lnd/chainreg/chainregistry.go
Olaoluwa Osuntokun 492f8b6999
chainreg: shutdown if backend node doesn't support taproot
In this commit, we add a check during normal node construction to see if
the backend node supports Taproot. If it doesn't, then we want to
shutdown and force the user to take note.

To check if the node supports Taproot, we'll first try the normal
getblockchaininfo call. If this works, cool, then we can rely on the
value. If it doesn't, then we'll fall back to the getdeploymentinfo call
which was added in a recent version of bitcoind [1]. Newer versions of
bitcoind might also have this call, and the getblockchaininfo call, but
not actually populate the softforks field [2]. In this case, we'll fall
back, and we also account for the case when the getblockchaininfo RPC is
removed all together.

[1]: https://github.com/bitcoin/bitcoin/pull/23508
[2]: https://github.com/bitcoin/bitcoin/pull/25114

Fixes #6773
2022-08-05 17:23:31 -07:00

1067 lines
32 KiB
Go

package chainreg
import (
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io/ioutil"
"net"
"net/url"
"os"
"strconv"
"strings"
"sync"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/rpcclient"
"github.com/btcsuite/btcwallet/chain"
"github.com/lightninglabs/neutrino"
"github.com/lightningnetwork/lnd/blockcache"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/chainntnfs/bitcoindnotify"
"github.com/lightningnetwork/lnd/chainntnfs/btcdnotify"
"github.com/lightningnetwork/lnd/chainntnfs/neutrinonotify"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lncfg"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/chainview"
"github.com/lightningnetwork/lnd/walletunlocker"
)
// Config houses necessary fields that a chainControl instance needs to
// function.
type Config struct {
// Bitcoin defines settings for the Bitcoin chain.
Bitcoin *lncfg.Chain
// Litecoin defines settings for the Litecoin chain.
Litecoin *lncfg.Chain
// PrimaryChain is a function that returns our primary chain via its
// ChainCode.
PrimaryChain func() ChainCode
// HeightHintCacheQueryDisable is a boolean that disables height hint
// queries if true.
HeightHintCacheQueryDisable bool
// NeutrinoMode defines settings for connecting to a neutrino
// light-client.
NeutrinoMode *lncfg.Neutrino
// BitcoindMode defines settings for connecting to a bitcoind node.
BitcoindMode *lncfg.Bitcoind
// LitecoindMode defines settings for connecting to a litecoind node.
LitecoindMode *lncfg.Bitcoind
// BtcdMode defines settings for connecting to a btcd node.
BtcdMode *lncfg.Btcd
// LtcdMode defines settings for connecting to an ltcd node.
LtcdMode *lncfg.Btcd
// HeightHintDB is a pointer to the database that stores the height
// hints.
HeightHintDB kvdb.Backend
// ChanStateDB is a pointer to the database that stores the channel
// state.
ChanStateDB *channeldb.ChannelStateDB
// BlockCache is the main cache for storing block information.
BlockCache *blockcache.BlockCache
// WalletUnlockParams are the parameters that were used for unlocking
// the main wallet.
WalletUnlockParams *walletunlocker.WalletUnlockParams
// NeutrinoCS is a pointer to a neutrino ChainService. Must be non-nil
// if using neutrino.
NeutrinoCS *neutrino.ChainService
// ActiveNetParams details the current chain we are on.
ActiveNetParams BitcoinNetParams
// FeeURL defines the URL for fee estimation we will use. This field is
// optional.
FeeURL string
// Dialer is a function closure that will be used to establish outbound
// TCP connections to Bitcoin peers in the event of a pruned block being
// requested.
Dialer chain.Dialer
}
const (
// DefaultBitcoinMinHTLCInMSat is the default smallest value htlc this
// node will accept. This value is proposed in the channel open sequence
// and cannot be changed during the life of the channel. It is 1 msat by
// default to allow maximum flexibility in deciding what size payments
// to forward.
//
// All forwarded payments are subjected to the min htlc constraint of
// the routing policy of the outgoing channel. This implicitly controls
// the minimum htlc value on the incoming channel too.
DefaultBitcoinMinHTLCInMSat = lnwire.MilliSatoshi(1)
// DefaultBitcoinMinHTLCOutMSat is the default minimum htlc value that
// we require for sending out htlcs. Our channel peer may have a lower
// min htlc channel parameter, but we - by default - don't forward
// anything under the value defined here.
DefaultBitcoinMinHTLCOutMSat = lnwire.MilliSatoshi(1000)
// DefaultBitcoinBaseFeeMSat is the default forwarding base fee.
DefaultBitcoinBaseFeeMSat = lnwire.MilliSatoshi(1000)
// DefaultBitcoinFeeRate is the default forwarding fee rate.
