mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-01-19 05:45:21 +01:00
6ec2826f6c
With this change, transactions created via craftSweepTx will be standard. Previously, p2wsh/p2pkh scripts passed in via SendCoins would be weighted as p2wpkh scripts. With a feerate of 1 sat/vbyte, transactions returned would be non-standard. Luckily, the critical sweeper subsystem only used p2wpkh scripts so this only affected callers from the rpcserver. Also added is an integration test that fails if SendCoins manages to generate a non-standard transaction. All script types are now accounted for in getWeightEstimate, which now errors if an unknown script type is passed in.
2292 lines
56 KiB
Go
2292 lines
56 KiB
Go
package sweep
|
||
|
||
import (
|
||
"os"
|
||
"reflect"
|
||
"runtime/debug"
|
||
"runtime/pprof"
|
||
"testing"
|
||
"time"
|
||
|
||
"github.com/btcsuite/btcd/btcec/v2"
|
||
"github.com/btcsuite/btcd/btcutil"
|
||
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
||
"github.com/btcsuite/btcd/txscript"
|
||
"github.com/btcsuite/btcd/wire"
|
||
"github.com/davecgh/go-spew/spew"
|
||
"github.com/lightningnetwork/lnd/build"
|
||
"github.com/lightningnetwork/lnd/input"
|
||
"github.com/lightningnetwork/lnd/keychain"
|
||
"github.com/lightningnetwork/lnd/lntest/mock"
|
||
"github.com/lightningnetwork/lnd/lnwallet"
|
||
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
||
"github.com/stretchr/testify/require"
|
||
)
|
||
|
||
var (
|
||
testLog = build.NewSubLogger("SWPR_TEST", nil)
|
||
|
||
testMaxSweepAttempts = 3
|
||
|
||
testMaxInputsPerTx = 3
|
||
|
||
defaultFeePref = Params{Fee: FeePreference{ConfTarget: 1}}
|
||
)
|
||
|
||
type sweeperTestContext struct {
|
||
t *testing.T
|
||
|
||
sweeper *UtxoSweeper
|
||
notifier *MockNotifier
|
||
estimator *mockFeeEstimator
|
||
backend *mockBackend
|
||
store *MockSweeperStore
|
||
|
||
timeoutChan chan chan time.Time
|
||
publishChan chan wire.MsgTx
|
||
}
|
||
|
||
var (
|
||
spendableInputs []*input.BaseInput
|
||
testInputCount int
|
||
|
||
testPubKey, _ = btcec.ParsePubKey([]byte{
|
||
0x04, 0x11, 0xdb, 0x93, 0xe1, 0xdc, 0xdb, 0x8a,
|
||
0x01, 0x6b, 0x49, 0x84, 0x0f, 0x8c, 0x53, 0xbc, 0x1e,
|
||
0xb6, 0x8a, 0x38, 0x2e, 0x97, 0xb1, 0x48, 0x2e, 0xca,
|
||
0xd7, 0xb1, 0x48, 0xa6, 0x90, 0x9a, 0x5c, 0xb2, 0xe0,
|
||
0xea, 0xdd, 0xfb, 0x84, 0xcc, 0xf9, 0x74, 0x44, 0x64,
|
||
0xf8, 0x2e, 0x16, 0x0b, 0xfa, 0x9b, 0x8b, 0x64, 0xf9,
|
||
0xd4, 0xc0, 0x3f, 0x99, 0x9b, 0x86, 0x43, 0xf6, 0x56,
|
||
0xb4, 0x12, 0xa3,
|
||
})
|
||
)
|
||
|
||
func createTestInput(value int64, witnessType input.WitnessType) input.BaseInput {
|
||
hash := chainhash.Hash{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
byte(testInputCount + 1)}
|
||
|
||
input := input.MakeBaseInput(
|
||
&wire.OutPoint{
|
||
Hash: hash,
|
||
},
|
||
witnessType,
|
||
&input.SignDescriptor{
|
||
Output: &wire.TxOut{
|
||
Value: value,
|
||
},
|
||
KeyDesc: keychain.KeyDescriptor{
|
||
PubKey: testPubKey,
|
||
},
|
||
},
|
||
0,
|
||
nil,
|
||
)
|
||
|
||
testInputCount++
|
||
|
||
return input
|
||
}
|
||
|
||
func init() {
|
||
// Create a set of test spendable inputs.
|
||
for i := 0; i < 20; i++ {
|
||
input := createTestInput(int64(10000+i*500),
|
||
input.CommitmentTimeLock)
|
||
|
||
spendableInputs = append(spendableInputs, &input)
|
||
}
|
||
}
|
||
|
||
func createSweeperTestContext(t *testing.T) *sweeperTestContext {
|
||
notifier := NewMockNotifier(t)
|
||
|
||
store := NewMockSweeperStore()
|
||
|
||
backend := newMockBackend(t, notifier)
|
||
backend.walletUtxos = []*lnwallet.Utxo{
|
||
{
|
||
Value: btcutil.Amount(1_000_000),
|
||
AddressType: lnwallet.WitnessPubKey,
|
||
},
|
||
}
|
||
|
||
estimator := newMockFeeEstimator(10000, chainfee.FeePerKwFloor)
|
||
|
||
ctx := &sweeperTestContext{
|
||
notifier: notifier,
|
||
publishChan: backend.publishChan,
|
||
t: t,
|
||
estimator: estimator,
|
||
backend: backend,
|
||
store: store,
|
||
timeoutChan: make(chan chan time.Time, 1),
|
||
}
|
||
|
||
ctx.sweeper = New(&UtxoSweeperConfig{
|
||
Notifier: notifier,
|
||
Wallet: backend,
|
||
NewBatchTimer: func() <-chan time.Time {
|
||
c := make(chan time.Time, 1)
|
||
ctx.timeoutChan <- c
|
||
return c
|
||
},
|
||
Store: store,
|
||
Signer: &mock.DummySigner{},
|
||
GenSweepScript: func() ([]byte, error) {
|
||
script := make([]byte, input.P2WPKHSize)
|
||
script[0] = 0
|
||
script[1] = 20
|
||
return script, nil
|
||
},
|
||
FeeEstimator: estimator,
|
||
MaxInputsPerTx: testMaxInputsPerTx,
|
||
MaxSweepAttempts: testMaxSweepAttempts,
|
||
NextAttemptDeltaFunc: func(attempts int) int32 {
|
||
// Use delta func without random factor.
|
||
return 1 << uint(attempts-1)
|
||
},
|
||
MaxFeeRate: DefaultMaxFeeRate,
|
||
FeeRateBucketSize: DefaultFeeRateBucketSize,
|
||
})
|
||
|
||
ctx.sweeper.Start()
|
||
|
||
return ctx
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) restartSweeper() {
|
||
ctx.t.Helper()
|
||
|
||
ctx.sweeper.Stop()
|
||
ctx.sweeper = New(ctx.sweeper.cfg)
|
||
ctx.sweeper.Start()
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) tick() {
|
||
testLog.Trace("Waiting for tick to be consumed")
|
||
select {
|
||
case c := <-ctx.timeoutChan:
|
||
select {
|
||
case c <- time.Time{}:
|
||
testLog.Trace("Tick")
|
||
case <-time.After(defaultTestTimeout):
|
||
debug.PrintStack()
|
||
ctx.t.Fatal("tick timeout - tick not consumed")
|
||
}
|
||
case <-time.After(defaultTestTimeout):
|
||
debug.PrintStack()
|
||
ctx.t.Fatal("tick timeout - no new timer created")
|
||
}
|
||
}
|
||
|
||
// assertNoTick asserts that the sweeper does not wait for a tick.
|
||
func (ctx *sweeperTestContext) assertNoTick() {
|
||
ctx.t.Helper()
|
||
|
||
select {
|
||
case <-ctx.timeoutChan:
|
||
ctx.t.Fatal("unexpected tick")
|
||
|
||
case <-time.After(processingDelay):
|
||
}
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) assertNoNewTimer() {
|
||
select {
|
||
case <-ctx.timeoutChan:
|
||
ctx.t.Fatal("no new timer expected")
|
||
default:
|
||
}
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) finish(expectedGoroutineCount int) {
|
||
// We assume that when finish is called, sweeper has finished all its
|
||
// goroutines. This implies that the waitgroup is empty.
|
||
signalChan := make(chan struct{})
|
||
go func() {
|
||
ctx.sweeper.wg.Wait()
|
||
close(signalChan)
|
||
}()
|
||
|
||
// Simulate exits of the expected number of running goroutines.
|
||
for i := 0; i < expectedGoroutineCount; i++ {
|
||
ctx.sweeper.wg.Done()
|
||
}
|
||
|
||
// We now expect the Wait to succeed.
|
||
select {
|
||
case <-signalChan:
|
||
case <-time.After(time.Second):
|
||
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
|
||
|
||
ctx.t.Fatalf("lingering goroutines detected after test " +
|
||
"is finished")
|
||
}
|
||
|
||
// Restore waitgroup state to what it was before.
|
||
ctx.sweeper.wg.Add(expectedGoroutineCount)
|
||
|
||
// Stop sweeper.
