lnd/routing/blindedpath/blinded_path.go
ziggie 25f7b1c362
blindedpath: minHTLC for blinded path change.
We will not add a buffer to the chan policy for blinded paths in case
the sender amount violates the minHTLC restriction in the first place.

Moreover we disgard a route fast if the payment amount is smaller than
the minHTLC along the route.
2024-08-22 19:09:43 +02:00

1020 lines
32 KiB
Go

package blindedpath
import (
"bytes"
"errors"
"fmt"
"math"
"sort"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/tlv"
"github.com/lightningnetwork/lnd/zpay32"
)
const (
// oneMillion is a constant used frequently in fee rate calculations.
oneMillion = uint32(1_000_000)
)
// errInvalidBlindedPath indicates that the chosen real path is not usable as
// a blinded path.
var errInvalidBlindedPath = errors.New("the chosen path results in an " +
"unusable blinded path")
// BuildBlindedPathCfg defines the various resources and configuration values
// required to build a blinded payment path to this node.
type BuildBlindedPathCfg struct {
// FindRoutes returns a set of routes to us that can be used for the
// construction of blinded paths. These routes will consist of real
// nodes advertising the route blinding feature bit. They may be of
// various lengths and may even contain only a single hop. Any route
// shorter than MinNumHops will be padded with dummy hops during route
// construction.
FindRoutes func(value lnwire.MilliSatoshi) ([]*route.Route, error)
// FetchChannelEdgesByID attempts to look up the two directed edges for
// the channel identified by the channel ID.
FetchChannelEdgesByID func(chanID uint64) (*models.ChannelEdgeInfo,
*models.ChannelEdgePolicy, *models.ChannelEdgePolicy, error)
// FetchOurOpenChannels fetches this node's set of open channels.
FetchOurOpenChannels func() ([]*channeldb.OpenChannel, error)
// BestHeight can be used to fetch the best block height that this node
// is aware of.
BestHeight func() (uint32, error)
// AddPolicyBuffer is a function that can be used to alter the policy
// values of the given channel edge. The main reason for doing this is
// to add a safety buffer so that if the node makes small policy changes
// during the lifetime of the blinded path, then the path remains valid
// and so probing is more difficult. Note that this will only be called
// for the policies of real nodes and won't be applied to
// DefaultDummyHopPolicy.
AddPolicyBuffer func(policy *BlindedHopPolicy) (*BlindedHopPolicy,
error)
// PathID is the secret data to embed in the blinded path data that we
// will receive back as the recipient. This is the equivalent of the
// payment address used in normal payments. It lets the recipient check
// that the path is being used in the correct context.
PathID []byte
// ValueMsat is the payment amount in milli-satoshis that must be
// routed. This will be used for selecting appropriate routes to use for
// the blinded path.
ValueMsat lnwire.MilliSatoshi
// MinFinalCLTVExpiryDelta is the minimum CLTV delta that the recipient
// requires for the final hop of the payment.
//
// NOTE that the caller is responsible for adding additional block
// padding to this value to account for blocks being mined while the
// payment is in-flight.
MinFinalCLTVExpiryDelta uint32
// BlocksUntilExpiry is the number of blocks that this blinded path
// should remain valid for. This is a relative number of blocks. This
// number in addition with a potential minimum cltv delta for the last
// hop and some block padding will be the payment constraint which is
// part of the blinded hop info. Every htlc using the provided blinded
// hops cannot have a higher cltv delta otherwise it will get rejected
// by the forwarding nodes or the final node.
//
// This number should at least be greater than the invoice expiry time
// so that the blinded route is always valid as long as the invoice is
// valid.
BlocksUntilExpiry uint32
// MinNumHops is the minimum number of hops that each blinded path
// should be. If the number of hops in a path returned by FindRoutes is
// less than this number, then dummy hops will be post-fixed to the
// route.
MinNumHops uint8
// DefaultDummyHopPolicy holds the policy values that should be used for
// dummy hops in the cases where it cannot be derived via other means
// such as averaging the policy values of other hops on the path. This
// would happen in the case where the introduction node is also the
// introduction node. If these default policy values are used, then
// the MaxHTLCMsat value must be carefully chosen.
