// resp is channel in which a ChannelReservation with our contributions
// filled in will be sent across this channel in the case of a
// successfully reservation initiation. In the case of an error, this
// will read a nil pointer.
//
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
resp chan *ChannelReservation
}
// fundingReserveCancelMsg is a message reserved for cancelling an existing
// channel reservation identified by its reservation ID. Cancelling a reservation
// frees its locked outputs up, for inclusion within further reservations.
type fundingReserveCancelMsg struct {
pendingFundingID uint64
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error // Buffered
}
// addContributionMsg represents a message executing the second phase of the
// channel reservation workflow. This message carries the counterparty's
// "contribution" to the payment channel. In the case that this message is
// processed without generating any errors, then channel reservation will then
// be able to construct the funding tx, both commitment transactions, and
// finally generate signatures for all our inputs to the funding transaction,
// and for the remote node's version of the commitment transaction.
type addContributionMsg struct {
pendingFundingID uint64
// TODO(roasbeef): Should also carry SPV proofs in we're in SPV mode
contribution *ChannelContribution
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// addSingleContributionMsg represents a message executing the second phase of
// a single funder channel reservation workflow. This messages carries the
// counterparty's "contribution" to the payment channel. As this message is
// sent when on the responding side to a single funder workflow, no further
// action apart from storing the provided contribution is carried out.
type addSingleContributionMsg struct {
pendingFundingID uint64
contribution *ChannelContribution
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// addCounterPartySigsMsg represents the final message required to complete,
// and 'open' a payment channel. This message carries the counterparty's
// signatures for each of their inputs to the funding transaction, and also a
// signature allowing us to spend our version of the commitment transaction.
// If we're able to verify all the signatures are valid, the funding transaction
// will be broadcast to the network. After the funding transaction gains a
// configurable number of confirmations, the channel is officially considered
// 'open'.
type addCounterPartySigsMsg struct {
pendingFundingID uint64
// Should be order of sorted inputs that are theirs. Sorting is done
// in accordance to BIP-69:
// https://github.com/bitcoin/bips/blob/master/bip-0069.mediawiki.
theirFundingInputScripts []*InputScript
// This should be 1/2 of the signatures needed to successfully spend our
// version of the commitment transaction.
theirCommitmentSig []byte
// This channel is used to return the completed channel after the wallet
// has completed all of its stages in the funding process.
completeChan chan *channeldb.OpenChannel
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// addSingleFunderSigsMsg represents the next-to-last message required to
// complete a single-funder channel workflow. Once the initiator is able to
// construct the funding transaction, they send both the outpoint and a
// signature for our version of the commitment transaction. Once this message
// is processed we (the responder) are able to construct both commitment
// transactions, signing the remote party's version.
type addSingleFunderSigsMsg struct {
pendingFundingID uint64
// fundingOutpoint is the outpoint of the completed funding
// transaction as assembled by the workflow initiator.
fundingOutpoint *wire.OutPoint
// theirCommitmentSig are the 1/2 of the signatures needed to
// successfully spend our version of the commitment transaction.
theirCommitmentSig []byte
// This channel is used to return the completed channel after the wallet
// has completed all of its stages in the funding process.
completeChan chan *channeldb.OpenChannel
// NOTE: In order to avoid deadlocks, this channel MUST be buffered.
err chan error
}
// LightningWallet is a domain specific, yet general Bitcoin wallet capable of
// executing workflow required to interact with the Lightning Network. It is
// domain specific in the sense that it understands all the fancy scripts used
// within the Lightning Network, channel lifetimes, etc. However, it embeds a
// general purpose Bitcoin wallet within it. Therefore, it is also able to
// serve as a regular Bitcoin wallet which uses HD keys. The wallet is highly
// concurrent internally. All communication, and requests towards the wallet
// are dispatched as messages over channels, ensuring thread safety across all
// operations. Interaction has been designed independent of any peer-to-peer
// communication protocol, allowing the wallet to be self-contained and
// embeddable within future projects interacting with the Lightning Network.
//
// NOTE: At the moment the wallet requires a btcd full node, as it's dependent
// on btcd's websockets notifications as event triggers during the lifetime of a
// channel. However, once the chainntnfs package is complete, the wallet will
// be compatible with multiple RPC/notification services such as Electrum,
// Bitcoin Core + ZeroMQ, etc. Eventually, the wallet won't require a full-node
// at all, as SPV support is integrated into btcwallet.
type LightningWallet struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
nextFundingID uint64 // To be used atomically.
// Cfg is the configuration struct that will be used by the wallet to
// access the necessary interfaces and default it needs to carry on its
// duties.
Cfg Config
// WalletController is the core wallet, all non Lightning Network
// specific interaction is proxied to the internal wallet.
WalletController
// SecretKeyRing is the interface we'll use to derive any keys related
// to our purpose within the network including: multi-sig keys, node
// keys, revocation keys, etc.
keychain.SecretKeyRing
// This mutex is to be held when generating external keys to be used as
// multi-sig, and commitment keys within the channel.
keyGenMtx sync.RWMutex
// This mutex MUST be held when performing coin selection in order to
// avoid inadvertently creating multiple funding transaction which
// double spend inputs across each other.
coinSelectMtx sync.RWMutex
// All messages to the wallet are to be sent across this channel.
msgChan chan interface{}
// Incomplete payment channels are stored in the map below. An intent
// to create a payment channel is tracked as a "reservation" within
// limbo. Once the final signatures have been exchanged, a reservation
// is removed from limbo. Each reservation is tracked by a unique
// monotonically integer. All requests concerning the channel MUST
// carry a valid, active funding ID.
fundingLimbo map[uint64]*ChannelReservation
limboMtx sync.RWMutex
// lockedOutPoints is a set of the currently locked outpoint. This
// information is kept in order to provide an easy way to unlock all
// the currently locked outpoints.
lockedOutPoints map[wire.OutPoint]struct{}
quit chan struct{}
wg sync.WaitGroup
// TODO(roasbeef): handle wallet lock/unlock
}
// NewLightningWallet creates/opens and initializes a LightningWallet instance.
