lnd/itest/lnd_onchain_test.go
2024-02-01 21:02:25 +01:00

932 lines
32 KiB
Go

package itest
import (
"bytes"
"fmt"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/chainrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/sweep"
"github.com/stretchr/testify/require"
)
// testChainKit tests ChainKit RPC endpoints.
func testChainKit(ht *lntest.HarnessTest) {
// Test functions registered as test cases spin up separate nodes
// during execution. By calling sub-test functions as seen below we
// avoid the need to start separate nodes.
testChainKitGetBlock(ht)
testChainKitGetBlockHeader(ht)
testChainKitGetBlockHash(ht)
testChainKitSendOutputsAnchorReserve(ht)
}
// testChainKitGetBlock ensures that given a block hash, the RPC endpoint
// returns the correct target block.
func testChainKitGetBlock(ht *lntest.HarnessTest) {
// Get best block hash.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
var bestBlockHash chainhash.Hash
err := bestBlockHash.SetBytes(bestBlockRes.BlockHash)
require.NoError(ht, err)
// Retrieve the best block by hash.
getBlockReq := &chainrpc.GetBlockRequest{
BlockHash: bestBlockHash[:],
}
getBlockRes := ht.Alice.RPC.GetBlock(getBlockReq)
// Deserialize the block which was retrieved by hash.
msgBlock := &wire.MsgBlock{}
blockReader := bytes.NewReader(getBlockRes.RawBlock)
err = msgBlock.Deserialize(blockReader)
require.NoError(ht, err)
// Ensure best block hash is the same as retrieved block hash.
expected := bestBlockHash
actual := msgBlock.BlockHash()
require.Equal(ht, expected, actual)
}
// testChainKitGetBlockHeader ensures that given a block hash, the RPC endpoint
// returns the correct target block header.
func testChainKitGetBlockHeader(ht *lntest.HarnessTest) {
// Get best block hash.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
var (
bestBlockHash chainhash.Hash
bestBlockHeader wire.BlockHeader
msgBlock = &wire.MsgBlock{}
)
err := bestBlockHash.SetBytes(bestBlockRes.BlockHash)
require.NoError(ht, err)
// Retrieve the best block by hash.
getBlockReq := &chainrpc.GetBlockRequest{
BlockHash: bestBlockHash[:],
}
getBlockRes := ht.Alice.RPC.GetBlock(getBlockReq)
// Deserialize the block which was retrieved by hash.
blockReader := bytes.NewReader(getBlockRes.RawBlock)
err = msgBlock.Deserialize(blockReader)
require.NoError(ht, err)
// Retrieve the block header for the best block.
getBlockHeaderReq := &chainrpc.GetBlockHeaderRequest{
BlockHash: bestBlockHash[:],
}
getBlockHeaderRes := ht.Alice.RPC.GetBlockHeader(getBlockHeaderReq)
// Deserialize the block header which was retrieved by hash.
blockHeaderReader := bytes.NewReader(getBlockHeaderRes.RawBlockHeader)
err = bestBlockHeader.Deserialize(blockHeaderReader)
require.NoError(ht, err)
// Ensure the header of the best block is the same as retrieved block
// header.
expected := bestBlockHeader
actual := msgBlock.Header
require.Equal(ht, expected, actual)
}
// testChainKitGetBlockHash ensures that given a block height, the RPC endpoint
// returns the correct target block hash.
func testChainKitGetBlockHash(ht *lntest.HarnessTest) {
// Get best block hash.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
// Retrieve the block hash at best block height.
req := &chainrpc.GetBlockHashRequest{
BlockHeight: int64(bestBlockRes.BlockHeight),
}
getBlockHashRes := ht.Alice.RPC.GetBlockHash(req)
// Ensure best block hash is the same as retrieved block hash.
expected := bestBlockRes.BlockHash
actual := getBlockHashRes.BlockHash
require.Equal(ht, expected, actual)
}
// testChainKitSendOutputsAnchorReserve checks if the SendOutputs rpc prevents
// our wallet balance to drop below the required anchor channel reserve amount.