DefaultBitcoinFeeRate = lnwire.MilliSatoshi(1)
// DefaultBitcoinTimeLockDelta is the default forwarding time lock
// delta.
DefaultBitcoinTimeLockDelta = 40
DefaultLitecoinMinHTLCInMSat = lnwire.MilliSatoshi(1)
DefaultLitecoinMinHTLCOutMSat = lnwire.MilliSatoshi(1000)
DefaultLitecoinBaseFeeMSat = lnwire.MilliSatoshi(1000)
DefaultLitecoinFeeRate = lnwire.MilliSatoshi(1)
DefaultLitecoinTimeLockDelta = 576
DefaultLitecoinDustLimit = btcutil.Amount(54600)
// DefaultBitcoinStaticFeePerKW is the fee rate of 50 sat/vbyte
// expressed in sat/kw.
DefaultBitcoinStaticFeePerKW = chainfee.SatPerKWeight(12500)
// DefaultBitcoinStaticMinRelayFeeRate is the min relay fee used for
// static estimators.
DefaultBitcoinStaticMinRelayFeeRate = chainfee.FeePerKwFloor
// DefaultLitecoinStaticFeePerKW is the fee rate of 200 sat/vbyte
// expressed in sat/kw.
DefaultLitecoinStaticFeePerKW = chainfee.SatPerKWeight(50000)
// BtcToLtcConversionRate is a fixed ratio used in order to scale up
// payments when running on the Litecoin chain.
BtcToLtcConversionRate = 60
)
// DefaultLtcChannelConstraints is the default set of channel constraints that
// are meant to be used when initially funding a Litecoin channel.
var DefaultLtcChannelConstraints = channeldb.ChannelConstraints{
DustLimit: DefaultLitecoinDustLimit,
MaxAcceptedHtlcs: input.MaxHTLCNumber / 2,
}
// PartialChainControl contains all the primary interfaces of the chain control
// that can be purely constructed from the global configuration. No wallet
// instance is required for constructing this partial state.
type PartialChainControl struct {
// Cfg is the configuration that was used to create the partial chain
// control.
Cfg *Config
// HealthCheck is a function which can be used to send a low-cost, fast
// query to the chain backend to ensure we still have access to our
// node.
HealthCheck func() error
// FeeEstimator is used to estimate an optimal fee for transactions
// important to us.
FeeEstimator chainfee.Estimator
// ChainNotifier is used to receive blockchain events that we are
// interested in.
ChainNotifier chainntnfs.ChainNotifier
// ChainView is used in the router for maintaining an up-to-date graph.
ChainView chainview.FilteredChainView
// ChainSource is the primary chain interface. This is used to operate
// the wallet and do things such as rescanning, sending transactions,
// notifications for received funds, etc.
ChainSource chain.Interface
// RoutingPolicy is the routing policy we have decided to use.
RoutingPolicy htlcswitch.ForwardingPolicy
// MinHtlcIn is the minimum HTLC we will accept.
MinHtlcIn lnwire.MilliSatoshi
// ChannelConstraints is the set of default constraints that will be
// used for any incoming or outgoing channel reservation requests.
ChannelConstraints channeldb.ChannelConstraints
}
// ChainControl couples the three primary interfaces lnd utilizes for a
// particular chain together. A single ChainControl instance will exist for all
// the chains lnd is currently active on.
type ChainControl struct {
// PartialChainControl is the part of the chain control that was
// initialized purely from the configuration and doesn't contain any
// wallet related elements.
*PartialChainControl
// ChainIO represents an abstraction over a source that can query the
// blockchain.
ChainIO lnwallet.BlockChainIO
// Signer is used to provide signatures over things like transactions.
Signer input.Signer
// KeyRing represents a set of keys that we have the private keys to.
KeyRing keychain.SecretKeyRing
// Wc is an abstraction over some basic wallet commands. This base set
// of commands will be provided to the Wallet *LightningWallet raw
// pointer below.
Wc lnwallet.WalletController
// MsgSigner is used to sign arbitrary messages.
MsgSigner lnwallet.MessageSigner
// Wallet is our LightningWallet that also contains the abstract Wc
// above. This wallet handles all of the lightning operations.