|
||
ctx.sweeper.Stop()
|
||
|
||
// We should have consumed and asserted all published transactions in
|
||
// our unit tests.
|
||
ctx.assertNoTx()
|
||
ctx.assertNoNewTimer()
|
||
if !ctx.backend.isDone() {
|
||
ctx.t.Fatal("unconfirmed txes remaining")
|
||
}
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) assertNoTx() {
|
||
ctx.t.Helper()
|
||
select {
|
||
case <-ctx.publishChan:
|
||
ctx.t.Fatalf("unexpected transactions published")
|
||
default:
|
||
}
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) receiveTx() wire.MsgTx {
|
||
ctx.t.Helper()
|
||
var tx wire.MsgTx
|
||
select {
|
||
case tx = <-ctx.publishChan:
|
||
return tx
|
||
case <-time.After(5 * time.Second):
|
||
pprof.Lookup("goroutine").WriteTo(os.Stdout, 1)
|
||
|
||
ctx.t.Fatalf("tx not published")
|
||
}
|
||
return tx
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) expectResult(c chan Result, expected error) {
|
||
ctx.t.Helper()
|
||
select {
|
||
case result := <-c:
|
||
if result.Err != expected {
|
||
ctx.t.Fatalf("expected %v result, but got %v",
|
||
expected, result.Err,
|
||
)
|
||
}
|
||
case <-time.After(defaultTestTimeout):
|
||
ctx.t.Fatalf("no result received")
|
||
}
|
||
}
|
||
|
||
func (ctx *sweeperTestContext) assertPendingInputs(inputs ...input.Input) {
|
||
ctx.t.Helper()
|
||
|
||
inputSet := make(map[wire.OutPoint]struct{}, len(inputs))
|
||
for _, input := range inputs {
|
||
inputSet[*input.OutPoint()] = struct{}{}
|
||
}
|
||
|
||
pendingInputs, err := ctx.sweeper.PendingInputs()
|
||
if err != nil {
|
||
ctx.t.Fatal(err)
|
||
}
|
||
if len(pendingInputs) != len(inputSet) {
|
||
ctx.t.Fatalf("expected %d pending inputs, got %d",
|
||
len(inputSet), len(pendingInputs))
|
||
}
|
||
for input := range pendingInputs {
|
||
if _, ok := inputSet[input]; !ok {
|
||
ctx.t.Fatalf("found unexpected input %v", input)
|
||
}
|
||
}
|
||
}
|
||
|
||
// assertTxSweepsInputs ensures that the transaction returned within the value
|
||
// received from resultChan spends the given inputs.
|
||
func assertTxSweepsInputs(t *testing.T, sweepTx *wire.MsgTx,
|
||
inputs ...input.Input) {
|
||
|
||
t.Helper()
|
||
|
||
if len(sweepTx.TxIn) != len(inputs) {
|
||
t.Fatalf("expected sweep tx to contain %d inputs, got %d",
|
||
len(inputs), len(sweepTx.TxIn))
|
||
}
|
||
m := make(map[wire.OutPoint]struct{}, len(inputs))
|
||
for _, input := range inputs {
|
||
m[*input.OutPoint()] = struct{}{}
|
||
}
|
||
for _, txIn := range sweepTx.TxIn {
|
||
if _, ok := m[txIn.PreviousOutPoint]; !ok {
|
||
t.Fatalf("expected tx %v to spend input %v",
|
||
txIn.PreviousOutPoint, sweepTx.TxHash())
|
||
}
|
||
}
|
||
}
|
||
|
||
// assertTxFeeRate asserts that the transaction was created with the given
|
||
// inputs and fee rate.
|
||
//
|
||
// NOTE: This assumes that transactions only have one output, as this is the
|
||
// only type of transaction the UtxoSweeper can create at the moment.
|
||
func assertTxFeeRate(t *testing.T, tx *wire.MsgTx,
|
||
expectedFeeRate chainfee.SatPerKWeight, changePk []byte,
|
||
inputs ...input.Input) {
|
||
|
||
t.Helper()
|
||
|
||
if len(tx.TxIn) != len(inputs) {
|
||
t.Fatalf("expected %d inputs, got %d", len(tx.TxIn), len(inputs))
|
||
}
|
||
|
||
m := make(map[wire.OutPoint]input.Input, len(inputs))
|
||
for _, input := range inputs {
|
||
m[*input.OutPoint()] = input
|
||
}
|
||
|
||
var inputAmt int64
|
||
for _, txIn := range tx.TxIn {
|
||
input, ok := m[txIn.PreviousOutPoint]
|
||
if !ok {
|
||
t.Fatalf("expected input %v to be provided",
|
||
txIn.PreviousOutPoint)
|
||
}
|
||
inputAmt += input.SignDesc().Output.Value
|
||
}
|
||
outputAmt := tx.TxOut[0].Value
|
||
|
||
fee := btcutil.Amount(inputAmt - outputAmt)
|
||
_, estimator, err := getWeightEstimate(inputs, nil, 0, changePk)
|
||
require.NoError(t, err)
|
||
|
||
txWeight := estimator.weight()
|
||
|
||
expectedFee := expectedFeeRate.FeeForWeight(int64(txWeight))
|
||
if fee != expectedFee {
|
||
t.Fatalf("expected fee rate %v results in %v fee, got %v fee",
|
||
expectedFeeRate, expectedFee, fee)
|
||
}
|
||
}
|
||
|
||
// TestSuccess tests the sweeper happy flow.
|
||
func TestSuccess(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweeping an input without a fee preference should result in an error.
|
||
_, err := ctx.sweeper.SweepInput(spendableInputs[0], Params{})
|
||
if err != ErrNoFeePreference {
|
||
t.Fatalf("expected ErrNoFeePreference, got %v", err)
|
||
}
|
||
|
||
resultChan, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
sweepTx := ctx.receiveTx()
|
||
|
||
ctx.backend.mine()
|
||
|
||
select {
|
||
case result := <-resultChan:
|
||
if result.Err != nil {
|
||
t.Fatalf("expected successful spend, but received "+
|
||
"error %v instead", result.Err)
|
||
}
|
||
if result.Tx.TxHash() != sweepTx.TxHash() {
|
||
t.Fatalf("expected sweep tx ")
|
||
}
|
||
case <-time.After(5 * time.Second):
|
||
t.Fatalf("no result received")
|
||
}
|
||
|
||
ctx.finish(1)
|
||
|
||
// Assert that last tx is stored in the database so we can republish
|
||
// on restart.
|
||
lastTx, err := ctx.store.GetLastPublishedTx()
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
if lastTx == nil || sweepTx.TxHash() != lastTx.TxHash() {
|
||
t.Fatalf("last tx not stored")
|
||
}
|
||
}
|
||
|
||
// TestDust asserts that inputs that are not big enough to raise above the dust
|
||
// limit, are held back until the total set does surpass the limit.
|
||
func TestDust(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweeping a single output produces a tx of 486 weight units. With the
|
||
// test fee rate, the sweep tx will pay 4860 sat in fees.
|
||
//
|
||
// Create an input so that the output after paying fees is still
|
||
// positive (400 sat), but less than the dust limit (537 sat) for the
|
||
// sweep tx output script (P2WPKH).
|
||
dustInput := createTestInput(5260, input.CommitmentTimeLock)
|
||
|
||
_, err := ctx.sweeper.SweepInput(&dustInput, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// No sweep transaction is expected now. The sweeper should recognize
|
||
// that the sweep output will not be relayed and not generate the tx. It
|
||
// isn't possible to attach a wallet utxo either, because the added
|
||
// weight would create a negatively yielding transaction at this fee
|
||
// rate.
|
||
|
||
// Sweep another input that brings the tx output above the dust limit.
|
||
largeInput := createTestInput(100000, input.CommitmentTimeLock)
|
||
|
||
_, err = ctx.sweeper.SweepInput(&largeInput, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// The second input brings the sweep output above the dust limit. We
|
||
// expect a sweep tx now.
|
||
|
||
sweepTx := ctx.receiveTx()
|
||
if len(sweepTx.TxIn) != 2 {
|
||
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
|
||
"inputs instead", len(sweepTx.TxIn))
|
||
}
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestWalletUtxo asserts that inputs that are not big enough to raise above the
|
||
// dust limit are accompanied by a wallet utxo to make them sweepable.
|
||
func TestWalletUtxo(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweeping a single output produces a tx of 439 weight units. At the
|
||
// fee floor, the sweep tx will pay 439*253/1000 = 111 sat in fees.
|
||
//
|
||
// Create an input so that the output after paying fees is still
|
||
// positive (183 sat), but less than the dust limit (537 sat) for the
|
||
// sweep tx output script (P2WPKH).
|
||
//
|
||
// What we now expect is that the sweeper will attach a utxo from the
|
||
// wallet. This increases the tx weight to 712 units with a fee of 180
|
||
// sats. The tx yield becomes then 294-180 = 114 sats.