func testChainKitSendOutputsAnchorReserve(ht *lntest.HarnessTest) {
// Start two nodes supporting anchor channels.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
// NOTE: we cannot reuse the standby node here as the test requires the
// node to start with no UTXOs.
charlie := ht.NewNode("Charlie", args)
bob := ht.Bob
ht.RestartNodeWithExtraArgs(bob, args)
// We'll start the test by sending Charlie some coins.
fundingAmount := btcutil.Amount(100_000)
ht.FundCoins(fundingAmount, charlie)
// Before opening the channel we ensure that the nodes are connected.
ht.EnsureConnected(charlie, bob)
// We'll get the anchor reserve that is required for a single channel.
reserve := charlie.RPC.RequiredReserve(
&walletrpc.RequiredReserveRequest{
AdditionalPublicChannels: 1,
},
)
// Charlie opens an anchor channel and keeps twice the amount of the
// anchor reserve in her wallet.
chanAmt := fundingAmount - 2*btcutil.Amount(reserve.RequiredReserve)
outpoint := ht.OpenChannel(charlie, bob, lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
SatPerVByte: 1,
})
// Now we obtain a taproot address from bob which Charlie will use to
// send coins to him via the SendOutputs rpc.
address := bob.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
decodedAddr := ht.DecodeAddress(address.Address)
addrScript := ht.PayToAddrScript(decodedAddr)
// First she will try to send Bob an amount that would undershoot her
// reserve requirement by one satoshi.
balance := charlie.RPC.WalletBalance()
utxo := &wire.TxOut{
Value: balance.TotalBalance - reserve.RequiredReserve + 1,
PkScript: addrScript,
}
req := &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
}},
SatPerKw: 2400,
MinConfs: 1,
}
// We try to send the reserve violating transaction and expect it to
// fail.
_, err := charlie.RPC.WalletKit.SendOutputs(ht.Context(), req)
require.ErrorContains(ht, err, walletrpc.ErrInsufficientReserve.Error())
ht.MineBlocksAndAssertNumTxes(1, 0)
// Next she will try to send Bob an amount that just leaves enough
// reserves in her wallet.
utxo = &wire.TxOut{
Value: balance.TotalBalance - reserve.RequiredReserve,
PkScript: addrScript,
}
req = &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
}},
SatPerKw: 2400,
MinConfs: 1,
}
// This second transaction should be published correctly.
charlie.RPC.SendOutputs(req)
ht.MineBlocksAndAssertNumTxes(1, 1)
// Clean up our test setup.
ht.CloseChannel(charlie, outpoint)
}
// testCPFP ensures that the daemon can bump an unconfirmed transaction's fee
// rate by broadcasting a Child-Pays-For-Parent (CPFP) transaction.
//
// TODO(wilmer): Add RBF case once btcd supports it.
func testCPFP(ht *lntest.HarnessTest) {
runCPFP(ht, ht.Alice, ht.Bob)
}
// runCPFP ensures that the daemon can bump an unconfirmed transaction's fee
// rate by broadcasting a Child-Pays-For-Parent (CPFP) transaction.
func runCPFP(ht *lntest.HarnessTest, alice, bob *node.HarnessNode) {
// Skip this test for neutrino, as it's not aware of mempool
// transactions.
if ht.IsNeutrinoBackend() {
ht.Skipf("skipping CPFP test for neutrino backend")
}
// We'll start the test by sending Alice some coins, which she'll use
// to send to Bob.