// If the wallet has never been created (according to the passed dataDir), first-time
// setup is executed.
func NewLightningWallet(Cfg Config) (*LightningWallet, error) {
return &LightningWallet{
Cfg: Cfg,
SecretKeyRing: Cfg.SecretKeyRing,
WalletController: Cfg.WalletController,
msgChan: make(chan interface{}, msgBufferSize),
nextFundingID: 0,
fundingLimbo: make(map[uint64]*ChannelReservation),
lockedOutPoints: make(map[wire.OutPoint]struct{}),
quit: make(chan struct{}),
}, nil
}
// Startup establishes a connection to the RPC source, and spins up all
// goroutines required to handle incoming messages.
func (l *LightningWallet) Startup() error {
// Already started?
if atomic.AddInt32(&l.started, 1) != 1 {
return nil
}
// Start the underlying wallet controller.
if err := l.Start(); err != nil {
return err
}
l.wg.Add(1)
// TODO(roasbeef): multiple request handlers?
go l.requestHandler()
return nil
}
// Shutdown gracefully stops the wallet, and all active goroutines.
func (l *LightningWallet) Shutdown() error {
if atomic.AddInt32(&l.shutdown, 1) != 1 {
return nil
}
// Signal the underlying wallet controller to shutdown, waiting until
// all active goroutines have been shutdown.
if err := l.Stop(); err != nil {
return err
}
close(l.quit)
l.wg.Wait()
return nil
}
// LockedOutpoints returns a list of all currently locked outpoint.
func (l *LightningWallet) LockedOutpoints() []*wire.OutPoint {
outPoints := make([]*wire.OutPoint, 0, len(l.lockedOutPoints))
for outPoint := range l.lockedOutPoints {
outPoints = append(outPoints, &outPoint)
}
return outPoints
}
// ResetReservations reset the volatile wallet state which tracks all currently
// active reservations.
func (l *LightningWallet) ResetReservations() {
l.nextFundingID = 0
l.fundingLimbo = make(map[uint64]*ChannelReservation)
for outpoint := range l.lockedOutPoints {
l.UnlockOutpoint(outpoint)
}
l.lockedOutPoints = make(map[wire.OutPoint]struct{})
}
// ActiveReservations returns a slice of all the currently active
// (non-cancelled) reservations.
func (l *LightningWallet) ActiveReservations() []*ChannelReservation {
reservations := make([]*ChannelReservation, 0, len(l.fundingLimbo))
for _, reservation := range l.fundingLimbo {
reservations = append(reservations, reservation)
}
return reservations
}
// requestHandler is the primary goroutine(s) responsible for handling, and
// dispatching replies to all messages.
func (l *LightningWallet) requestHandler() {
out:
for {
select {
case m := <-l.msgChan:
switch msg := m.(type) {
case *InitFundingReserveMsg:
l.handleFundingReserveRequest(msg)
case *fundingReserveCancelMsg:
l.handleFundingCancelRequest(msg)
case *addSingleContributionMsg:
l.handleSingleContribution(msg)
case *addContributionMsg:
l.handleContributionMsg(msg)
case *addSingleFunderSigsMsg:
l.handleSingleFunderSigs(msg)
case *addCounterPartySigsMsg:
l.handleFundingCounterPartySigs(msg)
}
case <-l.quit:
// TODO: do some clean up
break out
}
}
l.wg.Done()
}
// InitChannelReservation kicks off the 3-step workflow required to successfully
// open a payment channel with a remote node. As part of the funding
// reservation, the inputs selected for the funding transaction are 'locked'.
// This ensures that multiple channel reservations aren't double spending the
// same inputs in the funding transaction. If reservation initialization is
// successful, a ChannelReservation containing our completed contribution is
// returned. Our contribution contains all the items necessary to allow the
// counterparty to build the funding transaction, and both versions of the
// commitment transaction. Otherwise, an error occurred and a nil pointer along
// with an error are returned.
//
// Once a ChannelReservation has been obtained, two additional steps must be
// processed before a payment channel can be considered 'open'. The second step
// validates, and processes the counterparty's channel contribution. The third,
// and final step verifies all signatures for the inputs of the funding
// transaction, and that the signature we record for our version of the
// commitment transaction is valid.
func (l *LightningWallet) InitChannelReservation(
req *InitFundingReserveMsg) (*ChannelReservation, error) {
req.resp = make(chan *ChannelReservation, 1)
req.err = make(chan error, 1)
select {
case l.msgChan <- req:
case <-l.quit:
return nil, errors.New("wallet shutting down")
}
return <-req.resp, <-req.err
}
// handleFundingReserveRequest processes a message intending to create, and
// validate a funding reservation request.
func (l *LightningWallet) handleFundingReserveRequest(req *InitFundingReserveMsg) {
// It isn't possible to create a channel with zero funds committed.