|
||
dustInput := createTestInput(294, input.WitnessKeyHash)
|
||
|
||
_, err := ctx.sweeper.SweepInput(
|
||
&dustInput,
|
||
Params{Fee: FeePreference{FeeRate: chainfee.FeePerKwFloor}},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
sweepTx := ctx.receiveTx()
|
||
if len(sweepTx.TxIn) != 2 {
|
||
t.Fatalf("Expected tx to sweep 2 inputs, but contains %v "+
|
||
"inputs instead", len(sweepTx.TxIn))
|
||
}
|
||
|
||
// Calculate expected output value based on wallet utxo of 1_000_000
|
||
// sats.
|
||
expectedOutputValue := int64(294 + 1_000_000 - 180)
|
||
if sweepTx.TxOut[0].Value != expectedOutputValue {
|
||
t.Fatalf("Expected output value of %v, but got %v",
|
||
expectedOutputValue, sweepTx.TxOut[0].Value)
|
||
}
|
||
|
||
ctx.backend.mine()
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestNegativeInput asserts that no inputs with a negative yield are swept.
|
||
// Negative yield means that the value minus the added fee is negative.
|
||
func TestNegativeInput(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep an input large enough to cover fees, so in any case the tx
|
||
// output will be above the dust limit.
|
||
largeInput := createTestInput(100000, input.CommitmentNoDelay)
|
||
largeInputResult, err := ctx.sweeper.SweepInput(
|
||
&largeInput, defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Sweep an additional input with a negative net yield. The weight of
|
||
// the HtlcAcceptedRemoteSuccess input type adds more in fees than its
|
||
// value at the current fee level.
|
||
negInput := createTestInput(2900, input.HtlcOfferedRemoteTimeout)
|
||
negInputResult, err := ctx.sweeper.SweepInput(&negInput, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Sweep a third input that has a smaller output than the previous one,
|
||
// but yields positively because of its lower weight.
|
||
positiveInput := createTestInput(2800, input.CommitmentNoDelay)
|
||
positiveInputResult, err := ctx.sweeper.SweepInput(
|
||
&positiveInput, defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// We expect that a sweep tx is published now, but it should only
|
||
// contain the large input. The negative input should stay out of sweeps
|
||
// until fees come down to get a positive net yield.
|
||
sweepTx1 := ctx.receiveTx()
|
||
assertTxSweepsInputs(t, &sweepTx1, &largeInput, &positiveInput)
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(largeInputResult, nil)
|
||
ctx.expectResult(positiveInputResult, nil)
|
||
|
||
// Lower fee rate so that the negative input is no longer negative.
|
||
ctx.estimator.updateFees(1000, 1000)
|
||
|
||
// Create another large input.
|
||
secondLargeInput := createTestInput(100000, input.CommitmentNoDelay)
|
||
secondLargeInputResult, err := ctx.sweeper.SweepInput(
|
||
&secondLargeInput, defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
sweepTx2 := ctx.receiveTx()
|
||
assertTxSweepsInputs(t, &sweepTx2, &secondLargeInput, &negInput)
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(secondLargeInputResult, nil)
|
||
ctx.expectResult(negInputResult, nil)
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestChunks asserts that large sets of inputs are split into multiple txes.
|
||
func TestChunks(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep five inputs.
|
||
for _, input := range spendableInputs[:5] {
|
||
_, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// We expect two txes to be published because of the max input count of
|
||
// three.
|
||
sweepTx1 := ctx.receiveTx()
|
||
if len(sweepTx1.TxIn) != 3 {
|
||
t.Fatalf("Expected first tx to sweep 3 inputs, but contains %v "+
|
||
"inputs instead", len(sweepTx1.TxIn))
|
||
}
|
||
|
||
sweepTx2 := ctx.receiveTx()
|
||
if len(sweepTx2.TxIn) != 2 {
|
||
t.Fatalf("Expected first tx to sweep 2 inputs, but contains %v "+
|
||
"inputs instead", len(sweepTx1.TxIn))
|
||
}
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRemoteSpend asserts that remote spends are properly detected and handled
|
||
// both before the sweep is published as well as after.
|
||
func TestRemoteSpend(t *testing.T) {
|
||
t.Run("pre-sweep", func(t *testing.T) {
|
||
testRemoteSpend(t, false)
|
||
})
|
||
t.Run("post-sweep", func(t *testing.T) {
|
||
testRemoteSpend(t, true)
|
||
})
|
||
}
|
||
|
||
func testRemoteSpend(t *testing.T, postSweep bool) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
resultChan1, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
resultChan2, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[1], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Spend the input with an unknown tx.
|
||
remoteTx := &wire.MsgTx{
|
||
TxIn: []*wire.TxIn{
|
||
{
|
||
PreviousOutPoint: *(spendableInputs[0].OutPoint()),
|
||
},
|
||
},
|
||
}
|
||
err = ctx.backend.publishTransaction(remoteTx)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
if postSweep {
|
||
ctx.tick()
|
||
|
||
// Tx publication by sweeper returns ErrDoubleSpend. Sweeper
|
||
// will retry the inputs without reporting a result. It could be
|
||
// spent by the remote party.
|
||
ctx.receiveTx()
|
||
}
|
||
|
||
ctx.backend.mine()
|
||
|
||
select {
|
||
case result := <-resultChan1:
|
||
if result.Err != ErrRemoteSpend {
|
||
t.Fatalf("expected remote spend")
|
||
}
|
||
if result.Tx.TxHash() != remoteTx.TxHash() {
|
||
t.Fatalf("expected remote spend tx")
|
||
}
|
||
case <-time.After(5 * time.Second):
|
||
t.Fatalf("no result received")
|
||
}
|
||
|
||
if !postSweep {
|
||
// Assert that the sweeper sweeps the remaining input.
|
||
ctx.tick()
|
||
sweepTx := ctx.receiveTx()
|
||
|
||
if len(sweepTx.TxIn) != 1 {
|
||
t.Fatal("expected sweep to only sweep the one remaining output")
|
||
}
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(resultChan2, nil)
|
||
|
||
ctx.finish(1)
|
||
} else {
|
||
// Expected sweeper to be still listening for spend of the
|
||
// error input.
|
||
ctx.finish(2)
|
||
|
||
select {
|
||
case <-resultChan2:
|
||
t.Fatalf("no result expected for error input")
|
||
default:
|
||
}
|
||
}
|
||
}
|
||
|
||
// TestIdempotency asserts that offering the same input multiple times is
|
||
// handled correctly.
|
||
func TestIdempotency(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
input := spendableInputs[0]
|
||
resultChan1, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
resultChan2, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
ctx.receiveTx()
|
||
|
||
resultChan3, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Spend the input of the sweep tx.
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(resultChan1, nil)
|
||
ctx.expectResult(resultChan2, nil)
|
||
ctx.expectResult(resultChan3, nil)
|
||
|
||
// Offer the same input again. The sweeper will register a spend ntfn
|
||
// for this input. Because the input has already been spent, it will
|
||
// immediately receive the spend notification with a spending tx hash.
|
||
// Because the sweeper kept track of all of its sweep txes, it will
|
||
// recognize the spend as its own.
|
||
resultChan4, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
ctx.expectResult(resultChan4, nil)
|
||
|
||
// Timer is still running, but spend notification was delivered before
|
||
// it expired.
|
||
ctx.tick()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestNoInputs asserts that nothing happens if nothing happens.
|
||
func TestNoInputs(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// No tx should appear. This is asserted in finish().
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRestart asserts that the sweeper picks up sweeping properly after
|
||
// a restart.
|
||
func TestRestart(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep input and expect sweep tx.
|
||
input1 := spendableInputs[0]
|
||
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
ctx.tick()
|
||
|
||
ctx.receiveTx()
|
||
|
||
// Restart sweeper.
|
||
ctx.restartSweeper()
|
||
|
||
// Expect last tx to be republished.
|
||
ctx.receiveTx()
|
||
|
||
// Simulate other subsystem (e.g. contract resolver) re-offering inputs.
|
||
spendChan1, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
input2 := spendableInputs[1]
|
||
spendChan2, err := ctx.sweeper.SweepInput(input2, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Spend inputs of sweep txes and verify that spend channels signal
|
||
// spends.
|
||
ctx.backend.mine()
|
||
|
||
// Sweeper should recognize that its sweep tx of the previous run is
|
||
// spending the input.
|
||
select {
|
||
case result := <-spendChan1:
|
||
if result.Err != nil {
|
||
t.Fatalf("expected successful sweep")
|
||
}
|
||
case <-time.After(defaultTestTimeout):
|
||
t.Fatalf("no result received")
|
||
}
|
||
|
||
// Timer tick should trigger republishing a sweep for the remaining
|
||
// input.
|
||
ctx.tick()
|
||
|
||
ctx.receiveTx()
|
||
|
||
ctx.backend.mine()
|
||
|
||
select {
|
||
case result := <-spendChan2:
|
||
if result.Err != nil {
|
||
t.Fatalf("expected successful sweep")
|
||
}
|
||
case <-time.After(defaultTestTimeout):
|
||
t.Fatalf("no result received")
|
||
}
|
||
|
||
// Restart sweeper again. No action is expected.