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
// Create an address for Bob to send the coins to.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
resp := bob.RPC.NewAddress(req)
// Send the coins from Alice to Bob. We should expect a transaction to
// be broadcast and seen in the mempool.
sendReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
Amount: btcutil.SatoshiPerBitcoin,
}
alice.RPC.SendCoins(sendReq)
txid := ht.Miner.AssertNumTxsInMempool(1)[0]
// We'll then extract the raw transaction from the mempool in order to
// determine the index of Bob's output.
tx := ht.Miner.GetRawTransaction(txid)
bobOutputIdx := -1
for i, txOut := range tx.MsgTx().TxOut {
_, addrs, _, err := txscript.ExtractPkScriptAddrs(
txOut.PkScript, ht.Miner.ActiveNet,
)
require.NoErrorf(ht, err, "unable to extract address "+
"from pkScript=%x: %v", txOut.PkScript, err)
if addrs[0].String() == resp.Address {
bobOutputIdx = i
}
}
require.NotEqual(ht, -1, bobOutputIdx, "bob's output was not found "+
"within the transaction")
// Wait until bob has seen the tx and considers it as owned.
op := &lnrpc.OutPoint{
TxidBytes: txid[:],
OutputIndex: uint32(bobOutputIdx),
}
ht.AssertUTXOInWallet(bob, op, "")
// We'll attempt to bump the fee of this transaction by performing a
// CPFP from Alice's point of view.
maxFeeRate := uint64(sweep.DefaultMaxFeeRate)
bumpFeeReq := &walletrpc.BumpFeeRequest{
Outpoint: op,
// We use a higher fee rate than the default max and expect the
// sweeper to cap the fee rate at the max value.
SatPerVbyte: maxFeeRate * 2,
}
bob.RPC.BumpFee(bumpFeeReq)
// We should now expect to see two transactions within the mempool, a
// parent and its child.
ht.Miner.AssertNumTxsInMempool(2)
// We should also expect to see the output being swept by the
// UtxoSweeper. We'll ensure it's using the fee rate specified.
pendingSweepsResp := bob.RPC.PendingSweeps()
require.Len(ht, pendingSweepsResp.PendingSweeps, 1,
"expected to find 1 pending sweep")
pendingSweep := pendingSweepsResp.PendingSweeps[0]
require.Equal(ht, pendingSweep.Outpoint.TxidBytes, op.TxidBytes,
"output txid not matched")
require.Equal(ht, pendingSweep.Outpoint.OutputIndex, op.OutputIndex,
"output index not matched")
// Also validate that the fee rate is capped at the max value.
require.Equalf(ht, maxFeeRate, pendingSweep.SatPerVbyte,
"sweep sat per vbyte not matched, want %v, got %v",
maxFeeRate, pendingSweep.SatPerVbyte)
// Mine a block to clean up the unconfirmed transactions.
ht.MineBlocksAndAssertNumTxes(1, 2)
// The input used to CPFP should no longer be pending.
err := wait.NoError(func() error {
resp := bob.RPC.PendingSweeps()
if len(resp.PendingSweeps) != 0 {
return fmt.Errorf("expected 0 pending sweeps, found %d",
len(resp.PendingSweeps))
}
return nil
}, defaultTimeout)
require.NoError(ht, err, "timeout checking bob's pending sweeps")
}
// testAnchorReservedValue tests that we won't allow sending transactions when
// that would take the value we reserve for anchor fee bumping out of our
// wallet.
func testAnchorReservedValue(ht *lntest.HarnessTest) {
// Start two nodes supporting anchor channels.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
// NOTE: we cannot reuse the standby node here as the test requires the
// node to start with no UTXOs.
alice := ht.NewNode("Alice", args)
bob := ht.Bob
ht.RestartNodeWithExtraArgs(bob, args)
ht.ConnectNodes(alice, bob)
// Send just enough coins for Alice to open a channel without a change
// output.
const (
chanAmt = 1000000
feeEst = 8000
)
ht.FundCoins(chanAmt+feeEst, alice)
// wallet, without a change output. This should not be allowed.
ht.OpenChannelAssertErr(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
}, lnwallet.ErrReservedValueInvalidated,
)
// Alice opens a smaller channel. This works since it will have a
// change output.
chanPoint1 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
// If Alice tries to open another anchor channel to Bob, Bob should not
// reject it as he is not contributing any funds.
chanPoint2 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
// Similarly, if Alice tries to open a legacy channel to Bob, Bob
// should not reject it as he is not contributing any funds. We'll
// restart Bob to remove his support for anchors.
ht.RestartNode(bob)
// Before opening the channel, make sure the nodes are connected.