if req.FundingAmount+req.Capacity == 0 {
err := ErrZeroCapacity()
req.err <- err
req.resp <- nil
return
}
// If the funding request is for a different chain than the one the
// wallet is aware of, then we'll reject the request.
if !bytes.Equal(l.Cfg.NetParams.GenesisHash[:], req.ChainHash[:]) {
err := ErrChainMismatch(
l.Cfg.NetParams.GenesisHash, req.ChainHash,
)
req.err <- err
req.resp <- nil
return
}
id := atomic.AddUint64(&l.nextFundingID, 1)
reservation, err := NewChannelReservation(
req.Capacity, req.FundingAmount, req.CommitFeePerKw, l, id,
req.PushMSat, l.Cfg.NetParams.GenesisHash, req.Flags,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
// Grab the mutex on the ChannelReservation to ensure thread-safety
reservation.Lock()
defer reservation.Unlock()
reservation.nodeAddr = req.NodeAddr
reservation.partialState.IdentityPub = req.NodeID
// If we're on the receiving end of a single funder channel then we
// don't need to perform any coin selection. Otherwise, attempt to
// obtain enough coins to meet the required funding amount.
if req.FundingAmount != 0 {
// Coin selection is done on the basis of sat/kw, so we'll use
// the fee rate passed in to perform coin selection.
err := l.selectCoinsAndChange(
req.FundingFeePerKw, req.FundingAmount, req.MinConfs,
reservation.ourContribution,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
}
// Next, we'll grab a series of keys from the wallet which will be used
// for the duration of the channel. The keys include: our multi-sig
// key, the base revocation key, the base htlc key,the base payment
// key, and the delayed payment key.
//
// TODO(roasbeef): "salt" each key as well?
reservation.ourContribution.MultiSigKey, err = l.DeriveNextKey(
keychain.KeyFamilyMultiSig,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.ourContribution.RevocationBasePoint, err = l.DeriveNextKey(
keychain.KeyFamilyRevocationBase,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.ourContribution.HtlcBasePoint, err = l.DeriveNextKey(
keychain.KeyFamilyHtlcBase,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.ourContribution.PaymentBasePoint, err = l.DeriveNextKey(
keychain.KeyFamilyPaymentBase,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.ourContribution.DelayBasePoint, err = l.DeriveNextKey(
keychain.KeyFamilyDelayBase,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
// With the above keys created, we'll also need to initialization our
// initial revocation tree state.
nextRevocationKeyDesc, err := l.DeriveNextKey(
keychain.KeyFamilyRevocationRoot,
)
if err != nil {
req.err <- err
req.resp <- nil
return
}
revocationRoot, err := l.DerivePrivKey(nextRevocationKeyDesc)
if err != nil {
req.err <- err
req.resp <- nil
return
}
// Once we have the root, we can then generate our shachain producer
// and from that generate the per-commitment point.
revRoot, err := chainhash.NewHash(revocationRoot.Serialize())
if err != nil {
req.err <- err
req.resp <- nil
return
}
producer := shachain.NewRevocationProducer(*revRoot)
firstPreimage, err := producer.AtIndex(0)
if err != nil {
req.err <- err
req.resp <- nil
return
}
reservation.ourContribution.FirstCommitmentPoint = ComputeCommitmentPoint(
firstPreimage[:],
)
reservation.partialState.RevocationProducer = producer
reservation.ourContribution.ChannelConstraints = l.Cfg.DefaultConstraints
// TODO(roasbeef): turn above into: initContribution()
// Create a limbo and record entry for this newly pending funding
// request.
l.limboMtx.Lock()
l.fundingLimbo[id] = reservation
l.limboMtx.Unlock()
// Funding reservation request successfully handled. The funding inputs
// will be marked as unavailable until the reservation is either
// completed, or cancelled.
req.resp <- reservation
req.err <- nil
}
// handleFundingReserveCancel cancels an existing channel reservation. As part
// of the cancellation, outputs previously selected as inputs for the funding
// transaction via coin selection are freed allowing future reservations to
// include them.
func (l *LightningWallet) handleFundingCancelRequest(req *fundingReserveCancelMsg) {
// TODO(roasbeef): holding lock too long
l.limboMtx.Lock()
defer l.limboMtx.Unlock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
if !ok {
// TODO(roasbeef): make new error, "unknown funding state" or something
req.err <- fmt.Errorf("attempted to cancel non-existent funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thread-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
// Mark all previously locked outpoints as useable for future funding
// requests.
for _, unusedInput := range pendingReservation.ourContribution.Inputs {
delete(l.lockedOutPoints, unusedInput.PreviousOutPoint)
l.UnlockOutpoint(unusedInput.PreviousOutPoint)
}
// TODO(roasbeef): is it even worth it to keep track of unused keys?