|
||
ctx.restartSweeper()
|
||
|
||
// Expect last tx to be republished.
|
||
ctx.receiveTx()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRestartRemoteSpend asserts that the sweeper picks up sweeping properly after
|
||
// a restart with remote spend.
|
||
func TestRestartRemoteSpend(t *testing.T) {
|
||
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep input.
|
||
input1 := spendableInputs[0]
|
||
if _, err := ctx.sweeper.SweepInput(input1, defaultFeePref); err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Sweep another input.
|
||
input2 := spendableInputs[1]
|
||
if _, err := ctx.sweeper.SweepInput(input2, defaultFeePref); err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
sweepTx := ctx.receiveTx()
|
||
|
||
// Restart sweeper.
|
||
ctx.restartSweeper()
|
||
|
||
// Expect last tx to be republished.
|
||
ctx.receiveTx()
|
||
|
||
// Replace the sweep tx with a remote tx spending input 1.
|
||
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
|
||
|
||
remoteTx := &wire.MsgTx{
|
||
TxIn: []*wire.TxIn{
|
||
{
|
||
PreviousOutPoint: *(input2.OutPoint()),
|
||
},
|
||
},
|
||
}
|
||
if err := ctx.backend.publishTransaction(remoteTx); err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Mine remote spending tx.
|
||
ctx.backend.mine()
|
||
|
||
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
|
||
spendChan, err := ctx.sweeper.SweepInput(input1, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Expect sweeper to construct a new tx, because input 1 was spend
|
||
// remotely.
|
||
ctx.tick()
|
||
|
||
ctx.receiveTx()
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(spendChan, nil)
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRestartConfirmed asserts that the sweeper picks up sweeping properly after
|
||
// a restart with a confirm of our own sweep tx.
|
||
func TestRestartConfirmed(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep input.
|
||
input := spendableInputs[0]
|
||
if _, err := ctx.sweeper.SweepInput(input, defaultFeePref); err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
ctx.receiveTx()
|
||
|
||
// Restart sweeper.
|
||
ctx.restartSweeper()
|
||
|
||
// Expect last tx to be republished.
|
||
ctx.receiveTx()
|
||
|
||
// Mine the sweep tx.
|
||
ctx.backend.mine()
|
||
|
||
// Simulate other subsystem (e.g. contract resolver) re-offering input 0.
|
||
spendChan, err := ctx.sweeper.SweepInput(input, defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Here we expect again a successful sweep.
|
||
ctx.expectResult(spendChan, nil)
|
||
|
||
// Timer started but not needed because spend ntfn was sent.
|
||
ctx.tick()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRestartRepublish asserts that sweeper republishes the last published
|
||
// tx on restart.
|
||
func TestRestartRepublish(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
_, err := ctx.sweeper.SweepInput(spendableInputs[0], defaultFeePref)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
sweepTx := ctx.receiveTx()
|
||
|
||
// Restart sweeper again. No action is expected.
|
||
ctx.restartSweeper()
|
||
|
||
republishedTx := ctx.receiveTx()
|
||
|
||
if sweepTx.TxHash() != republishedTx.TxHash() {
|
||
t.Fatalf("last tx not republished")
|
||
}
|
||
|
||
// Mine the tx to conclude the test properly.
|
||
ctx.backend.mine()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestRetry tests the sweeper retry flow.
|
||
func TestRetry(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
resultChan0, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// We expect a sweep to be published.
|
||
ctx.receiveTx()
|
||
|
||
// New block arrives. This should trigger a new sweep attempt timer
|
||
// start.
|
||
ctx.notifier.NotifyEpoch(1000)
|
||
|
||
// Offer a fresh input.
|
||
resultChan1, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[1], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// Two txes are expected to be published, because new and retry inputs
|
||
// are separated.
|
||
ctx.receiveTx()
|
||
ctx.receiveTx()
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.expectResult(resultChan0, nil)
|
||
ctx.expectResult(resultChan1, nil)
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestGiveUp asserts that the sweeper gives up on an input if it can't be swept
|
||
// after a configured number of attempts.a
|
||
func TestGiveUp(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
resultChan0, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
ctx.tick()
|
||
|
||
// We expect a sweep to be published at height 100 (mockChainIOHeight).
|
||
ctx.receiveTx()
|
||
|
||
// Because of MaxSweepAttemps, two more sweeps will be attempted. We
|
||
// configured exponential back-off without randomness for the test. The
|
||
// second attempt, we expect to happen at 101. The third attempt at 103.
|
||
// At that point, the input is expected to be failed.
|
||
|
||
// Second attempt
|
||
ctx.notifier.NotifyEpoch(101)
|
||
ctx.tick()
|
||
ctx.receiveTx()
|
||
|
||
// Third attempt
|
||
ctx.notifier.NotifyEpoch(103)
|
||
ctx.tick()
|
||
ctx.receiveTx()
|
||
|
||
ctx.expectResult(resultChan0, ErrTooManyAttempts)
|
||
|
||
ctx.backend.mine()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestDifferentFeePreferences ensures that the sweeper can have different
|
||
// transactions for different fee preferences. These transactions should be
|
||
// broadcast from highest to lowest fee rate.
|
||
func TestDifferentFeePreferences(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Throughout this test, we'll be attempting to sweep three inputs, two
|
||
// with the higher fee preference, and the last with the lower. We do
|
||
// this to ensure the sweeper can broadcast distinct transactions for
|
||
// each sweep with a different fee preference.
|
||
lowFeePref := FeePreference{ConfTarget: 12}
|
||
lowFeeRate := chainfee.SatPerKWeight(5000)
|
||
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
|
||
|
||
highFeePref := FeePreference{ConfTarget: 6}
|
||
highFeeRate := chainfee.SatPerKWeight(10000)
|
||
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
|
||
|
||
input1 := spendableInputs[0]
|
||
resultChan1, err := ctx.sweeper.SweepInput(
|
||
input1, Params{Fee: highFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
input2 := spendableInputs[1]
|
||
resultChan2, err := ctx.sweeper.SweepInput(
|
||
input2, Params{Fee: highFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
input3 := spendableInputs[2]
|
||
resultChan3, err := ctx.sweeper.SweepInput(
|
||
input3, Params{Fee: lowFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Start the sweeper's batch ticker, which should cause the sweep
|
||
// transactions to be broadcast in order of high to low fee preference.
|
||
ctx.tick()
|
||
|
||
// Generate the same type of sweep script that was used for weight
|
||
// estimation.
|
||
changePk, err := ctx.sweeper.cfg.GenSweepScript()
|
||
require.NoError(t, err)
|
||
|
||
// The first transaction broadcast should be the one spending the higher
|
||
// fee rate inputs.
|
||
sweepTx1 := ctx.receiveTx()
|
||
assertTxFeeRate(t, &sweepTx1, highFeeRate, changePk, input1, input2)
|
||
|
||
// The second should be the one spending the lower fee rate inputs.
|
||
sweepTx2 := ctx.receiveTx()
|
||
assertTxFeeRate(t, &sweepTx2, lowFeeRate, changePk, input3)
|
||
|
||
// With the transactions broadcast, we'll mine a block to so that the
|
||
// result is delivered to each respective client.
|
||
ctx.backend.mine()
|
||
resultChans := []chan Result{resultChan1, resultChan2, resultChan3}
|
||
for _, resultChan := range resultChans {
|
||
ctx.expectResult(resultChan, nil)
|
||
}
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestPendingInputs ensures that the sweeper correctly determines the inputs
|
||
// pending to be swept.
|
||
func TestPendingInputs(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Throughout this test, we'll be attempting to sweep three inputs, two
|
||
// with the higher fee preference, and the last with the lower. We do
|
||
// this to ensure the sweeper can return all pending inputs, even those
|
||
// with different fee preferences.
|
||
const (
|
||
lowFeeRate = 5000
|
||
highFeeRate = 10000
|
||
)
|
||
|
||
lowFeePref := FeePreference{
|
||
ConfTarget: 12,
|
||
}
|
||
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
|
||
|
||
highFeePref := FeePreference{
|
||
ConfTarget: 6,
|
||
}
|
||
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
|
||
|
||
input1 := spendableInputs[0]
|
||
resultChan1, err := ctx.sweeper.SweepInput(
|
||
input1, Params{Fee: highFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
input2 := spendableInputs[1]
|
||
_, err = ctx.sweeper.SweepInput(
|
||
input2, Params{Fee: highFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
input3 := spendableInputs[2]
|
||
resultChan3, err := ctx.sweeper.SweepInput(
|
||
input3, Params{Fee: lowFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// We should expect to see all inputs pending.
|
||
ctx.assertPendingInputs(input1, input2, input3)
|
||
|
||
// We should expect to see both sweep transactions broadcast. The higher
|
||
// fee rate sweep should be broadcast first. We'll remove the lower fee
|
||
// rate sweep to ensure we can detect pending inputs after a sweep.
|
||
// Once the higher fee rate sweep confirms, we should no longer see
|
||
// those inputs pending.