ht.EnsureConnected(alice, bob)
chanPoint3 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
chanPoints := []*lnrpc.ChannelPoint{chanPoint1, chanPoint2, chanPoint3}
// Alice tries to send all coins to an internal address. This is
// allowed, since the final wallet balance will still be above the
// reserved value.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
resp := alice.RPC.NewAddress(req)
sweepReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
assertNumTxInAndTxOut := func(tx *wire.MsgTx, in, out int) {
require.Len(ht, tx.TxIn, in, "num inputs not matched")
require.Len(ht, tx.TxOut, out, "num outputs not matched")
}
// The sweep transaction should have exactly one input, the change from
// the previous SendCoins call.
sweepTx := block.Transactions[1]
// It should have a single output.
assertNumTxInAndTxOut(sweepTx, 1, 1)
// Wait for Alice to see her balance as confirmed.
waitForConfirmedBalance := func() int64 {
var balance int64
err := wait.NoError(func() error {
resp := alice.RPC.WalletBalance()
if resp.TotalBalance == 0 {
return fmt.Errorf("no balance")
}
if resp.UnconfirmedBalance > 0 {
return fmt.Errorf("unconfirmed balance")
}
balance = resp.TotalBalance
return nil
}, defaultTimeout)
require.NoError(ht, err, "timeout checking alice's balance")
return balance
}
waitForConfirmedBalance()
// Alice tries to send all funds to an external address, the reserved
// value must stay in her wallet.
minerAddr := ht.Miner.NewMinerAddress()
sweepReq = &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
// We'll mine a block which should include the sweep transaction we
// generated above.
block = ht.MineBlocksAndAssertNumTxes(1, 1)[0]
// The sweep transaction should have exactly one inputs as we only had
// the single output from above in the wallet.
sweepTx = block.Transactions[1]
// It should have two outputs, one being the miner address, the other
// one being the reserve going back to our wallet.
assertNumTxInAndTxOut(sweepTx, 1, 2)
// The reserved value is now back in Alice's wallet.
aliceBalance := waitForConfirmedBalance()
// Alice closes channel, should now be allowed to send everything to an
// external address.
for _, chanPoint := range chanPoints {
ht.CloseChannel(alice, chanPoint)
}
newBalance := waitForConfirmedBalance()
require.Greater(ht, newBalance, aliceBalance,
"Alice's balance did not increase after channel close")
// Assert there are no open or pending channels anymore.
ht.AssertNumWaitingClose(alice, 0)
ht.AssertNodeNumChannels(alice, 0)
// We'll wait for the balance to reflect that the channel has been
// closed and the funds are in the wallet.
sweepReq = &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
// We'll mine a block which should include the sweep transaction we
// generated above.
block = ht.MineBlocksAndAssertNumTxes(1, 1)[0]
// The sweep transaction should have four inputs, the change output from
// the previous sweep, and the outputs from the coop closed channels.
sweepTx = block.Transactions[1]
// It should have a single output.
assertNumTxInAndTxOut(sweepTx, 4, 1)
}
// testAnchorThirdPartySpend tests that if we force close a channel, but then
// don't sweep the anchor in time and a 3rd party spends it, that we remove any
// transactions that are a descendent of that sweep.
func testAnchorThirdPartySpend(ht *lntest.HarnessTest) {
// First, we'll create two new nodes that both default to anchor
// channels.
//
// NOTE: The itests differ here as anchors is default off vs the normal
// lnd binary.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
alice := ht.NewNode("Alice", args)
bob := ht.NewNode("Bob", args)
ht.EnsureConnected(alice, bob)
// We'll fund our Alice with coins, as she'll be opening the channel.