Wallet *lnwallet.LightningWallet
}
// GenDefaultBtcConstraints generates the default set of channel constraints
// that are to be used when funding a Bitcoin channel.
func GenDefaultBtcConstraints() channeldb.ChannelConstraints {
// We use the dust limit for the maximally sized witness program with
// a 40-byte data push.
dustLimit := lnwallet.DustLimitForSize(input.UnknownWitnessSize)
return channeldb.ChannelConstraints{
DustLimit: dustLimit,
MaxAcceptedHtlcs: input.MaxHTLCNumber / 2,
}
}
// NewPartialChainControl creates a new partial chain control that contains all
// the parts that can be purely constructed from the passed in global
// configuration and doesn't need any wallet instance yet.
func NewPartialChainControl(cfg *Config) (*PartialChainControl, func(), error) {
// Set the RPC config from the "home" chain. Multi-chain isn't yet
// active, so we'll restrict usage to a particular chain for now.
homeChainConfig := cfg.Bitcoin
if cfg.PrimaryChain() == LitecoinChain {
homeChainConfig = cfg.Litecoin
}
log.Infof("Primary chain is set to: %v", cfg.PrimaryChain())
cc := &PartialChainControl{
Cfg: cfg,
}
switch cfg.PrimaryChain() {
case BitcoinChain:
cc.RoutingPolicy = htlcswitch.ForwardingPolicy{
MinHTLCOut: cfg.Bitcoin.MinHTLCOut,
BaseFee: cfg.Bitcoin.BaseFee,
FeeRate: cfg.Bitcoin.FeeRate,
TimeLockDelta: cfg.Bitcoin.TimeLockDelta,
}
cc.MinHtlcIn = cfg.Bitcoin.MinHTLCIn
cc.FeeEstimator = chainfee.NewStaticEstimator(
DefaultBitcoinStaticFeePerKW,
DefaultBitcoinStaticMinRelayFeeRate,
)
case LitecoinChain:
cc.RoutingPolicy = htlcswitch.ForwardingPolicy{
MinHTLCOut: cfg.Litecoin.MinHTLCOut,
BaseFee: cfg.Litecoin.BaseFee,
FeeRate: cfg.Litecoin.FeeRate,
TimeLockDelta: cfg.Litecoin.TimeLockDelta,
}
cc.MinHtlcIn = cfg.Litecoin.MinHTLCIn
cc.FeeEstimator = chainfee.NewStaticEstimator(
DefaultLitecoinStaticFeePerKW, 0,
)
default:
return nil, nil, fmt.Errorf("default routing policy for chain "+
"%v is unknown", cfg.PrimaryChain())
}
var err error
heightHintCacheConfig := chainntnfs.CacheConfig{
QueryDisable: cfg.HeightHintCacheQueryDisable,
}
if cfg.HeightHintCacheQueryDisable {
log.Infof("Height Hint Cache Queries disabled")
}
// Initialize the height hint cache within the chain directory.
hintCache, err := chainntnfs.NewHeightHintCache(
heightHintCacheConfig, cfg.HeightHintDB,
)
if err != nil {
return nil, nil, fmt.Errorf("unable to initialize height hint "+
"cache: %v", err)
}
// If spv mode is active, then we'll be using a distinct set of
// chainControl interfaces that interface directly with the p2p network
// of the selected chain.
switch homeChainConfig.Node {
case "neutrino":
// We'll create ChainNotifier and FilteredChainView instances,
// along with the wallet's ChainSource, which are all backed by
// the neutrino light client.
cc.ChainNotifier = neutrinonotify.New(
cfg.NeutrinoCS, hintCache, hintCache, cfg.BlockCache,
)
cc.ChainView, err = chainview.NewCfFilteredChainView(
cfg.NeutrinoCS, cfg.BlockCache,
)
if err != nil {
return nil, nil, err
}
// Map the deprecated neutrino feeurl flag to the general fee
// url.
if cfg.NeutrinoMode.FeeURL != "" {
if cfg.FeeURL != "" {
return nil, nil, errors.New("feeurl and " +
"neutrino.feeurl are mutually " +
"exclusive")
}
cfg.FeeURL = cfg.NeutrinoMode.FeeURL
}
cc.ChainSource = chain.NewNeutrinoClient(
cfg.ActiveNetParams.Params, cfg.NeutrinoCS,
)
// Get our best block as a health check.
cc.HealthCheck = func() error {
_, _, err := cc.ChainSource.GetBestBlock()
return err
}
case "bitcoind", "litecoind":
var bitcoindMode *lncfg.Bitcoind
switch {
case cfg.Bitcoin.Active:
bitcoindMode = cfg.BitcoindMode
case cfg.Litecoin.Active:
bitcoindMode = cfg.LitecoindMode
}
// Otherwise, we'll be speaking directly via RPC and ZMQ to a
// bitcoind node. If the specified host for the btcd/ltcd RPC
// server already has a port specified, then we use that
// directly. Otherwise, we assume the default port according to
// the selected chain parameters.
var bitcoindHost string
if strings.Contains(bitcoindMode.RPCHost, ":") {
bitcoindHost = bitcoindMode.RPCHost
} else {
// The RPC ports specified in chainparams.go assume
// btcd, which picks a different port so that btcwallet
// can use the same RPC port as bitcoind. We convert
// this back to the btcwallet/bitcoind port.