|
||
ctx.tick()
|
||
ctx.receiveTx()
|
||
lowFeeRateTx := ctx.receiveTx()
|
||
ctx.backend.deleteUnconfirmed(lowFeeRateTx.TxHash())
|
||
ctx.backend.mine()
|
||
ctx.expectResult(resultChan1, nil)
|
||
ctx.assertPendingInputs(input3)
|
||
|
||
// We'll then trigger a new block to rebroadcast the lower fee rate
|
||
// sweep. Once again we'll ensure those inputs are no longer pending
|
||
// once the sweep transaction confirms.
|
||
ctx.backend.notifier.NotifyEpoch(101)
|
||
ctx.tick()
|
||
ctx.receiveTx()
|
||
ctx.backend.mine()
|
||
ctx.expectResult(resultChan3, nil)
|
||
ctx.assertPendingInputs()
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestBumpFeeRBF ensures that the UtxoSweeper can properly handle a fee bump
|
||
// request for an input it is currently attempting to sweep. When sweeping the
|
||
// input with the higher fee rate, a replacement transaction is created.
|
||
func TestBumpFeeRBF(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
lowFeePref := FeePreference{ConfTarget: 144}
|
||
lowFeeRate := chainfee.FeePerKwFloor
|
||
ctx.estimator.blocksToFee[lowFeePref.ConfTarget] = lowFeeRate
|
||
|
||
// We'll first try to bump the fee of an output currently unknown to the
|
||
// UtxoSweeper. Doing so should result in a lnwallet.ErrNotMine error.
|
||
_, err := ctx.sweeper.UpdateParams(
|
||
wire.OutPoint{}, ParamsUpdate{Fee: lowFeePref},
|
||
)
|
||
if err != lnwallet.ErrNotMine {
|
||
t.Fatalf("expected error lnwallet.ErrNotMine, got \"%v\"", err)
|
||
}
|
||
|
||
// We'll then attempt to sweep an input, which we'll use to bump its fee
|
||
// later on.
|
||
input := createTestInput(
|
||
btcutil.SatoshiPerBitcoin, input.CommitmentTimeLock,
|
||
)
|
||
sweepResult, err := ctx.sweeper.SweepInput(
|
||
&input, Params{Fee: lowFeePref},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
// Generate the same type of change script used so we can have accurate
|
||
// weight estimation.
|
||
changePk, err := ctx.sweeper.cfg.GenSweepScript()
|
||
require.NoError(t, err)
|
||
|
||
// Ensure that a transaction is broadcast with the lower fee preference.
|
||
ctx.tick()
|
||
lowFeeTx := ctx.receiveTx()
|
||
assertTxFeeRate(t, &lowFeeTx, lowFeeRate, changePk, &input)
|
||
|
||
// We'll then attempt to bump its fee rate.
|
||
highFeePref := FeePreference{ConfTarget: 6}
|
||
highFeeRate := DefaultMaxFeeRate
|
||
ctx.estimator.blocksToFee[highFeePref.ConfTarget] = highFeeRate
|
||
|
||
// We should expect to see an error if a fee preference isn't provided.
|
||
_, err = ctx.sweeper.UpdateParams(*input.OutPoint(), ParamsUpdate{})
|
||
if err != ErrNoFeePreference {
|
||
t.Fatalf("expected ErrNoFeePreference, got %v", err)
|
||
}
|
||
|
||
bumpResult, err := ctx.sweeper.UpdateParams(
|
||
*input.OutPoint(), ParamsUpdate{Fee: highFeePref},
|
||
)
|
||
require.NoError(t, err, "unable to bump input's fee")
|
||
|
||
// A higher fee rate transaction should be immediately broadcast.
|
||
ctx.tick()
|
||
highFeeTx := ctx.receiveTx()
|
||
assertTxFeeRate(t, &highFeeTx, highFeeRate, changePk, &input)
|
||
|
||
// We'll finish our test by mining the sweep transaction.
|
||
ctx.backend.mine()
|
||
ctx.expectResult(sweepResult, nil)
|
||
ctx.expectResult(bumpResult, nil)
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
// TestExclusiveGroup tests the sweeper exclusive group functionality.
|
||
func TestExclusiveGroup(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Sweep three inputs in the same exclusive group.
|
||
var results []chan Result
|
||
for i := 0; i < 3; i++ {
|
||
exclusiveGroup := uint64(1)
|
||
result, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[i], Params{
|
||
Fee: FeePreference{ConfTarget: 6},
|
||
ExclusiveGroup: &exclusiveGroup,
|
||
},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
results = append(results, result)
|
||
}
|
||
|
||
// We expect all inputs to be published in separate transactions, even
|
||
// though they share the same fee preference.
|
||
ctx.tick()
|
||
for i := 0; i < 3; i++ {
|
||
sweepTx := ctx.receiveTx()
|
||
if len(sweepTx.TxOut) != 1 {
|
||
t.Fatal("expected a single tx out in the sweep tx")
|
||
}
|
||
|
||
// Remove all txes except for the one that sweeps the first
|
||
// input. This simulates the sweeps being conflicting.
|
||
if sweepTx.TxIn[0].PreviousOutPoint !=
|
||
*spendableInputs[0].OutPoint() {
|
||
|
||
ctx.backend.deleteUnconfirmed(sweepTx.TxHash())
|
||
}
|
||
}
|
||
|
||
// Mine the first sweep tx.
|
||
ctx.backend.mine()
|
||
|
||
// Expect the first input to be swept by the confirmed sweep tx.
|
||
result0 := <-results[0]
|
||
if result0.Err != nil {
|
||
t.Fatal("expected first input to be swept")
|
||
}
|
||
|
||
// Expect the other two inputs to return an error. They have no chance
|
||
// of confirming.
|
||
result1 := <-results[1]
|
||
if result1.Err != ErrExclusiveGroupSpend {
|
||
t.Fatal("expected second input to be canceled")
|
||
}
|
||
|
||
result2 := <-results[2]
|
||
if result2.Err != ErrExclusiveGroupSpend {
|
||
t.Fatal("expected third input to be canceled")
|
||
}
|
||
}
|
||
|
||
// TestCpfp tests that the sweeper spends cpfp inputs at a fee rate that exceeds
|
||
// the parent tx fee rate.
|
||
func TestCpfp(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
ctx.estimator.updateFees(1000, chainfee.FeePerKwFloor)
|
||
|
||
// Offer an input with an unconfirmed parent tx to the sweeper. The
|
||
// parent tx pays 3000 sat/kw.
|
||
hash := chainhash.Hash{1}
|
||
input := input.MakeBaseInput(
|
||
&wire.OutPoint{Hash: hash},
|
||
input.CommitmentTimeLock,
|
||
&input.SignDescriptor{
|
||
Output: &wire.TxOut{
|
||
Value: 330,
|
||
},
|
||
KeyDesc: keychain.KeyDescriptor{
|
||
PubKey: testPubKey,
|
||
},
|
||
},
|
||
0,
|
||
&input.TxInfo{
|
||
Weight: 300,
|
||
Fee: 900,
|
||
},
|
||
)
|
||
|
||
feePref := FeePreference{ConfTarget: 6}
|
||
result, err := ctx.sweeper.SweepInput(
|
||
&input, Params{Fee: feePref, Force: true},
|
||
)
|
||
require.NoError(t, err)
|
||
|
||
// Because we sweep at 1000 sat/kw, the parent cannot be paid for. We
|
||
// expect the sweeper to remain idle.
|
||
ctx.assertNoTick()
|
||
|
||
// Increase the fee estimate to above the parent tx fee rate.
|
||
ctx.estimator.updateFees(5000, chainfee.FeePerKwFloor)
|
||
|
||
// Signal a new block. This is a trigger for the sweeper to refresh fee
|
||
// estimates.
|
||
ctx.notifier.NotifyEpoch(1000)
|
||
|
||
// Now we do expect a sweep transaction to be published with our input
|
||
// and an attached wallet utxo.
|
||
ctx.tick()
|
||
tx := ctx.receiveTx()
|
||
require.Len(t, tx.TxIn, 2)
|
||
require.Len(t, tx.TxOut, 1)
|
||
|
||
// As inputs we have 10000 sats from the wallet and 330 sats from the
|
||
// cpfp input. The sweep tx is weight expected to be 759 units. There is
|
||
// an additional 300 weight units from the parent to include in the
|
||
// package, making a total of 1059. At 5000 sat/kw, the required fee for
|
||
// the package is 5295 sats. The parent already paid 900 sats, so there
|
||
// is 4395 sat remaining to be paid. The expected output value is
|
||
// therefore: 1_000_000 + 330 - 4395 = 995 935.
|
||
require.Equal(t, int64(995_935), tx.TxOut[0].Value)
|
||
|
||
// Mine the tx and assert that the result is passed back.