// We'll fund her with *just* enough coins to open the channel and
// sweep the anchor.
const (
firstChanSize = 1_000_000
anchorFeeBuffer = 500_000
testMemo = "bob is a good peer"
)
ht.FundCoins(firstChanSize+anchorFeeBuffer, alice)
// Open the channel between the two nodes and wait for it to confirm
// fully.
aliceChanPoint1 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: firstChanSize,
Memo: testMemo,
},
)
// Send another UTXO if this is a neutrino backend. When sweeping
// anchors, there are two transactions created, `local_sweep_tx` for
// sweeping Alice's anchor on the local commitment, `remote_sweep_tx`
// for sweeping her anchor on the remote commitment. Whenever the force
// close transaction is published, Alice will always create these two
// transactions to sweep her anchor.
// On the other hand, when creating the sweep txes, the anchor itself
// is not able to cover the fee, so another wallet UTXO is needed. In
// our test case, there's a change output that can be used from the
// above funding process. And it's used by both sweep txes - when `lnd`
// happens to create the `remote_sweep_tx` first, it will receive an
// error since its parent tx, the remote commitment, is not known,
// hence freeing the change output to be used by `local_sweep_tx`.
// For neutrino client, however, it will consider the transaction which
// sweeps the remote anchor as an orphan tx, and it will neither send
// it to the mempool nor return an error to free the change output.
// Thus, if the change output is already used in `remote_sweep_tx`, we
// won't have UTXO to create `local_sweep_tx`.
//
// NOTE: the order of the sweep requests for the two anchors cannot be
// guaranteed. If the sweeper happens to sweep the remote anchor first,
// then the test won't pass without the extra UTXO, which is the source
// of the flakeness.
//
// TODO(yy): make a RPC server for sweeper so we can explicitly check
// and control its state.
if ht.IsNeutrinoBackend() {
ht.FundCoins(anchorFeeBuffer, alice)
}
// With the channel open, we'll actually immediately force close it. We
// don't care about network announcements here since there's no routing
// in this test.
ht.CloseChannelAssertPending(alice, aliceChanPoint1, true)
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the waiting close section.
waitingClose := ht.AssertChannelWaitingClose(alice, aliceChanPoint1)
// Verify that the channel Memo is returned even for channels that are
// waiting close (close TX broadcasted but not confirmed)
pendingChannelsResp := alice.RPC.PendingChannels()
require.Equal(ht, testMemo,
pendingChannelsResp.WaitingCloseChannels[0].Channel.Memo)
// At this point, the channel is waiting close so we have the
// commitment transaction in the mempool. Alice's anchor, however,
// because there's no deadline pressure, it won't be swept.
aliceCloseTx := waitingClose.Commitments.LocalTxid
ht.MineBlocksAndAssertNumTxes(1, 1)
forceCloseTxID, _ := chainhash.NewHashFromStr(aliceCloseTx)
// Mine one block to trigger Alice's sweeper to reconsider the anchor
// sweeping. Because we are now sweeping at the fee rate floor, the
// sweeper will consider this input has positive yield thus attempts
// the sweeping.
ht.MineEmptyBlocks(1)
sweepTxns := ht.Miner.GetNumTxsFromMempool(1)
_, aliceAnchor := ht.FindCommitAndAnchor(sweepTxns, aliceCloseTx)
// Assert that the channel is now in PendingForceClose.
//
// NOTE: We must do this check to make sure `lnd` node has updated its
// internal state regarding the closing transaction, otherwise the
// `SendCoins` below might fail since it involves a reserved value
// check, which requires a certain amount of coins to be reserved based
// on the number of anchor channels.
ht.AssertChannelPendingForceClose(alice, aliceChanPoint1)
// Verify that the channel Memo is returned even for channels that are
// pending force close (close TX confirmed but sweep hasn't happened)
pendingChannelsResp = alice.RPC.PendingChannels()
require.Equal(ht, testMemo,
pendingChannelsResp.PendingForceClosingChannels[0].Channel.Memo)
// With the anchor output located, and the main commitment mined we'll
// instruct the wallet to send all coins in the wallet to a new address
// (to the miner), including unconfirmed change.
minerAddr := ht.Miner.NewMinerAddress()
sweepReq := &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
MinConfs: 0,
SpendUnconfirmed: true,
}
sweepAllResp := alice.RPC.SendCoins(sweepReq)
// Both the original anchor sweep transaction, as well as the
// transaction we created to sweep all the coins from Alice's wallet
// should be found in her transaction store.