rpcPort, err := strconv.Atoi(cfg.ActiveNetParams.RPCPort)
if err != nil {
return nil, nil, err
}
rpcPort -= 2
bitcoindHost = fmt.Sprintf("%v:%d",
bitcoindMode.RPCHost, rpcPort)
if (cfg.Bitcoin.Active &&
(cfg.Bitcoin.RegTest || cfg.Bitcoin.SigNet)) ||
(cfg.Litecoin.Active && cfg.Litecoin.RegTest) {
conn, err := net.Dial("tcp", bitcoindHost)
if err != nil || conn == nil {
switch {
case cfg.Bitcoin.Active && cfg.Bitcoin.RegTest:
rpcPort = 18443
case cfg.Litecoin.Active && cfg.Litecoin.RegTest:
rpcPort = 19443
case cfg.Bitcoin.Active && cfg.Bitcoin.SigNet:
rpcPort = 38332
}
bitcoindHost = fmt.Sprintf("%v:%d",
bitcoindMode.RPCHost,
rpcPort)
} else {
conn.Close()
}
}
}
bitcoindCfg := &chain.BitcoindConfig{
ChainParams: cfg.ActiveNetParams.Params,
Host: bitcoindHost,
User: bitcoindMode.RPCUser,
Pass: bitcoindMode.RPCPass,
Dialer: cfg.Dialer,
PrunedModeMaxPeers: bitcoindMode.PrunedNodeMaxPeers,
}
if bitcoindMode.RPCPolling {
bitcoindCfg.PollingConfig = &chain.PollingConfig{
BlockPollingInterval: bitcoindMode.BlockPollingInterval,
TxPollingInterval: bitcoindMode.TxPollingInterval,
}
} else {
bitcoindCfg.ZMQConfig = &chain.ZMQConfig{
ZMQBlockHost: bitcoindMode.ZMQPubRawBlock,
ZMQTxHost: bitcoindMode.ZMQPubRawTx,
ZMQReadDeadline: bitcoindMode.ZMQReadDeadline,
}
}
// Establish the connection to bitcoind and create the clients
// required for our relevant subsystems.
bitcoindConn, err := chain.NewBitcoindConn(bitcoindCfg)
if err != nil {
return nil, nil, err
}
if err := bitcoindConn.Start(); err != nil {
return nil, nil, fmt.Errorf("unable to connect to "+
"bitcoind: %v", err)
}
cc.ChainNotifier = bitcoindnotify.New(
bitcoindConn, cfg.ActiveNetParams.Params, hintCache,
hintCache, cfg.BlockCache,
)
cc.ChainView = chainview.NewBitcoindFilteredChainView(
bitcoindConn, cfg.BlockCache,
)
cc.ChainSource = bitcoindConn.NewBitcoindClient()
// If we're not in regtest mode, then we'll attempt to use a
// proper fee estimator for testnet.
rpcConfig := &rpcclient.ConnConfig{
Host: bitcoindHost,
User: bitcoindMode.RPCUser,
Pass: bitcoindMode.RPCPass,
DisableConnectOnNew: true,
DisableAutoReconnect: false,
DisableTLS: true,
HTTPPostMode: true,
}
if cfg.Bitcoin.Active && !cfg.Bitcoin.RegTest {
log.Infof("Initializing bitcoind backed fee estimator "+
"in %s mode", bitcoindMode.EstimateMode)
// Finally, we'll re-initialize the fee estimator, as
// if we're using bitcoind as a backend, then we can
// use live fee estimates, rather than a statically
// coded value.
fallBackFeeRate := chainfee.SatPerKVByte(25 * 1000)
cc.FeeEstimator, err = chainfee.NewBitcoindEstimator(
*rpcConfig, bitcoindMode.EstimateMode,
fallBackFeeRate.FeePerKWeight(),
)
if err != nil {
return nil, nil, err
}
} else if cfg.Litecoin.Active && !cfg.Litecoin.RegTest {
log.Infof("Initializing litecoind backed fee "+
"estimator in %s mode",
bitcoindMode.EstimateMode)
// Finally, we'll re-initialize the fee estimator, as
// if we're using litecoind as a backend, then we can
// use live fee estimates, rather than a statically
// coded value.
fallBackFeeRate := chainfee.SatPerKVByte(25 * 1000)
cc.FeeEstimator, err = chainfee.NewBitcoindEstimator(
*rpcConfig, bitcoindMode.EstimateMode,
fallBackFeeRate.FeePerKWeight(),
)
if err != nil {
return nil, nil, err
}
}
// We need to use some apis that are not exposed by btcwallet,
// for a health check function so we create an ad-hoc bitcoind
// connection.