|
||
ctx.backend.mine()
|
||
ctx.expectResult(result, nil)
|
||
|
||
ctx.finish(1)
|
||
}
|
||
|
||
var (
|
||
testInputsA = pendingInputs{
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 0}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 1}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 2}: &pendingInput{},
|
||
}
|
||
|
||
testInputsB = pendingInputs{
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 10}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 11}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 12}: &pendingInput{},
|
||
}
|
||
|
||
testInputsC = pendingInputs{
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 0}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 1}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 2}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 10}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 11}: &pendingInput{},
|
||
wire.OutPoint{Hash: chainhash.Hash{}, Index: 12}: &pendingInput{},
|
||
}
|
||
)
|
||
|
||
// TestMergeClusters check that we properly can merge clusters together,
|
||
// according to their required locktime.
|
||
func TestMergeClusters(t *testing.T) {
|
||
t.Parallel()
|
||
|
||
lockTime1 := uint32(100)
|
||
lockTime2 := uint32(200)
|
||
|
||
testCases := []struct {
|
||
name string
|
||
a inputCluster
|
||
b inputCluster
|
||
res []inputCluster
|
||
}{
|
||
{
|
||
name: "max fee rate",
|
||
a: inputCluster{
|
||
sweepFeeRate: 5000,
|
||
inputs: testInputsA,
|
||
},
|
||
b: inputCluster{
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsB,
|
||
},
|
||
res: []inputCluster{
|
||
{
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsC,
|
||
},
|
||
},
|
||
},
|
||
{
|
||
name: "same locktime",
|
||
a: inputCluster{
|
||
lockTime: &lockTime1,
|
||
sweepFeeRate: 5000,
|
||
inputs: testInputsA,
|
||
},
|
||
b: inputCluster{
|
||
lockTime: &lockTime1,
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsB,
|
||
},
|
||
res: []inputCluster{
|
||
{
|
||
lockTime: &lockTime1,
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsC,
|
||
},
|
||
},
|
||
},
|
||
{
|
||
name: "diff locktime",
|
||
a: inputCluster{
|
||
lockTime: &lockTime1,
|
||
sweepFeeRate: 5000,
|
||
inputs: testInputsA,
|
||
},
|
||
b: inputCluster{
|
||
lockTime: &lockTime2,
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsB,
|
||
},
|
||
res: []inputCluster{
|
||
{
|
||
lockTime: &lockTime1,
|
||
sweepFeeRate: 5000,
|
||
inputs: testInputsA,
|
||
},
|
||
{
|
||
lockTime: &lockTime2,
|
||
sweepFeeRate: 7000,
|
||
inputs: testInputsB,
|
||
},
|
||
},
|
||
},
|
||
}
|
||
|
||
for _, test := range testCases {
|
||
merged := mergeClusters(test.a, test.b)
|
||
if !reflect.DeepEqual(merged, test.res) {
|
||
t.Fatalf("[%s] unexpected result: %v",
|
||
test.name, spew.Sdump(merged))
|
||
}
|
||
}
|
||
}
|
||
|
||
// TestZipClusters tests that we can merge lists of inputs clusters correctly.
|
||
func TestZipClusters(t *testing.T) {
|
||
t.Parallel()
|
||
|
||
createCluster := func(inp pendingInputs, f chainfee.SatPerKWeight) inputCluster {
|
||
return inputCluster{
|
||
sweepFeeRate: f,
|
||
inputs: inp,
|
||
}
|
||
}
|
||
|
||
testCases := []struct {
|
||
name string
|
||
as []inputCluster
|
||
bs []inputCluster
|
||
res []inputCluster
|
||
}{
|
||
{
|
||
name: "merge A into B",
|
||
as: []inputCluster{
|
||
createCluster(testInputsA, 5000),
|
||
},
|
||
bs: []inputCluster{
|
||
createCluster(testInputsB, 7000),
|
||
},
|
||
res: []inputCluster{
|
||
createCluster(testInputsC, 7000),
|
||
},
|
||
},
|
||
{
|
||
name: "A can't merge with B",
|
||
as: []inputCluster{
|
||
createCluster(testInputsA, 7000),
|
||
},
|
||
bs: []inputCluster{
|
||
createCluster(testInputsB, 5000),
|
||
},
|
||
res: []inputCluster{
|
||
createCluster(testInputsA, 7000),
|
||
createCluster(testInputsB, 5000),
|
||
},
|
||
},
|
||
{
|
||
name: "empty bs",
|
||
as: []inputCluster{
|
||
createCluster(testInputsA, 7000),
|
||
},
|
||
bs: []inputCluster{},
|
||
res: []inputCluster{
|
||
createCluster(testInputsA, 7000),
|
||
},
|
||
},
|
||
{
|
||
name: "empty as",
|
||
as: []inputCluster{},
|
||
bs: []inputCluster{
|
||
createCluster(testInputsB, 5000),
|
||
},
|
||
res: []inputCluster{
|
||
createCluster(testInputsB, 5000),
|
||
},
|
||
},
|
||
|
||
{
|
||
name: "zip 3xA into 3xB",
|
||
as: []inputCluster{
|
||
createCluster(testInputsA, 5000),
|
||
createCluster(testInputsA, 5000),
|
||
createCluster(testInputsA, 5000),
|
||
},
|
||
bs: []inputCluster{
|
||
createCluster(testInputsB, 7000),
|
||
createCluster(testInputsB, 7000),
|
||
createCluster(testInputsB, 7000),
|
||
},
|
||
res: []inputCluster{
|
||
createCluster(testInputsC, 7000),
|
||
createCluster(testInputsC, 7000),
|
||
createCluster(testInputsC, 7000),
|
||
},
|
||
},
|
||
{
|
||
name: "zip A into 3xB",
|
||
as: []inputCluster{
|
||
createCluster(testInputsA, 2500),
|
||
},
|
||
bs: []inputCluster{
|
||
createCluster(testInputsB, 3000),
|
||
createCluster(testInputsB, 2000),
|
||
createCluster(testInputsB, 1000),
|
||
},
|
||
res: []inputCluster{
|
||
createCluster(testInputsC, 3000),
|
||
createCluster(testInputsB, 2000),
|
||
createCluster(testInputsB, 1000),
|
||
},
|
||
},
|
||
}
|
||
|
||
for _, test := range testCases {
|
||
zipped := zipClusters(test.as, test.bs)
|
||
if !reflect.DeepEqual(zipped, test.res) {
|
||
t.Fatalf("[%s] unexpected result: %v",
|
||
test.name, spew.Sdump(zipped))
|
||
}
|
||
}
|
||
}
|
||
|
||
type testInput struct {
|
||
*input.BaseInput
|
||
|
||
locktime *uint32
|
||
reqTxOut *wire.TxOut
|
||
}
|
||
|
||
func (i *testInput) RequiredLockTime() (uint32, bool) {
|
||
if i.locktime != nil {
|
||
return *i.locktime, true
|
||
}
|
||
|
||
return 0, false
|
||
}
|
||
|
||
func (i *testInput) RequiredTxOut() *wire.TxOut {
|
||
return i.reqTxOut
|
||
}
|
||
|
||
// CraftInputScript is a custom sign method for the testInput type that will
|
||
// encode the spending outpoint and the tx input index as part of the returned
|
||
// witness.
|
||
func (i *testInput) CraftInputScript(_ input.Signer, txn *wire.MsgTx,
|
||
hashCache *txscript.TxSigHashes,
|
||
prevOutputFetcher txscript.PrevOutputFetcher,
|
||
txinIdx int) (*input.Script, error) {
|
||
|
||
// We'll encode the outpoint in the witness, so we can assert that the
|
||
// expected input was signed at the correct index.
|
||
op := i.OutPoint()
|
||
return &input.Script{
|
||
Witness: [][]byte{
|
||
// We encode the hash of the outpoint...
|
||
op.Hash[:],
|
||
// ..the outpoint index...
|
||
{byte(op.Index)},
|
||
// ..and finally the tx input index.
|
||
{byte(txinIdx)},
|
||
},
|
||
}, nil
|
||
}
|
||
|
||
// assertSignedIndex goes through all inputs to the tx and checks that all
|
||
// testInputs have witnesses corresponding to the outpoints they are spending,
|
||
// and are signed at the correct tx input index. All found testInputs are
|
||
// returned such that we can sum up and sanity check that all testInputs were
|
||
// part of the sweep.
|
||
func assertSignedIndex(t *testing.T, tx *wire.MsgTx,
|
||
testInputs map[wire.OutPoint]*testInput) map[wire.OutPoint]struct{} {
|
||
|
||
found := make(map[wire.OutPoint]struct{})
|
||
for idx, txIn := range tx.TxIn {
|
||
op := txIn.PreviousOutPoint
|
||
|
||
// Not a testInput, it won't have the test encoding we require
|
||
// to check outpoint and index.
|
||
if _, ok := testInputs[op]; !ok {
|
||
continue
|
||
}
|
||
|
||
if _, ok := found[op]; ok {
|
||
t.Fatalf("input already used")
|
||
}
|
||
|
||
// Check it was signes spending the correct outpoint, and at
|
||
// the expected tx input index.
|
||
require.Equal(t, txIn.Witness[0], op.Hash[:])
|
||
require.Equal(t, txIn.Witness[1], []byte{byte(op.Index)})
|
||
require.Equal(t, txIn.Witness[2], []byte{byte(idx)})
|
||
found[op] = struct{}{}
|
||
}
|
||
|
||
return found
|
||
}
|
||
|
||
// TestLockTimes checks that the sweeper properly groups inputs requiring the
|
||
// same locktime together into sweep transactions.