DefaultDummyHopPolicy *BlindedHopPolicy
}
// BuildBlindedPaymentPaths uses the passed config to construct a set of blinded
// payment paths that can be added to the invoice.
func BuildBlindedPaymentPaths(cfg *BuildBlindedPathCfg) (
[]*zpay32.BlindedPaymentPath, error) {
// Find some appropriate routes for the value to be routed. This will
// return a set of routes made up of real nodes.
routes, err := cfg.FindRoutes(cfg.ValueMsat)
if err != nil {
return nil, err
}
if len(routes) == 0 {
return nil, fmt.Errorf("could not find any routes to self to " +
"use for blinded route construction")
}
// Not every route returned will necessarily result in a usable blinded
// path and so the number of paths returned might be less than the
// number of real routes returned by FindRoutes above.
paths := make([]*zpay32.BlindedPaymentPath, 0, len(routes))
// For each route returned, we will construct the associated blinded
// payment path.
for _, route := range routes {
// Extract the information we need from the route.
candidatePath := extractCandidatePath(route)
// Pad the given route with dummy hops until the minimum number
// of hops is met.
candidatePath.padWithDummyHops(cfg.MinNumHops)
path, err := buildBlindedPaymentPath(cfg, candidatePath)
if errors.Is(err, errInvalidBlindedPath) {
log.Debugf("Not using route (%s) as a blinded path "+
"since it resulted in an invalid blinded path",
route)
continue
} else if err != nil {
log.Errorf("Not using route (%s) as a blinded path: %v",
route, err)
continue
}
log.Debugf("Route selected for blinded path: %s", candidatePath)
paths = append(paths, path)
}
if len(paths) == 0 {
return nil, fmt.Errorf("could not build any blinded paths")
}
return paths, nil
}
// buildBlindedPaymentPath takes a route from an introduction node to this node
// and uses the given config to convert it into a blinded payment path.
func buildBlindedPaymentPath(cfg *BuildBlindedPathCfg, path *candidatePath) (
*zpay32.BlindedPaymentPath, error) {
hops, minHTLC, maxHTLC, err := collectRelayInfo(cfg, path)
if err != nil {
return nil, fmt.Errorf("could not collect blinded path relay "+
"info: %w", err)
}
relayInfo := make([]*record.PaymentRelayInfo, len(hops))
for i, hop := range hops {
relayInfo[i] = hop.relayInfo
}
// Using the collected relay info, we can calculate the aggregated
// policy values for the route.
baseFee, feeRate, cltvDelta := calcBlindedPathPolicies(
relayInfo, uint16(cfg.MinFinalCLTVExpiryDelta),
)
currentHeight, err := cfg.BestHeight()
if err != nil {
return nil, err
}
// The next step is to calculate the payment constraints to communicate
// to each hop and to package up the hop info for each hop. We will
// handle the final hop first since its payload looks a bit different,
// and then we will iterate backwards through the remaining hops.
//
// Note that the +1 here is required because the route won't have the
// introduction node included in the "Hops". But since we want to create
// payloads for all the hops as well as the introduction node, we add 1
// here to get the full hop length along with the introduction node.
hopDataSet := make([]*hopData, 0, len(path.hops)+1)
// Determine the maximum CLTV expiry for the destination node.
cltvExpiry := currentHeight + cfg.BlocksUntilExpiry +
cfg.MinFinalCLTVExpiryDelta
constraints := &record.PaymentConstraints{
MaxCltvExpiry: cltvExpiry,
HtlcMinimumMsat: minHTLC,
}
// If the blinded route has only a source node (introduction node) and
// no hops, then the destination node is also the source node.
finalHopPubKey := path.introNode
if len(path.hops) > 0 {
finalHopPubKey = path.hops[len(path.hops)-1].pubKey
}
// For the final hop, we only send it the path ID and payment
// constraints.
info, err := buildFinalHopRouteData(
finalHopPubKey, cfg.PathID, constraints,
)
if err != nil {
return nil, err
}
hopDataSet = append(hopDataSet, info)
// Iterate through the remaining (non-final) hops, back to front.