// TODO(roasbeef): Is it possible to mark the unused change also as
// available?
delete(l.fundingLimbo, req.pendingFundingID)
req.err <- nil
}
// CreateCommitmentTxns is a helper function that creates the initial
// commitment transaction for both parties. This function is used during the
// initial funding workflow as both sides must generate a signature for the
// remote party's commitment transaction, and verify the signature for their
// version of the commitment transaction.
func CreateCommitmentTxns(localBalance, remoteBalance btcutil.Amount,
ourChanCfg, theirChanCfg *channeldb.ChannelConfig,
localCommitPoint, remoteCommitPoint *btcec.PublicKey,
fundingTxIn wire.TxIn) (*wire.MsgTx, *wire.MsgTx, error) {
localCommitmentKeys := deriveCommitmentKeys(localCommitPoint, true,
ourChanCfg, theirChanCfg)
remoteCommitmentKeys := deriveCommitmentKeys(remoteCommitPoint, false,
ourChanCfg, theirChanCfg)
ourCommitTx, err := CreateCommitTx(fundingTxIn, localCommitmentKeys,
uint32(ourChanCfg.CsvDelay), localBalance, remoteBalance,
ourChanCfg.DustLimit)
if err != nil {
return nil, nil, err
}
otxn := btcutil.NewTx(ourCommitTx)
if err := blockchain.CheckTransactionSanity(otxn); err != nil {
return nil, nil, err
}
theirCommitTx, err := CreateCommitTx(fundingTxIn, remoteCommitmentKeys,
uint32(theirChanCfg.CsvDelay), remoteBalance, localBalance,
theirChanCfg.DustLimit)
if err != nil {
return nil, nil, err
}
ttxn := btcutil.NewTx(theirCommitTx)
if err := blockchain.CheckTransactionSanity(ttxn); err != nil {
return nil, nil, err
}
return ourCommitTx, theirCommitTx, nil
}
// handleContributionMsg processes the second workflow step for the lifetime of
// a channel reservation. Upon completion, the reservation will carry a
// completed funding transaction (minus the counterparty's input signatures),
// both versions of the commitment transaction, and our signature for their
// version of the commitment transaction.
func (l *LightningWallet) handleContributionMsg(req *addContributionMsg) {
l.limboMtx.Lock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
l.limboMtx.Unlock()
if !ok {
req.err <- fmt.Errorf("attempted to update non-existent funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thread-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
// Create a blank, fresh transaction. Soon to be a complete funding
// transaction which will allow opening a lightning channel.
pendingReservation.fundingTx = wire.NewMsgTx(1)
fundingTx := pendingReservation.fundingTx
// Some temporary variables to cut down on the resolution verbosity.
pendingReservation.theirContribution = req.contribution
theirContribution := req.contribution
ourContribution := pendingReservation.ourContribution
// Add all multi-party inputs and outputs to the transaction.
for _, ourInput := range ourContribution.Inputs {
fundingTx.AddTxIn(ourInput)
}
for _, theirInput := range theirContribution.Inputs {
fundingTx.AddTxIn(theirInput)
}
for _, ourChangeOutput := range ourContribution.ChangeOutputs {
fundingTx.AddTxOut(ourChangeOutput)
}
for _, theirChangeOutput := range theirContribution.ChangeOutputs {
fundingTx.AddTxOut(theirChangeOutput)
}
ourKey := pendingReservation.ourContribution.MultiSigKey
theirKey := theirContribution.MultiSigKey
// Finally, add the 2-of-2 multi-sig output which will set up the lightning
// channel.
channelCapacity := int64(pendingReservation.partialState.Capacity)
witnessScript, multiSigOut, err := GenFundingPkScript(
ourKey.PubKey.SerializeCompressed(),
theirKey.PubKey.SerializeCompressed(), channelCapacity,
)
if err != nil {
req.err <- err
return
}
// Sort the transaction. Since both side agree to a canonical ordering,
// by sorting we no longer need to send the entire transaction. Only
// signatures will be exchanged.
fundingTx.AddTxOut(multiSigOut)
txsort.InPlaceSort(pendingReservation.fundingTx)
// Next, sign all inputs that are ours, collecting the signatures in
// order of the inputs.
pendingReservation.ourFundingInputScripts = make([]*InputScript, 0,
len(ourContribution.Inputs))
signDesc := SignDescriptor{
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(fundingTx),
}
for i, txIn := range fundingTx.TxIn {
info, err := l.FetchInputInfo(&txIn.PreviousOutPoint)
if err == ErrNotMine {
continue
} else if err != nil {
req.err <- err
return
}
signDesc.Output = info
signDesc.InputIndex = i
inputScript, err := l.Cfg.Signer.ComputeInputScript(
fundingTx, &signDesc,
)
if err != nil {
req.err <- err
return
}
txIn.SignatureScript = inputScript.SigScript
txIn.Witness = inputScript.Witness
pendingReservation.ourFundingInputScripts = append(
pendingReservation.ourFundingInputScripts,
inputScript,
)
}
// Locate the index of the multi-sig outpoint in order to record it
// since the outputs are canonically sorted. If this is a single funder
// workflow, then we'll also need to send this to the remote node.
fundingTxID := fundingTx.TxHash()
_, multiSigIndex := FindScriptOutputIndex(fundingTx, multiSigOut.PkScript)
fundingOutpoint := wire.NewOutPoint(&fundingTxID, multiSigIndex)
pendingReservation.partialState.FundingOutpoint = *fundingOutpoint
walletLog.Debugf("Funding tx for ChannelPoint(%v) generated: %v",
fundingOutpoint, spew.Sdump(fundingTx))
// Initialize an empty sha-chain for them, tracking the current pending
// revocation hash (we don't yet know the preimage so we can't add it
// to the chain).
s := shachain.NewRevocationStore()
pendingReservation.partialState.RevocationStore = s
// Store their current commitment point. We'll need this after the
// first state transition in order to verify the authenticity of the
// revocation.
chanState := pendingReservation.partialState
chanState.RemoteCurrentRevocation = theirContribution.FirstCommitmentPoint
// Create the txin to our commitment transaction; required to construct
// the commitment transactions.
fundingTxIn := wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: fundingTxID,
Index: multiSigIndex,
},
}
// With the funding tx complete, create both commitment transactions.