chainConn, err := rpcclient.New(rpcConfig, nil)
if err != nil {
return nil, nil, err
}
// Before we continue any further, we'll ensure that the
// backend understands Taproot. If not, then all the default
// features can't be used.
if !backendSupportsTaproot(chainConn) {
return nil, nil, fmt.Errorf("node backend does not " +
"support taproot")
}
// The api we will use for our health check depends on the
// bitcoind version.
cmd, ver, err := getBitcoindHealthCheckCmd(chainConn)
if err != nil {
return nil, nil, err
}
// If the getzmqnotifications api is available (was added in
// version 0.17.0) we make sure lnd subscribes to the correct
// zmq events. We do this to avoid a situation in which we are
// not notified of new transactions or blocks.
if ver >= 170000 && !bitcoindMode.RPCPolling {
zmqPubRawBlockURL, err := url.Parse(bitcoindMode.ZMQPubRawBlock)
if err != nil {
return nil, nil, err
}
zmqPubRawTxURL, err := url.Parse(bitcoindMode.ZMQPubRawTx)
if err != nil {
return nil, nil, err
}
// Fetch all active zmq notifications from the bitcoind client.
resp, err := chainConn.RawRequest("getzmqnotifications", nil)
if err != nil {
return nil, nil, err
}
zmq := []struct {
Type string `json:"type"`
Address string `json:"address"`
}{}
if err = json.Unmarshal([]byte(resp), &zmq); err != nil {
return nil, nil, err
}
pubRawBlockActive := false
pubRawTxActive := false
for i := range zmq {
if zmq[i].Type == "pubrawblock" {
url, err := url.Parse(zmq[i].Address)
if err != nil {
return nil, nil, err
}
if url.Port() != zmqPubRawBlockURL.Port() {
log.Warnf(
"unable to subscribe to zmq block events on "+
"%s (bitcoind is running on %s)",
zmqPubRawBlockURL.Host,
url.Host,
)
}
pubRawBlockActive = true
}
if zmq[i].Type == "pubrawtx" {
url, err := url.Parse(zmq[i].Address)
if err != nil {
return nil, nil, err
}
if url.Port() != zmqPubRawTxURL.Port() {
log.Warnf(
"unable to subscribe to zmq tx events on "+
"%s (bitcoind is running on %s)",
zmqPubRawTxURL.Host,
url.Host,
)
}
pubRawTxActive = true
}
}
// Return an error if raw tx or raw block notification over
// zmq is inactive.
if !pubRawBlockActive {
return nil, nil, errors.New(
"block notification over zmq is inactive on " +
"bitcoind",
)
}
if !pubRawTxActive {
return nil, nil, errors.New(
"tx notification over zmq is inactive on " +
"bitcoind",
)
}
}
cc.HealthCheck = func() error {
_, err := chainConn.RawRequest(cmd, nil)
return err
}
case "btcd", "ltcd":
// Otherwise, we'll be speaking directly via RPC to a node.
//
// So first we'll load btcd/ltcd's TLS cert for the RPC
// connection. If a raw cert was specified in the config, then
// we'll set that directly. Otherwise, we attempt to read the
// cert from the path specified in the config.
var btcdMode *lncfg.Btcd
switch {
case cfg.Bitcoin.Active:
btcdMode = cfg.BtcdMode
case cfg.Litecoin.Active:
btcdMode = cfg.LtcdMode
}
var rpcCert []byte
if btcdMode.RawRPCCert != "" {
rpcCert, err = hex.DecodeString(btcdMode.RawRPCCert)
if err != nil {
return nil, nil, err
}
} else {
certFile, err := os.Open(btcdMode.RPCCert)
if err != nil {
return nil, nil, err
}
rpcCert, err = ioutil.ReadAll(certFile)
if err != nil {
return nil, nil, err
}
if err := certFile.Close(); err != nil {
return nil, nil, err
}
}
// If the specified host for the btcd/ltcd RPC server already
// has a port specified, then we use that directly. Otherwise,
// we assume the default port according to the selected chain
// parameters.
var btcdHost string
if strings.Contains(btcdMode.RPCHost, ":") {
btcdHost = btcdMode.RPCHost
} else {
btcdHost = fmt.Sprintf("%v:%v", btcdMode.RPCHost,
cfg.ActiveNetParams.RPCPort)
}
btcdUser := btcdMode.RPCUser
btcdPass := btcdMode.RPCPass
rpcConfig := &rpcclient.ConnConfig{
Host: btcdHost,
Endpoint: "ws",
User: btcdUser,
Pass: btcdPass,
Certificates: rpcCert,
DisableTLS: false,
DisableConnectOnNew: true,
DisableAutoReconnect: false,
}
cc.ChainNotifier, err = btcdnotify.New(
rpcConfig, cfg.ActiveNetParams.Params, hintCache,
hintCache, cfg.BlockCache,
)
if err != nil {
return nil, nil, err
}
// Finally, we'll create an instance of the default chain view
// to be used within the routing layer.