|
||
func TestLockTimes(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// We increase the number of max inputs to a tx so that won't
|
||
// impact our test.
|
||
ctx.sweeper.cfg.MaxInputsPerTx = 100
|
||
|
||
// We will set up the lock times in such a way that we expect the
|
||
// sweeper to divide the inputs into 4 diffeerent transactions.
|
||
const numSweeps = 4
|
||
|
||
// Sweep 8 inputs, using 4 different lock times.
|
||
var (
|
||
results []chan Result
|
||
inputs = make(map[wire.OutPoint]input.Input)
|
||
)
|
||
for i := 0; i < numSweeps*2; i++ {
|
||
lt := uint32(10 + (i % numSweeps))
|
||
inp := &testInput{
|
||
BaseInput: spendableInputs[i],
|
||
locktime: <,
|
||
}
|
||
|
||
result, err := ctx.sweeper.SweepInput(
|
||
inp, Params{
|
||
Fee: FeePreference{ConfTarget: 6},
|
||
},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
results = append(results, result)
|
||
|
||
op := inp.OutPoint()
|
||
inputs[*op] = inp
|
||
}
|
||
|
||
// We also add 3 regular inputs that don't require any specific lock
|
||
// time.
|
||
for i := 0; i < 3; i++ {
|
||
inp := spendableInputs[i+numSweeps*2]
|
||
result, err := ctx.sweeper.SweepInput(
|
||
inp, Params{
|
||
Fee: FeePreference{ConfTarget: 6},
|
||
},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
results = append(results, result)
|
||
|
||
op := inp.OutPoint()
|
||
inputs[*op] = inp
|
||
}
|
||
|
||
// We expect all inputs to be published in separate transactions, even
|
||
// though they share the same fee preference.
|
||
ctx.tick()
|
||
|
||
// Check the sweeps transactions, ensuring all inputs are there, and
|
||
// all the locktimes are satisfied.
|
||
for i := 0; i < numSweeps; i++ {
|
||
sweepTx := ctx.receiveTx()
|
||
if len(sweepTx.TxOut) != 1 {
|
||
t.Fatal("expected a single tx out in the sweep tx")
|
||
}
|
||
|
||
for _, txIn := range sweepTx.TxIn {
|
||
op := txIn.PreviousOutPoint
|
||
inp, ok := inputs[op]
|
||
if !ok {
|
||
t.Fatalf("Unexpected outpoint: %v", op)
|
||
}
|
||
|
||
delete(inputs, op)
|
||
|
||
// If this input had a required locktime, ensure the tx
|
||
// has that set correctly.
|
||
lt, ok := inp.RequiredLockTime()
|
||
if !ok {
|
||
continue
|
||
}
|
||
|
||
if lt != sweepTx.LockTime {
|
||
t.Fatalf("Input required locktime %v, sweep "+
|
||
"tx had locktime %v", lt, sweepTx.LockTime)
|
||
}
|
||
}
|
||
}
|
||
|
||
// The should be no inputs not foud in any of the sweeps.
|
||
if len(inputs) != 0 {
|
||
t.Fatalf("had unsweeped inputs")
|
||
}
|
||
|
||
// Mine the first sweeps
|
||
ctx.backend.mine()
|
||
|
||
// Results should all come back.
|
||
for i := range results {
|
||
result := <-results[i]
|
||
if result.Err != nil {
|
||
t.Fatal("expected input to be swept")
|
||
}
|
||
}
|
||
}
|
||
|
||
// TestRequiredTxOuts checks that inputs having a required TxOut gets swept with
|
||
// sweep transactions paying into these outputs.
|
||
func TestRequiredTxOuts(t *testing.T) {
|
||
// Create some test inputs and locktime vars.
|
||
var inputs []*input.BaseInput
|
||
for i := 0; i < 20; i++ {
|
||
input := createTestInput(
|
||
int64(btcutil.SatoshiPerBitcoin+i*500),
|
||
input.CommitmentTimeLock,
|
||
)
|
||
|
||
inputs = append(inputs, &input)
|
||
}
|
||
|
||
locktime1 := uint32(51)
|
||
locktime2 := uint32(52)
|
||
locktime3 := uint32(53)
|
||
|
||
aPkScript := make([]byte, input.P2WPKHSize)
|
||
aPkScript[0] = 'a'
|
||
|
||
bPkScript := make([]byte, input.P2WSHSize)
|
||
bPkScript[0] = 'b'
|
||
|
||
cPkScript := make([]byte, input.P2PKHSize)
|
||
cPkScript[0] = 'c'
|
||
|
||
dPkScript := make([]byte, input.P2SHSize)
|
||
dPkScript[0] = 'd'
|
||
|
||
ePkScript := make([]byte, input.UnknownWitnessSize)
|
||
ePkScript[0] = 'e'
|
||
|
||
fPkScript := make([]byte, input.P2WSHSize)
|
||
fPkScript[0] = 'f'
|
||
|
||
testCases := []struct {
|
||
name string
|
||
inputs []*testInput
|
||
assertSweeps func(*testing.T, map[wire.OutPoint]*testInput,
|
||
[]*wire.MsgTx)
|
||
}{
|
||
{
|
||
// Single input with a required TX out that is smaller.
|
||
// We expect a change output to be added.
|
||
name: "single input, leftover change",
|
||
inputs: []*testInput{
|
||
{
|
||
BaseInput: inputs[0],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
Value: 100000,
|
||
},
|
||
},
|
||
},
|
||
|
||
// Since the required output value is small, we expect
|
||
// the rest after fees to go into a change output.
|
||
assertSweeps: func(t *testing.T,
|
||
_ map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 1, len(txs))
|
||
|
||
tx := txs[0]
|
||
require.Equal(t, 1, len(tx.TxIn))
|
||
|
||
// We should have two outputs, the required
|
||
// output must be the first one.
|
||
require.Equal(t, 2, len(tx.TxOut))
|
||
out := tx.TxOut[0]
|
||
require.Equal(t, aPkScript, out.PkScript)
|
||
require.Equal(t, int64(100000), out.Value)
|
||
},
|
||
},
|
||
{
|
||
// An input committing to a slightly smaller output, so
|
||
// it will pay its own fees.
|
||
name: "single input, no change",
|
||
inputs: []*testInput{
|
||
{
|
||
BaseInput: inputs[0],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
|
||
// Fee will be about 5340 sats.
|
||
// Subtract a bit more to
|
||
// ensure no dust change output
|
||
// is manifested.
|
||
Value: inputs[0].SignDesc().Output.Value - 6300,
|
||
},
|
||
},
|
||
},
|
||
|
||
// We expect this single input/output pair.
|
||
assertSweeps: func(t *testing.T,
|
||
_ map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 1, len(txs))
|
||
|
||
tx := txs[0]
|
||
require.Equal(t, 1, len(tx.TxIn))
|
||
|
||
require.Equal(t, 1, len(tx.TxOut))
|
||
out := tx.TxOut[0]
|
||
require.Equal(t, aPkScript, out.PkScript)
|
||
require.Equal(
|
||
t,
|
||
inputs[0].SignDesc().Output.Value-6300,
|
||
out.Value,
|
||
)
|
||
},
|
||
},
|
||
{
|
||
// Two inputs, where the first one required no tx out.
|
||
name: "two inputs, one with required tx out",
|
||
inputs: []*testInput{
|
||
{
|
||
|
||
// We add a normal, non-requiredTxOut
|
||
// input. We use test input 10, to make
|
||
// sure this has a higher yield than
|
||
// the other input, and will be
|
||
// attempted added first to the sweep
|
||
// tx.
|
||
BaseInput: inputs[10],
|
||
},
|
||
{
|
||
// The second input requires a TxOut.
|
||
BaseInput: inputs[0],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
Value: inputs[0].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
},
|
||
|
||
// We expect the inputs to have been reordered.
|
||
assertSweeps: func(t *testing.T,
|
||
_ map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 1, len(txs))
|
||
|
||
tx := txs[0]
|
||
require.Equal(t, 2, len(tx.TxIn))
|
||
require.Equal(t, 2, len(tx.TxOut))
|
||
|
||
// The required TxOut should be the first one.
|
||
out := tx.TxOut[0]
|
||
require.Equal(t, aPkScript, out.PkScript)
|
||
require.Equal(
|
||
t, inputs[0].SignDesc().Output.Value,
|
||
out.Value,
|
||
)
|
||
|
||
// The first input should be the one having the
|
||
// required TxOut.
|
||
require.Len(t, tx.TxIn, 2)
|
||
require.Equal(
|
||
t, inputs[0].OutPoint(),
|
||
&tx.TxIn[0].PreviousOutPoint,
|
||
)
|
||
|
||
// Second one is the one without a required tx
|
||
// out.