localBalance := pendingReservation.partialState.LocalCommitment.LocalBalance.ToSatoshis()
remoteBalance := pendingReservation.partialState.LocalCommitment.RemoteBalance.ToSatoshis()
ourCommitTx, theirCommitTx, err := CreateCommitmentTxns(
localBalance, remoteBalance, ourContribution.ChannelConfig,
theirContribution.ChannelConfig,
ourContribution.FirstCommitmentPoint,
theirContribution.FirstCommitmentPoint, fundingTxIn,
)
if err != nil {
req.err <- err
return
}
// With both commitment transactions constructed, generate the state
// obfuscator then use it to encode the current state number within
// both commitment transactions.
var stateObfuscator [StateHintSize]byte
if chanState.ChanType == channeldb.SingleFunder {
stateObfuscator = DeriveStateHintObfuscator(
ourContribution.PaymentBasePoint.PubKey,
theirContribution.PaymentBasePoint.PubKey,
)
} else {
ourSer := ourContribution.PaymentBasePoint.PubKey.SerializeCompressed()
theirSer := theirContribution.PaymentBasePoint.PubKey.SerializeCompressed()
switch bytes.Compare(ourSer, theirSer) {
case -1:
stateObfuscator = DeriveStateHintObfuscator(
ourContribution.PaymentBasePoint.PubKey,
theirContribution.PaymentBasePoint.PubKey,
)
default:
stateObfuscator = DeriveStateHintObfuscator(
theirContribution.PaymentBasePoint.PubKey,
ourContribution.PaymentBasePoint.PubKey,
)
}
}
err = initStateHints(ourCommitTx, theirCommitTx, stateObfuscator)
if err != nil {
req.err <- err
return
}
// Sort both transactions according to the agreed upon canonical
// ordering. This lets us skip sending the entire transaction over,
// instead we'll just send signatures.
txsort.InPlaceSort(ourCommitTx)
txsort.InPlaceSort(theirCommitTx)
walletLog.Debugf("Local commit tx for ChannelPoint(%v): %v",
fundingOutpoint, spew.Sdump(ourCommitTx))
walletLog.Debugf("Remote commit tx for ChannelPoint(%v): %v",
fundingOutpoint, spew.Sdump(theirCommitTx))
// Record newly available information within the open channel state.
chanState.FundingOutpoint = *fundingOutpoint
chanState.LocalCommitment.CommitTx = ourCommitTx
chanState.RemoteCommitment.CommitTx = theirCommitTx
// Generate a signature for their version of the initial commitment
// transaction.
signDesc = SignDescriptor{
WitnessScript: witnessScript,
KeyDesc: ourKey,
Output: multiSigOut,
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(theirCommitTx),
InputIndex: 0,
}
sigTheirCommit, err := l.Cfg.Signer.SignOutputRaw(theirCommitTx, &signDesc)
if err != nil {
req.err <- err
return
}
pendingReservation.ourCommitmentSig = sigTheirCommit
req.err <- nil
}
// handleSingleContribution is called as the second step to a single funder
// workflow to which we are the responder. It simply saves the remote peer's
// contribution to the channel, as solely the remote peer will contribute any
// funds to the channel.
func (l *LightningWallet) handleSingleContribution(req *addSingleContributionMsg) {
l.limboMtx.Lock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
l.limboMtx.Unlock()
if !ok {
req.err <- fmt.Errorf("attempted to update non-existent funding state")
return
}
// Grab the mutex on the channelReservation to ensure thread-safety.
pendingReservation.Lock()
defer pendingReservation.Unlock()
// TODO(roasbeef): verify sanity of remote party's parameters, fail if
// disagree
// Simply record the counterparty's contribution into the pending
// reservation data as they'll be solely funding the channel entirely.
pendingReservation.theirContribution = req.contribution
theirContribution := pendingReservation.theirContribution
chanState := pendingReservation.partialState
// Initialize an empty sha-chain for them, tracking the current pending
// revocation hash (we don't yet know the preimage so we can't add it
// to the chain).
remotePreimageStore := shachain.NewRevocationStore()
chanState.RevocationStore = remotePreimageStore
// Now that we've received their first commitment point, we'll store it
// within the channel state so we can sync it to disk once the funding
// process is complete.
chanState.RemoteCurrentRevocation = theirContribution.FirstCommitmentPoint
req.err <- nil
return
}
// openChanDetails contains a "finalized" channel which can be considered
// "open" according to the requested confirmation depth at reservation
// initialization. Additionally, the struct contains additional details
// pertaining to the exact location in the main chain in-which the transaction
// was confirmed.
type openChanDetails struct {
channel *LightningChannel
blockHeight uint32
txIndex uint32
}
// handleFundingCounterPartySigs is the final step in the channel reservation
// workflow. During this step, we validate *all* the received signatures for
// inputs to the funding transaction. If any of these are invalid, we bail,
// and forcibly cancel this funding request. Additionally, we ensure that the
// signature we received from the counterparty for our version of the commitment
// transaction allows us to spend from the funding output with the addition of
// our signature.
func (l *LightningWallet) handleFundingCounterPartySigs(msg *addCounterPartySigsMsg) {
l.limboMtx.RLock()
res, ok := l.fundingLimbo[msg.pendingFundingID]
l.limboMtx.RUnlock()
if !ok {
msg.err <- fmt.Errorf("attempted to update non-existent funding state")
return
}
// Grab the mutex on the ChannelReservation to ensure thread-safety
res.Lock()
defer res.Unlock()
// Now we can complete the funding transaction by adding their
// signatures to their inputs.
res.theirFundingInputScripts = msg.theirFundingInputScripts
inputScripts := msg.theirFundingInputScripts
fundingTx := res.fundingTx
sigIndex := 0
fundingHashCache := txscript.NewTxSigHashes(fundingTx)
for i, txin := range fundingTx.TxIn {
if len(inputScripts) != 0 && len(txin.Witness) == 0 {
// Attach the input scripts so we can verify it below.
txin.Witness = inputScripts[sigIndex].Witness
txin.SignatureScript = inputScripts[sigIndex].SigScript
// Fetch the alleged previous output along with the
// pkscript referenced by this input.