cc.ChainView, err = chainview.NewBtcdFilteredChainView(
*rpcConfig, cfg.BlockCache,
)
if err != nil {
log.Errorf("unable to create chain view: %v", err)
return nil, nil, err
}
// Create a special websockets rpc client for btcd which will be
// used by the wallet for notifications, calls, etc.
chainRPC, err := chain.NewRPCClient(
cfg.ActiveNetParams.Params, btcdHost, btcdUser,
btcdPass, rpcCert, false, 20,
)
if err != nil {
return nil, nil, err
}
// Before we continue any further, we'll ensure that the
// backend understands Taproot. If not, then all the default
// features can't be used.
restConfCopy := *rpcConfig
restConfCopy.Endpoint = ""
restConfCopy.HTTPPostMode = true
chainConn, err := rpcclient.New(&restConfCopy, nil)
if err != nil {
return nil, nil, err
}
if !backendSupportsTaproot(chainConn) {
return nil, nil, fmt.Errorf("node backend does not " +
"support taproot")
}
cc.ChainSource = chainRPC
// Use a query for our best block as a health check.
cc.HealthCheck = func() error {
_, _, err := cc.ChainSource.GetBestBlock()
return err
}
// If we're not in simnet or regtest mode, then we'll attempt
// to use a proper fee estimator for testnet.
if !cfg.Bitcoin.SimNet && !cfg.Litecoin.SimNet &&
!cfg.Bitcoin.RegTest && !cfg.Litecoin.RegTest {
log.Info("Initializing btcd backed fee estimator")
// Finally, we'll re-initialize the fee estimator, as
// if we're using btcd as a backend, then we can use
// live fee estimates, rather than a statically coded
// value.
fallBackFeeRate := chainfee.SatPerKVByte(25 * 1000)
cc.FeeEstimator, err = chainfee.NewBtcdEstimator(
*rpcConfig, fallBackFeeRate.FeePerKWeight(),
)
if err != nil {
return nil, nil, err
}
}
case "nochainbackend":
backend := &NoChainBackend{}
source := &NoChainSource{
BestBlockTime: time.Now(),
}
cc.ChainNotifier = backend
cc.ChainView = backend
cc.FeeEstimator = backend
cc.ChainSource = source
cc.HealthCheck = func() error {
return nil
}
default:
return nil, nil, fmt.Errorf("unknown node type: %s",
homeChainConfig.Node)
}
switch {
// If the fee URL isn't set, and the user is running mainnet, then
// we'll return an error to instruct them to set a proper fee
// estimator.
case cfg.FeeURL == "" && cfg.Bitcoin.MainNet &&
homeChainConfig.Node == "neutrino":
return nil, nil, fmt.Errorf("--feeurl parameter required " +
"when running neutrino on mainnet")
// Override default fee estimator if an external service is specified.
case cfg.FeeURL != "":
// Do not cache fees on regtest to make it easier to execute
// manual or automated test cases.
cacheFees := !cfg.Bitcoin.RegTest
log.Infof("Using external fee estimator %v: cached=%v",
cfg.FeeURL, cacheFees)
cc.FeeEstimator = chainfee.NewWebAPIEstimator(
chainfee.SparseConfFeeSource{
URL: cfg.FeeURL,
},
!cacheFees,
)
}
ccCleanup := func() {
if cc.FeeEstimator != nil {
if err := cc.FeeEstimator.Stop(); err != nil {
log.Errorf("Failed to stop feeEstimator: %v",
err)
}
}
}
// Start fee estimator.
if err := cc.FeeEstimator.Start(); err != nil {
return nil, nil, err
}
// Select the default channel constraints for the primary chain.
cc.ChannelConstraints = GenDefaultBtcConstraints()
if cfg.PrimaryChain() == LitecoinChain {
cc.ChannelConstraints = DefaultLtcChannelConstraints
}
return cc, ccCleanup, nil
}
// NewChainControl attempts to create a ChainControl instance according
// to the parameters in the passed configuration. Currently three
// branches of ChainControl instances exist: one backed by a running btcd
// full-node, another backed by a running bitcoind full-node, and the other
// backed by a running neutrino light client instance. When running with a
// neutrino light client instance, `neutrinoCS` must be non-nil.