sweepAllTxID, _ := chainhash.NewHashFromStr(sweepAllResp.Txid)
ht.AssertTransactionInWallet(alice, aliceAnchor.SweepTx.TxHash())
ht.AssertTransactionInWallet(alice, *sweepAllTxID)
// Next, we'll shutdown Alice, and allow 16 blocks to pass so that the
// anchor output can be swept by anyone. Rather than use the normal API
// call, we'll generate a series of _empty_ blocks here.
aliceRestart := ht.SuspendNode(alice)
const anchorCsv = 16
ht.MineEmptyBlocks(anchorCsv - 1)
// Before we sweep the anchor, we'll restart Alice.
require.NoErrorf(ht, aliceRestart(), "unable to restart alice")
// Now that the channel has been closed, and Alice has an unconfirmed
// transaction spending the output produced by her anchor sweep, we'll
// mine a transaction that double spends the output.
thirdPartyAnchorSweep := genAnchorSweep(ht, aliceAnchor, anchorCsv)
ht.Miner.MineBlockWithTxes([]*btcutil.Tx{thirdPartyAnchorSweep})
// At this point, we should no longer find Alice's transaction that
// tried to sweep the anchor in her wallet.
ht.AssertTransactionNotInWallet(alice, aliceAnchor.SweepTx.TxHash())
// In addition, the transaction she sent to sweep all her coins to the
// miner also should no longer be found.
ht.AssertTransactionNotInWallet(alice, *sweepAllTxID)
// The anchor should now show as being "lost", while the force close
// response is still present.
assertAnchorOutputLost(ht, alice, aliceChanPoint1)
// At this point Alice's CSV output should already be fully spent and
// the channel marked as being resolved. We mine a block first, as so
// far we've been generating custom blocks this whole time.
commitSweepOp := wire.OutPoint{
Hash: *forceCloseTxID,
Index: 1,
}
ht.Miner.AssertOutpointInMempool(commitSweepOp)
ht.MineBlocks(1)
ht.AssertNumWaitingClose(alice, 0)
}
// assertAnchorOutputLost asserts that the anchor output for the given channel
// has the state of being lost.
func assertAnchorOutputLost(ht *lntest.HarnessTest, hn *node.HarnessNode,
chanPoint *lnrpc.ChannelPoint) {
cp := ht.OutPointFromChannelPoint(chanPoint)
expected := lnrpc.PendingChannelsResponse_ForceClosedChannel_LOST
err := wait.NoError(func() error {
resp := hn.RPC.PendingChannels()
channels := resp.PendingForceClosingChannels
for _, c := range channels {
// Not the wanted channel, skipped.
if c.Channel.ChannelPoint != cp.String() {
continue
}
// Found the channel, check the anchor state.
if c.Anchor == expected {
return nil
}
return fmt.Errorf("unexpected anchor state, want %v, "+
"got %v", expected, c.Anchor)
}
return fmt.Errorf("channel not found using cp=%v", cp)
}, defaultTimeout)
require.NoError(ht, err, "anchor doesn't show as being lost")
}
// genAnchorSweep generates a "3rd party" anchor sweeping from an existing one.
// In practice, we just re-use the existing witness, and track on our own
// output producing a 1-in-1-out transaction.
func genAnchorSweep(ht *lntest.HarnessTest,
aliceAnchor *lntest.SweptOutput, anchorCsv uint32) *btcutil.Tx {
// At this point, we have the transaction that Alice used to try to
// sweep her anchor. As this is actually just something anyone can
// spend, just need to find the input spending the anchor output, then
// we can swap the output address.
aliceAnchorTxIn := func() wire.TxIn {
sweepCopy := aliceAnchor.SweepTx.Copy()
for _, txIn := range sweepCopy.TxIn {
if txIn.PreviousOutPoint == aliceAnchor.OutPoint {
return *txIn
}
}
require.FailNow(ht, "anchor op not found")
return wire.TxIn{}
}()
// We'll set the signature on the input to nil, and then set the
// sequence to 16 (the anchor CSV period).