//
// TODO(roasbeef): when dual funder pass actual
// height-hint
pkScript, err := WitnessScriptHash(
txin.Witness[len(txin.Witness)-1],
)
if err != nil {
}
output, err := l.Cfg.ChainIO.GetUtxo(
&txin.PreviousOutPoint,
pkScript, 0,
)
if output == nil {
msg.err <- fmt.Errorf("input to funding tx "+
"does not exist: %v", err)
msg.completeChan <- nil
return
}
// Ensure that the witness+sigScript combo is valid.
vm, err := txscript.NewEngine(output.PkScript,
fundingTx, i, txscript.StandardVerifyFlags, nil,
fundingHashCache, output.Value)
if err != nil {
msg.err <- fmt.Errorf("cannot create script "+
"engine: %s", err)
msg.completeChan <- nil
return
}
if err = vm.Execute(); err != nil {
msg.err <- fmt.Errorf("cannot validate "+
"transaction: %s", err)
msg.completeChan <- nil
return
}
sigIndex++
}
}
// At this point, we can also record and verify their signature for our
// commitment transaction.
res.theirCommitmentSig = msg.theirCommitmentSig
commitTx := res.partialState.LocalCommitment.CommitTx
ourKey := res.ourContribution.MultiSigKey
theirKey := res.theirContribution.MultiSigKey
// Re-generate both the witnessScript and p2sh output. We sign the
// witnessScript script, but include the p2sh output as the subscript
// for verification.
witnessScript, _, err := GenFundingPkScript(
ourKey.PubKey.SerializeCompressed(),
theirKey.PubKey.SerializeCompressed(),
int64(res.partialState.Capacity),
)
if err != nil {
msg.err <- err
msg.completeChan <- nil
return
}
// Next, create the spending scriptSig, and then verify that the script
// is complete, allowing us to spend from the funding transaction.
channelValue := int64(res.partialState.Capacity)
hashCache := txscript.NewTxSigHashes(commitTx)
sigHash, err := txscript.CalcWitnessSigHash(witnessScript, hashCache,
txscript.SigHashAll, commitTx, 0, channelValue)
if err != nil {
msg.err <- err
msg.completeChan <- nil
return
}
// Verify that we've received a valid signature from the remote party
// for our version of the commitment transaction.
theirCommitSig := msg.theirCommitmentSig
sig, err := btcec.ParseSignature(theirCommitSig, btcec.S256())
if err != nil {
msg.err <- err
msg.completeChan <- nil
return
} else if !sig.Verify(sigHash, theirKey.PubKey) {
msg.err <- fmt.Errorf("counterparty's commitment signature is invalid")
msg.completeChan <- nil
return
}
res.partialState.LocalCommitment.CommitSig = theirCommitSig
// Funding complete, this entry can be removed from limbo.
l.limboMtx.Lock()
delete(l.fundingLimbo, res.reservationID)
l.limboMtx.Unlock()
// As we're about to broadcast the funding transaction, we'll take note
// of the current height for record keeping purposes.
//
// TODO(roasbeef): this info can also be piped into light client's
// basic fee estimation?
_, bestHeight, err := l.Cfg.ChainIO.GetBestBlock()
if err != nil {
msg.err <- err
msg.completeChan <- nil
return
}
// As we've completed the funding process, we'll no convert the
// contribution structs into their underlying channel config objects to
// he stored within the database.
res.partialState.LocalChanCfg = res.ourContribution.toChanConfig()
res.partialState.RemoteChanCfg = res.theirContribution.toChanConfig()
// We'll also record the finalized funding txn, which will allow us to
// rebroadcast on startup in case we fail.
res.partialState.FundingTxn = fundingTx
// Add the complete funding transaction to the DB, in its open bucket
// which will be used for the lifetime of this channel.
nodeAddr := res.nodeAddr
err = res.partialState.SyncPending(nodeAddr, uint32(bestHeight))
if err != nil {
msg.err <- err
msg.completeChan <- nil
return
}
msg.completeChan <- res.partialState
msg.err <- nil
}
// handleSingleFunderSigs is called once the remote peer who initiated the
// single funder workflow has assembled the funding transaction, and generated
// a signature for our version of the commitment transaction. This method
// progresses the workflow by generating a signature for the remote peer's
// version of the commitment transaction.
func (l *LightningWallet) handleSingleFunderSigs(req *addSingleFunderSigsMsg) {
l.limboMtx.RLock()
pendingReservation, ok := l.fundingLimbo[req.pendingFundingID]
l.limboMtx.RUnlock()
if !ok {
req.err <- fmt.Errorf("attempted to update non-existent funding state")
req.completeChan <- nil
return
}
// Grab the mutex on the ChannelReservation to ensure thread-safety
pendingReservation.Lock()
defer pendingReservation.Unlock()
chanState := pendingReservation.partialState
chanState.FundingOutpoint = *req.fundingOutpoint
fundingTxIn := wire.NewTxIn(req.fundingOutpoint, nil, nil)
// Now that we have the funding outpoint, we can generate both versions
// of the commitment transaction, and generate a signature for the
// remote node's commitment transactions.