func NewChainControl(walletConfig lnwallet.Config,
msgSigner lnwallet.MessageSigner,
pcc *PartialChainControl) (*ChainControl, func(), error) {
cc := &ChainControl{
PartialChainControl: pcc,
MsgSigner: msgSigner,
Signer: walletConfig.Signer,
ChainIO: walletConfig.ChainIO,
Wc: walletConfig.WalletController,
KeyRing: walletConfig.SecretKeyRing,
}
ccCleanup := func() {
if cc.Wallet != nil {
if err := cc.Wallet.Shutdown(); err != nil {
log.Errorf("Failed to shutdown wallet: %v", err)
}
}
}
lnWallet, err := lnwallet.NewLightningWallet(walletConfig)
if err != nil {
return nil, ccCleanup, fmt.Errorf("unable to create wallet: %v",
err)
}
if err := lnWallet.Startup(); err != nil {
return nil, ccCleanup, fmt.Errorf("unable to create wallet: %v",
err)
}
log.Info("LightningWallet opened")
cc.Wallet = lnWallet
return cc, ccCleanup, nil
}
// getBitcoindHealthCheckCmd queries bitcoind for its version to decide which
// api we should use for our health check. We prefer to use the uptime
// command, because it has no locking and is an inexpensive call, which was
// added in version 0.15. If we are on an earlier version, we fallback to using
// getblockchaininfo.
func getBitcoindHealthCheckCmd(client *rpcclient.Client) (string, int64, error) {
// Query bitcoind to get our current version.
resp, err := client.RawRequest("getnetworkinfo", nil)
if err != nil {
return "", 0, err
}
// Parse the response to retrieve bitcoind's version.
info := struct {
Version int64 `json:"version"`
}{}
if err := json.Unmarshal(resp, &info); err != nil {
return "", 0, err
}
// Bitcoind returns a single value representing the semantic version:
// 1000000 * CLIENT_VERSION_MAJOR + 10000 * CLIENT_VERSION_MINOR
// + 100 * CLIENT_VERSION_REVISION + 1 * CLIENT_VERSION_BUILD
//
// The uptime call was added in version 0.15.0, so we return it for
// any version value >= 150000, as per the above calculation.
if info.Version >= 150000 {
return "uptime", info.Version, nil
}
return "getblockchaininfo", info.Version, nil
}
var (
// BitcoinTestnetGenesis is the genesis hash of Bitcoin's testnet
// chain.
BitcoinTestnetGenesis = chainhash.Hash([chainhash.HashSize]byte{
0x43, 0x49, 0x7f, 0xd7, 0xf8, 0x26, 0x95, 0x71,
0x08, 0xf4, 0xa3, 0x0f, 0xd9, 0xce, 0xc3, 0xae,
0xba, 0x79, 0x97, 0x20, 0x84, 0xe9, 0x0e, 0xad,
0x01, 0xea, 0x33, 0x09, 0x00, 0x00, 0x00, 0x00,
})
// BitcoinSignetGenesis is the genesis hash of Bitcoin's signet chain.
BitcoinSignetGenesis = chainhash.Hash([chainhash.HashSize]byte{
0xf6, 0x1e, 0xee, 0x3b, 0x63, 0xa3, 0x80, 0xa4,
0x77, 0xa0, 0x63, 0xaf, 0x32, 0xb2, 0xbb, 0xc9,
0x7c, 0x9f, 0xf9, 0xf0, 0x1f, 0x2c, 0x42, 0x25,
0xe9, 0x73, 0x98, 0x81, 0x08, 0x00, 0x00, 0x00,
})
// BitcoinMainnetGenesis is the genesis hash of Bitcoin's main chain.
BitcoinMainnetGenesis = chainhash.Hash([chainhash.HashSize]byte{
0x6f, 0xe2, 0x8c, 0x0a, 0xb6, 0xf1, 0xb3, 0x72,
0xc1, 0xa6, 0xa2, 0x46, 0xae, 0x63, 0xf7, 0x4f,
0x93, 0x1e, 0x83, 0x65, 0xe1, 0x5a, 0x08, 0x9c,
0x68, 0xd6, 0x19, 0x00, 0x00, 0x00, 0x00, 0x00,
})
// LitecoinTestnetGenesis is the genesis hash of Litecoin's testnet4
// chain.
LitecoinTestnetGenesis = chainhash.Hash([chainhash.HashSize]byte{
0xa0, 0x29, 0x3e, 0x4e, 0xeb, 0x3d, 0xa6, 0xe6,
0xf5, 0x6f, 0x81, 0xed, 0x59, 0x5f, 0x57, 0x88,
0x0d, 0x1a, 0x21, 0x56, 0x9e, 0x13, 0xee, 0xfd,
0xd9, 0x51, 0x28, 0x4b, 0x5a, 0x62, 0x66, 0x49,
})
// LitecoinMainnetGenesis is the genesis hash of Litecoin's main chain.