aliceAnchorTxIn.Witness[0] = nil
aliceAnchorTxIn.Sequence = anchorCsv
minerAddr := ht.Miner.NewMinerAddress()
addrScript, err := txscript.PayToAddrScript(minerAddr)
require.NoError(ht, err, "unable to gen addr script")
// Now that we have the txIn, we can just make a new transaction that
// uses a different script for the output.
tx := wire.NewMsgTx(2)
tx.AddTxIn(&aliceAnchorTxIn)
tx.AddTxOut(&wire.TxOut{
PkScript: addrScript,
Value: anchorSize - 1,
})
return btcutil.NewTx(tx)
}
// testRemoveTx tests that we are able to remove an unconfirmed transaction
// from the internal wallet as long as the tx is still unconfirmed. This test
// also verifies that after the tx is removed (while unconfirmed) it will show
// up as confirmed as soon as the original transaction is mined.
func testRemoveTx(ht *lntest.HarnessTest) {
// Create a new node so that we start with no funds on the internal
// wallet.
alice := ht.NewNode("Alice", nil)
const initialWalletAmt = btcutil.SatoshiPerBitcoin
// Funding the node with an initial balance.
ht.FundCoins(initialWalletAmt, alice)
// Create an address for Alice to send the coins to.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
resp := alice.RPC.NewAddress(req)
// We send half the amount to that address generating two unconfirmed
// outpoints in our internal wallet.
sendReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
Amount: initialWalletAmt / 2,
}
alice.RPC.SendCoins(sendReq)
txID := ht.Miner.AssertNumTxsInMempool(1)[0]
// Make sure the unspent number of utxos is 2 and the unconfirmed
// balances add up.
unconfirmed := ht.GetUTXOsUnconfirmed(
alice, lnwallet.DefaultAccountName,
)
require.Lenf(ht, unconfirmed, 2, "number of unconfirmed tx")
// Get the raw transaction to calculate the exact fee.
tx := ht.Miner.GetNumTxsFromMempool(1)[0]
// Calculate the tx fee so we can compare the end amounts. We are
// sending from the internal wallet to the internal wallet so only
// the tx fee applies when calucalting the final amount of the wallet.
txFee := ht.CalculateTxFee(tx)
// All of alice's balance is unconfirmed and equals the initial amount
// minus the tx fee.
aliceBalResp := alice.RPC.WalletBalance()
expectedAmt := btcutil.Amount(initialWalletAmt) - txFee
require.EqualValues(ht, expectedAmt, aliceBalResp.UnconfirmedBalance)
// Now remove the transaction. We should see that the wallet state
// equals the amount prior to sending the transaction. It is important
// to understand that we do not remove any transaction from the mempool
// (thats not possible in reality) we just remove it from our local
// store.
var buf bytes.Buffer
require.NoError(ht, tx.Serialize(&buf))
alice.RPC.RemoveTransaction(&walletrpc.GetTransactionRequest{
Txid: txID.String(),
})
// Verify that the balance equals the initial state.
confirmed := ht.GetUTXOsConfirmed(
alice, lnwallet.DefaultAccountName,
)
require.Lenf(ht, confirmed, 1, "number confirmed tx")
// Alice's balance should be the initial balance now because all the
// unconfirmed tx got removed.
aliceBalResp = alice.RPC.WalletBalance()
expectedAmt = btcutil.Amount(initialWalletAmt)
require.EqualValues(ht, expectedAmt, aliceBalResp.ConfirmedBalance)
// Mine a block and make sure the transaction previously broadcasted
// shows up in alice's wallet although we removed the transaction from
// the wallet when it was unconfirmed.
block := ht.Miner.MineBlocks(1)[0]
ht.Miner.AssertTxInBlock(block, txID)
// Verify that alice has 2 confirmed unspent utxos in her default
// wallet.