|
||
require.Equal(
|
||
t, inputs[10].OutPoint(),
|
||
&tx.TxIn[1].PreviousOutPoint,
|
||
)
|
||
},
|
||
},
|
||
|
||
{
|
||
// An input committing to an output of equal value, just
|
||
// add input to pay fees.
|
||
name: "single input, extra fee input",
|
||
inputs: []*testInput{
|
||
{
|
||
BaseInput: inputs[0],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
Value: inputs[0].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
},
|
||
|
||
// We expect an extra input and output.
|
||
assertSweeps: func(t *testing.T,
|
||
_ map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 1, len(txs))
|
||
|
||
tx := txs[0]
|
||
require.Equal(t, 2, len(tx.TxIn))
|
||
|
||
require.Equal(t, 2, len(tx.TxOut))
|
||
out := tx.TxOut[0]
|
||
require.Equal(t, aPkScript, out.PkScript)
|
||
require.Equal(
|
||
t, inputs[0].SignDesc().Output.Value,
|
||
out.Value,
|
||
)
|
||
},
|
||
},
|
||
{
|
||
// Three inputs added, should be combined into a single
|
||
// sweep.
|
||
name: "three inputs",
|
||
inputs: []*testInput{
|
||
{
|
||
BaseInput: inputs[0],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
Value: inputs[0].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[1],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: bPkScript,
|
||
Value: inputs[1].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[2],
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: cPkScript,
|
||
Value: inputs[2].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
},
|
||
|
||
// We expect an extra input and output to pay fees.
|
||
assertSweeps: func(t *testing.T,
|
||
testInputs map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 1, len(txs))
|
||
|
||
tx := txs[0]
|
||
require.Equal(t, 4, len(tx.TxIn))
|
||
require.Equal(t, 4, len(tx.TxOut))
|
||
|
||
// The inputs and outputs must be in the same
|
||
// order.
|
||
for i, in := range tx.TxIn {
|
||
// Last one is the change input/output
|
||
// pair, so we'll skip it.
|
||
if i == 3 {
|
||
continue
|
||
}
|
||
|
||
// Get this input to ensure the output
|
||
// on index i coresponsd to this one.
|
||
inp := testInputs[in.PreviousOutPoint]
|
||
require.NotNil(t, inp)
|
||
|
||
require.Equal(
|
||
t, tx.TxOut[i].Value,
|
||
inp.SignDesc().Output.Value,
|
||
)
|
||
}
|
||
},
|
||
},
|
||
{
|
||
// Six inputs added, which 3 different locktimes.
|
||
// Should result in 3 sweeps.
|
||
name: "six inputs",
|
||
inputs: []*testInput{
|
||
{
|
||
BaseInput: inputs[0],
|
||
locktime: &locktime1,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: aPkScript,
|
||
Value: inputs[0].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[1],
|
||
locktime: &locktime1,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: bPkScript,
|
||
Value: inputs[1].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[2],
|
||
locktime: &locktime2,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: cPkScript,
|
||
Value: inputs[2].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[3],
|
||
locktime: &locktime2,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: dPkScript,
|
||
Value: inputs[3].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[4],
|
||
locktime: &locktime3,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: ePkScript,
|
||
Value: inputs[4].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
{
|
||
BaseInput: inputs[5],
|
||
locktime: &locktime3,
|
||
reqTxOut: &wire.TxOut{
|
||
PkScript: fPkScript,
|
||
Value: inputs[5].SignDesc().Output.Value,
|
||
},
|
||
},
|
||
},
|
||
|
||
// We expect three sweeps, each having two of our
|
||
// inputs, one extra input and output to pay fees.
|
||
assertSweeps: func(t *testing.T,
|
||
testInputs map[wire.OutPoint]*testInput,
|
||
txs []*wire.MsgTx) {
|
||
|
||
require.Equal(t, 3, len(txs))
|
||
|
||
for _, tx := range txs {
|
||
require.Equal(t, 3, len(tx.TxIn))
|
||
require.Equal(t, 3, len(tx.TxOut))
|
||
|
||
// The inputs and outputs must be in
|
||
// the same order.
|
||
for i, in := range tx.TxIn {
|
||
// Last one is the change
|
||
// output, so we'll skip it.
|
||
if i == 2 {
|
||
continue
|
||
}
|
||
|
||
// Get this input to ensure the
|
||
// output on index i coresponsd
|
||
// to this one.
|
||
inp := testInputs[in.PreviousOutPoint]
|
||
require.NotNil(t, inp)
|
||
|
||
require.Equal(
|
||
t, tx.TxOut[i].Value,
|
||
inp.SignDesc().Output.Value,
|
||
)
|
||
|
||
// Check that the locktimes are
|
||
// kept intact.
|
||
require.Equal(
|
||
t, tx.LockTime,
|
||
*inp.locktime,
|
||
)
|
||
}
|
||
}
|
||
},
|
||
},
|
||
}
|
||
|
||
for _, testCase := range testCases {
|
||
testCase := testCase
|
||
|
||
t.Run(testCase.name, func(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// We increase the number of max inputs to a tx so that
|
||
// won't impact our test.
|
||
ctx.sweeper.cfg.MaxInputsPerTx = 100
|
||
|
||
// Sweep all test inputs.
|
||
var (
|
||
inputs = make(map[wire.OutPoint]*testInput)
|
||
results = make(map[wire.OutPoint]chan Result)
|
||
)
|
||
for _, inp := range testCase.inputs {
|
||
result, err := ctx.sweeper.SweepInput(
|
||
inp, Params{
|
||
Fee: FeePreference{ConfTarget: 6},
|
||
},
|
||
)
|
||
if err != nil {
|
||
t.Fatal(err)
|
||
}
|
||
|
||
op := inp.OutPoint()
|
||
results[*op] = result
|
||
inputs[*op] = inp
|
||
}
|
||
|
||
// Tick, which should trigger a sweep of all inputs.
|
||
ctx.tick()
|
||
|
||
// Check the sweeps transactions, ensuring all inputs
|
||
// are there, and all the locktimes are satisfied.
|
||
var sweeps []*wire.MsgTx
|
||
Loop:
|
||
for {
|
||
select {
|
||
case tx := <-ctx.publishChan:
|
||
sweeps = append(sweeps, &tx)
|
||
case <-time.After(200 * time.Millisecond):
|
||
break Loop
|
||
}
|
||
}
|
||
|
||
// Mine the sweeps.
|
||
ctx.backend.mine()
|
||
|
||
// Results should all come back.
|
||
for _, resultChan := range results {
|
||
result := <-resultChan
|
||
if result.Err != nil {
|
||
t.Fatalf("expected input to be "+
|
||
"swept: %v", result.Err)
|
||
}
|
||
}
|
||
|
||
// Assert the transactions are what we expect.
|
||
testCase.assertSweeps(t, inputs, sweeps)
|
||
|
||
// Finally we assert that all our test inputs were part
|
||
// of the sweeps, and that they were signed correctly.
|
||
sweptInputs := make(map[wire.OutPoint]struct{})
|
||
for _, sweep := range sweeps {
|
||
swept := assertSignedIndex(t, sweep, inputs)
|
||
for op := range swept {
|
||
if _, ok := sweptInputs[op]; ok {
|
||
t.Fatalf("outpoint %v part of "+
|
||
"previous sweep", op)
|
||
}
|
||
|
||
sweptInputs[op] = struct{}{}
|
||
}
|
||
}
|
||
|
||
require.Equal(t, len(inputs), len(sweptInputs))
|
||
for op := range sweptInputs {
|
||
_, ok := inputs[op]
|
||
if !ok {
|
||
t.Fatalf("swept input %v not part of "+
|
||
"test inputs", op)
|
||
}
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
// TestSweeperShutdownHandling tests that we notify callers when the sweeper
|
||
// cannot handle requests since it's in the process of shutting down.
|
||
func TestSweeperShutdownHandling(t *testing.T) {
|
||
ctx := createSweeperTestContext(t)
|
||
|
||
// Make the backing notifier break down. This is what happens during
|
||
// lnd shut down, since the notifier is stopped before the sweeper.
|
||
require.Len(t, ctx.notifier.epochChan, 1)
|
||
for epochChan := range ctx.notifier.epochChan {
|
||
close(epochChan)
|
||
}
|
||
|
||
// Give the collector some time to exit.
|
||
time.Sleep(50 * time.Millisecond)
|
||
|
||
// Now trying to sweep inputs should return an error on the error
|
||
// channel.
|
||
resultChan, err := ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
require.NoError(t, err)
|
||
|
||
select {
|
||
case res := <-resultChan:
|
||
require.Equal(t, ErrSweeperShuttingDown, res.Err)
|
||
|
||
case <-time.After(defaultTestTimeout):
|
||
t.Fatalf("no result arrived")
|
||
}
|
||
|
||
// Stop the sweeper properly.
|
||
err = ctx.sweeper.Stop()
|
||
require.NoError(t, err)
|
||
|
||
// Now attempting to sweep an input should error out immediately.
|
||
_, err = ctx.sweeper.SweepInput(
|
||
spendableInputs[0], defaultFeePref,
|
||
)
|
||
require.Error(t, err)
|
||
}
|