localBalance := pendingReservation.partialState.LocalCommitment.LocalBalance.ToSatoshis()
remoteBalance := pendingReservation.partialState.LocalCommitment.RemoteBalance.ToSatoshis()
ourCommitTx, theirCommitTx, err := CreateCommitmentTxns(
localBalance, remoteBalance,
pendingReservation.ourContribution.ChannelConfig,
pendingReservation.theirContribution.ChannelConfig,
pendingReservation.ourContribution.FirstCommitmentPoint,
pendingReservation.theirContribution.FirstCommitmentPoint,
*fundingTxIn,
)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
// With both commitment transactions constructed, we can now use the
// generator state obfuscator to encode the current state number within
// both commitment transactions.
stateObfuscator := DeriveStateHintObfuscator(
pendingReservation.theirContribution.PaymentBasePoint.PubKey,
pendingReservation.ourContribution.PaymentBasePoint.PubKey,
)
err = initStateHints(ourCommitTx, theirCommitTx, stateObfuscator)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
// Sort both transactions according to the agreed upon canonical
// ordering. This ensures that both parties sign the same sighash
// without further synchronization.
txsort.InPlaceSort(ourCommitTx)
txsort.InPlaceSort(theirCommitTx)
chanState.LocalCommitment.CommitTx = ourCommitTx
chanState.RemoteCommitment.CommitTx = theirCommitTx
walletLog.Debugf("Local commit tx for ChannelPoint(%v): %v",
req.fundingOutpoint, spew.Sdump(ourCommitTx))
walletLog.Debugf("Remote commit tx for ChannelPoint(%v): %v",
req.fundingOutpoint, spew.Sdump(theirCommitTx))
channelValue := int64(pendingReservation.partialState.Capacity)
hashCache := txscript.NewTxSigHashes(ourCommitTx)
theirKey := pendingReservation.theirContribution.MultiSigKey
ourKey := pendingReservation.ourContribution.MultiSigKey
witnessScript, _, err := GenFundingPkScript(
ourKey.PubKey.SerializeCompressed(),
theirKey.PubKey.SerializeCompressed(), channelValue,
)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
sigHash, err := txscript.CalcWitnessSigHash(witnessScript, hashCache,
txscript.SigHashAll, ourCommitTx, 0, channelValue)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
// Verify that we've received a valid signature from the remote party
// for our version of the commitment transaction.
sig, err := btcec.ParseSignature(req.theirCommitmentSig, btcec.S256())
if err != nil {
req.err <- err
req.completeChan <- nil
return
} else if !sig.Verify(sigHash, theirKey.PubKey) {
req.err <- fmt.Errorf("counterparty's commitment signature " +
"is invalid")
req.completeChan <- nil
return
}
chanState.LocalCommitment.CommitSig = req.theirCommitmentSig
// With their signature for our version of the commitment transactions
// verified, we can now generate a signature for their version,
// allowing the funding transaction to be safely broadcast.
p2wsh, err := WitnessScriptHash(witnessScript)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
signDesc := SignDescriptor{
WitnessScript: witnessScript,
KeyDesc: ourKey,
Output: &wire.TxOut{
PkScript: p2wsh,
Value: channelValue,
},
HashType: txscript.SigHashAll,
SigHashes: txscript.NewTxSigHashes(theirCommitTx),
InputIndex: 0,
}
sigTheirCommit, err := l.Cfg.Signer.SignOutputRaw(theirCommitTx, &signDesc)
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
pendingReservation.ourCommitmentSig = sigTheirCommit
_, bestHeight, err := l.Cfg.ChainIO.GetBestBlock()
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
// Add the complete funding transaction to the DB, in it's open bucket
// which will be used for the lifetime of this channel.
chanState.LocalChanCfg = pendingReservation.ourContribution.toChanConfig()
chanState.RemoteChanCfg = pendingReservation.theirContribution.toChanConfig()
err = chanState.SyncPending(pendingReservation.nodeAddr, uint32(bestHeight))
if err != nil {
req.err <- err
req.completeChan <- nil
return
}
req.completeChan <- chanState
req.err <- nil
l.limboMtx.Lock()
delete(l.fundingLimbo, req.pendingFundingID)
l.limboMtx.Unlock()
}
// WithCoinSelectLock will execute the passed function closure in a
// synchronized manner preventing any coin selection operations from proceeding
// while the closure if executing. This can be seen as the ability to execute a
// function closure under an exclusive coin selection lock.
func (l *LightningWallet) WithCoinSelectLock(f func() error) error {
l.coinSelectMtx.Lock()
defer l.coinSelectMtx.Unlock()
return f()
}
// selectCoinsAndChange performs coin selection in order to obtain witness
// outputs which sum to at least 'numCoins' amount of satoshis. If coin
// selection is successful/possible, then the selected coins are available
// within the passed contribution's inputs. If necessary, a change address will
// also be generated.
func (l *LightningWallet) selectCoinsAndChange(feeRate SatPerKWeight,
amt btcutil.Amount, minConfs int32,
contribution *ChannelContribution) error {
// We hold the coin select mutex while querying for outputs, and
// performing coin selection in order to avoid inadvertent double
// spends across funding transactions.