err := wait.NoError(func() error {
confirmed = ht.GetUTXOsConfirmed(
alice, lnwallet.DefaultAccountName,
)
if len(confirmed) != 2 {
return fmt.Errorf("expected 2 confirmed tx, "+
" got %v", len(confirmed))
}
return nil
}, lntest.DefaultTimeout)
require.NoError(ht, err, "timeout checking for confirmed utxos")
// The remaining balance should equal alice's starting balance minus the
// tx fee.
aliceBalResp = alice.RPC.WalletBalance()
expectedAmt = btcutil.Amount(initialWalletAmt) - txFee
require.EqualValues(ht, expectedAmt, aliceBalResp.ConfirmedBalance)
}
// testListSweeps tests that we are able to:
// - list only those sweeps that are currently in the mempool,
// - list sweeps given a starting block height,
// - list all sweeps.
func testListSweeps(ht *lntest.HarnessTest) {
// Skip this test for neutrino, as it's not aware of mempool
// transactions.
if ht.IsNeutrinoBackend() {
ht.Skipf("skipping ListSweeps test for neutrino backend")
}
// Create nodes so that we start with no funds on the internal wallet.
alice := ht.NewNode("Alice", nil)
bob := ht.NewNode("Bob", nil)
const initialWalletAmt = btcutil.SatoshiPerBitcoin
// Fund Alice with an initial balance.
ht.FundCoins(initialWalletAmt, alice)
// Connect Alice to Bob.
ht.ConnectNodes(alice, bob)
// Open a few channels between Alice and Bob.
var chanPoints []*lnrpc.ChannelPoint
for i := 0; i < 3; i++ {
chanPoint := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: 1e6,
PushAmt: 5e5,
},
)
chanPoints = append(chanPoints, chanPoint)
}
ht.Shutdown(bob)
// Close the first channel and sweep the funds.
ht.ForceCloseChannel(alice, chanPoints[0])
// Jump a block.
ht.MineBlocks(1)
// Get the current block height.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
blockHeight := bestBlockRes.BlockHeight
// Close the second channel and also sweep the funds.
ht.ForceCloseChannel(alice, chanPoints[1])
// Now close the third channel but don't sweep the funds just yet.
closeStream, _ := ht.CloseChannelAssertPending(
alice, chanPoints[2], true,
)
ht.AssertStreamChannelForceClosed(
alice, chanPoints[2], false, closeStream,
)
// Mine enough blocks for the node to sweep its funds from the force
// closed channel. The commit sweep resolver is able to broadcast the
// sweep tx up to one block before the CSV elapses, so wait until
// defaulCSV-1.
ht.MineEmptyBlocks(node.DefaultCSV - 1)
// Now we can expect that the sweep has been broadcast.
pendingTxHash := ht.Miner.AssertNumTxsInMempool(1)
// List all unconfirmed sweeps that alice's node had broadcast.
sweepResp := alice.RPC.ListSweeps(false, -1)
txIDs := sweepResp.GetTransactionIds().TransactionIds
require.Lenf(ht, txIDs, 1, "number of pending sweeps, starting from "+
"height -1")
require.Equal(ht, pendingTxHash[0].String(), txIDs[0])
// Now list sweeps from the closing of the first channel. We should
// only see the sweep from the second channel and the pending one.
sweepResp = alice.RPC.ListSweeps(false, blockHeight)
txIDs = sweepResp.GetTransactionIds().TransactionIds
require.Lenf(ht, txIDs, 2, "number of sweeps, starting from height %d",
blockHeight)
// Finally list all sweeps from the closing of the second channel. We
// should see all sweeps, including the pending one.
sweepResp = alice.RPC.ListSweeps(false, 0)
txIDs = sweepResp.GetTransactionIds().TransactionIds
require.Lenf(ht, txIDs, 3, "number of sweeps, starting from height 0")
// Mine the pending sweep and make sure it is no longer returned.
ht.MineBlocks(1)
sweepResp = alice.RPC.ListSweeps(false, -1)
txIDs = sweepResp.GetTransactionIds().TransactionIds
require.Empty(ht, txIDs, "pending sweep should not be returned")
}