LitecoinMainnetGenesis = chainhash.Hash([chainhash.HashSize]byte{
0xe2, 0xbf, 0x04, 0x7e, 0x7e, 0x5a, 0x19, 0x1a,
0xa4, 0xef, 0x34, 0xd3, 0x14, 0x97, 0x9d, 0xc9,
0x98, 0x6e, 0x0f, 0x19, 0x25, 0x1e, 0xda, 0xba,
0x59, 0x40, 0xfd, 0x1f, 0xe3, 0x65, 0xa7, 0x12,
})
// chainMap is a simple index that maps a chain's genesis hash to the
// ChainCode enum for that chain.
chainMap = map[chainhash.Hash]ChainCode{
BitcoinTestnetGenesis: BitcoinChain,
LitecoinTestnetGenesis: LitecoinChain,
BitcoinMainnetGenesis: BitcoinChain,
LitecoinMainnetGenesis: LitecoinChain,
}
// ChainDNSSeeds is a map of a chain's hash to the set of DNS seeds
// that will be use to bootstrap peers upon first startup.
//
// The first item in the array is the primary host we'll use to attempt
// the SRV lookup we require. If we're unable to receive a response
// over UDP, then we'll fall back to manual TCP resolution. The second
// item in the array is a special A record that we'll query in order to
// receive the IP address of the current authoritative DNS server for
// the network seed.
//
// TODO(roasbeef): extend and collapse these and chainparams.go into
// struct like chaincfg.Params.
ChainDNSSeeds = map[chainhash.Hash][][2]string{
BitcoinMainnetGenesis: {
{
"nodes.lightning.directory",
"soa.nodes.lightning.directory",
},
{
"lseed.bitcoinstats.com",
},
},
BitcoinTestnetGenesis: {
{
"test.nodes.lightning.directory",
"soa.nodes.lightning.directory",
},
},
BitcoinSignetGenesis: {
{
"ln.signet.secp.tech",
},
},
LitecoinMainnetGenesis: {
{
"ltc.nodes.lightning.directory",
"soa.nodes.lightning.directory",
},
},
}
)
// ChainRegistry keeps track of the current chains.
type ChainRegistry struct {
sync.RWMutex
activeChains map[ChainCode]*ChainControl
netParams map[ChainCode]*BitcoinNetParams
primaryChain ChainCode
}
// NewChainRegistry creates a new ChainRegistry.
func NewChainRegistry() *ChainRegistry {
return &ChainRegistry{
activeChains: make(map[ChainCode]*ChainControl),
netParams: make(map[ChainCode]*BitcoinNetParams),
}
}
// RegisterChain assigns an active ChainControl instance to a target chain
// identified by its ChainCode.
func (c *ChainRegistry) RegisterChain(newChain ChainCode,
cc *ChainControl) {
c.Lock()
c.activeChains[newChain] = cc
c.Unlock()
}
// LookupChain attempts to lookup an active ChainControl instance for the
// target chain.
func (c *ChainRegistry) LookupChain(targetChain ChainCode) (
*ChainControl, bool) {
c.RLock()
cc, ok := c.activeChains[targetChain]
c.RUnlock()
return cc, ok
}
// LookupChainByHash attempts to look up an active ChainControl which
// corresponds to the passed genesis hash.
func (c *ChainRegistry) LookupChainByHash(
chainHash chainhash.Hash) (*ChainControl, bool) {
c.RLock()
defer c.RUnlock()
targetChain, ok := chainMap[chainHash]
if !ok {
return nil, ok
}
cc, ok := c.activeChains[targetChain]
return cc, ok
}
// RegisterPrimaryChain sets a target chain as the "home chain" for lnd.
func (c *ChainRegistry) RegisterPrimaryChain(cc ChainCode) {
c.Lock()
defer c.Unlock()
c.primaryChain = cc
}
// PrimaryChain returns the primary chain for this running lnd instance. The
// primary chain is considered the "home base" while the other registered
// chains are treated as secondary chains.
func (c *ChainRegistry) PrimaryChain() ChainCode {
c.RLock()
defer c.RUnlock()
return c.primaryChain
}
// ActiveChains returns a slice containing the active chains.
func (c *ChainRegistry) ActiveChains() []ChainCode {
c.RLock()
defer c.RUnlock()
chains := make([]ChainCode, 0, len(c.activeChains))
for activeChain := range c.activeChains {
chains = append(chains, activeChain)
}
return chains
}
// NumActiveChains returns the total number of active chains.
func (c *ChainRegistry) NumActiveChains() uint32 {
c.RLock()
defer c.RUnlock()
return uint32(len(c.activeChains))
}