l.coinSelectMtx.Lock()
defer l.coinSelectMtx.Unlock()
walletLog.Infof("Performing funding tx coin selection using %v "+
"sat/kw as fee rate", int64(feeRate))
// Find all unlocked unspent witness outputs that satisfy the minimum
// number of confirmations required.
coins, err := l.ListUnspentWitness(minConfs, math.MaxInt32)
if err != nil {
return err
}
// Perform coin selection over our available, unlocked unspent outputs
// in order to find enough coins to meet the funding amount
// requirements.
selectedCoins, changeAmt, err := coinSelect(feeRate, amt, coins)
if err != nil {
return err
}
// Lock the selected coins. These coins are now "reserved", this
// prevents concurrent funding requests from referring to and this
// double-spending the same set of coins.
contribution.Inputs = make([]*wire.TxIn, len(selectedCoins))
for i, coin := range selectedCoins {
outpoint := &coin.OutPoint
l.lockedOutPoints[*outpoint] = struct{}{}
l.LockOutpoint(*outpoint)
// Empty sig script, we'll actually sign if this reservation is
// queued up to be completed (the other side accepts).
contribution.Inputs[i] = wire.NewTxIn(outpoint, nil, nil)
}
// Record any change output(s) generated as a result of the coin
// selection, but only if the addition of the output won't lead to the
// creation of dust.
if changeAmt != 0 && changeAmt > DefaultDustLimit() {
changeAddr, err := l.NewAddress(WitnessPubKey, true)
if err != nil {
return err
}
changeScript, err := txscript.PayToAddrScript(changeAddr)
if err != nil {
return err
}
contribution.ChangeOutputs = make([]*wire.TxOut, 1)
contribution.ChangeOutputs[0] = &wire.TxOut{
Value: int64(changeAmt),
PkScript: changeScript,
}
}
return nil
}
// DeriveStateHintObfuscator derives the bytes to be used for obfuscating the
// state hints from the root to be used for a new channel. The obfuscator is
// generated via the following computation:
//
// * sha256(initiatorKey || responderKey)[26:]
// * where both keys are the multi-sig keys of the respective parties
//
// The first 6 bytes of the resulting hash are used as the state hint.
func DeriveStateHintObfuscator(key1, key2 *btcec.PublicKey) [StateHintSize]byte {
h := sha256.New()
h.Write(key1.SerializeCompressed())
h.Write(key2.SerializeCompressed())
sha := h.Sum(nil)
var obfuscator [StateHintSize]byte
copy(obfuscator[:], sha[26:])
return obfuscator
}
// initStateHints properly sets the obfuscated state hints on both commitment
// transactions using the passed obfuscator.
func initStateHints(commit1, commit2 *wire.MsgTx,
obfuscator [StateHintSize]byte) error {
if err := SetStateNumHint(commit1, 0, obfuscator); err != nil {
return err
}
if err := SetStateNumHint(commit2, 0, obfuscator); err != nil {
return err
}
return nil
}
// selectInputs selects a slice of inputs necessary to meet the specified
// selection amount. If input selection is unable to succeed due to insufficient
// funds, a non-nil error is returned. Additionally, the total amount of the
// selected coins are returned in order for the caller to properly handle
// change+fees.
func selectInputs(amt btcutil.Amount, coins []*Utxo) (btcutil.Amount, []*Utxo, error) {
satSelected := btcutil.Amount(0)
for i, coin := range coins {
satSelected += coin.Value
if satSelected >= amt {
return satSelected, coins[:i+1], nil
}
}
return 0, nil, &ErrInsufficientFunds{amt, satSelected}
}
// coinSelect attempts to select a sufficient amount of coins, including a
// change output to fund amt satoshis, adhering to the specified fee rate. The
// specified fee rate should be expressed in sat/kw for coin selection to
// function properly.
func coinSelect(feeRate SatPerKWeight, amt btcutil.Amount,
coins []*Utxo) ([]*Utxo, btcutil.Amount, error) {
amtNeeded := amt
for {
// First perform an initial round of coin selection to estimate
// the required fee.
totalSat, selectedUtxos, err := selectInputs(amtNeeded, coins)
if err != nil {
return nil, 0, err
}
var weightEstimate TxWeightEstimator
for _, utxo := range selectedUtxos {
switch utxo.AddressType {
case WitnessPubKey:
weightEstimate.AddP2WKHInput()
case NestedWitnessPubKey:
weightEstimate.AddNestedP2WKHInput()
default:
return nil, 0, fmt.Errorf("Unsupported address type: %v",
utxo.AddressType)
}
}
// Channel funding multisig output is P2WSH.
weightEstimate.AddP2WSHOutput()
// Assume that change output is a P2WKH output.
//
// TODO: Handle wallets that generate non-witness change
// addresses.
weightEstimate.AddP2WKHOutput()
// The difference between the selected amount and the amount
// requested will be used to pay fees, and generate a change
// output with the remaining.
overShootAmt := totalSat - amt
// Based on the estimated size and fee rate, if the excess
// amount isn't enough to pay fees, then increase the requested
// coin amount by the estimate required fee, performing another
// round of coin selection.
totalWeight := int64(weightEstimate.Weight())
requiredFee := feeRate.FeeForWeight(totalWeight)
if overShootAmt < requiredFee {
amtNeeded = amt + requiredFee
continue
}
// If the fee is sufficient, then calculate the size of the
// change output.
changeAmt := overShootAmt - requiredFee
return selectedUtxos, changeAmt, nil
}
}