for i := len(hops) - 1; i >= 0; i-- {
hop := hops[i]
cltvExpiry += uint32(hop.relayInfo.CltvExpiryDelta)
constraints = &record.PaymentConstraints{
MaxCltvExpiry: cltvExpiry,
HtlcMinimumMsat: minHTLC,
}
var info *hopData
if hop.nextHopIsDummy {
info, err = buildDummyRouteData(
hop.hopPubKey, hop.relayInfo, constraints,
)
} else {
info, err = buildHopRouteData(
hop.hopPubKey, hop.nextSCID, hop.relayInfo,
constraints,
)
}
if err != nil {
return nil, err
}
hopDataSet = append(hopDataSet, info)
}
// Sort the hop info list in reverse order so that the data for the
// introduction node is first.
sort.Slice(hopDataSet, func(i, j int) bool {
return j < i
})
// Add padding to each route data instance until the encrypted data
// blobs are all the same size.
paymentPath, _, err := padHopInfo(
hopDataSet, true, record.AverageDummyHopPayloadSize,
)
if err != nil {
return nil, err
}
// Derive an ephemeral session key.
sessionKey, err := btcec.NewPrivateKey()
if err != nil {
return nil, err
}
// Encrypt the hop info.
blindedPath, err := sphinx.BuildBlindedPath(sessionKey, paymentPath)
if err != nil {
return nil, err
}
if len(blindedPath.BlindedHops) < 1 {
return nil, fmt.Errorf("blinded path must have at least one " +
"hop")
}
// Overwrite the introduction point's blinded pub key with the real
// pub key since then we can use this more compact format in the
// invoice without needing to encode the un-used blinded node pub key of
// the intro node.
blindedPath.BlindedHops[0].BlindedNodePub =
blindedPath.IntroductionPoint
// Now construct a z32 blinded path.
return &zpay32.BlindedPaymentPath{
FeeBaseMsat: uint32(baseFee),
FeeRate: feeRate,
CltvExpiryDelta: cltvDelta,
HTLCMinMsat: uint64(minHTLC),
HTLCMaxMsat: uint64(maxHTLC),
Features: lnwire.EmptyFeatureVector(),
FirstEphemeralBlindingPoint: blindedPath.BlindingPoint,
Hops: blindedPath.BlindedHops,
}, nil
}
// hopRelayInfo packages together the relay info to send to hop on a blinded
// path along with the pub key of that hop and the SCID that the hop should
// forward the payment on to.
type hopRelayInfo struct {
hopPubKey route.Vertex
nextSCID lnwire.ShortChannelID
relayInfo *record.PaymentRelayInfo
nextHopIsDummy bool
}
// collectRelayInfo collects the relay policy rules for each relay hop on the
// route and applies any policy buffers.
//
// For the blinded route:
//
// C --chan(CB)--> B --chan(BA)--> A
//
// where C is the introduction node, the route.Route struct we are given will
// have SourcePubKey set to C's pub key, and then it will have the following
// route.Hops:
//
// - PubKeyBytes: B, ChannelID: chan(CB)
// - PubKeyBytes: A, ChannelID: chan(BA)
//
// We, however, want to collect the channel policies for the following PubKey
// and ChannelID pairs:
//
// - PubKey: C, ChannelID: chan(CB)
// - PubKey: B, ChannelID: chan(BA)
//
// Therefore, when we go through the route and its hops to collect policies, our
// index for collecting public keys will be trailing that of the channel IDs by
// 1.
//
// For any dummy hops on the route, this function also decides what to use as
// policy values for the dummy hops. If there are other real hops, then the
// dummy hop policy values are derived by taking the average of the real
// policy values. If there are no real hops (in other words we are the
// introduction node), then we use some default routing values and we use the
// average of our channel capacities for the MaxHTLC value.
func collectRelayInfo(cfg *BuildBlindedPathCfg, path *candidatePath) (
[]*hopRelayInfo, lnwire.MilliSatoshi, lnwire.MilliSatoshi, error) {
var (
// The first pub key is that of the introduction node.
hopSource = path.introNode
// A collection of the policy values of real hops on the path.
policies = make(map[uint64]*BlindedHopPolicy)
hasDummyHops bool
)
// On this first iteration, we just collect policy values of the real
// hops on the path.
for _, hop := range path.hops {
// Once we have hit a dummy hop, all hops after will be dummy
// hops too.
if hop.isDummy {
hasDummyHops = true
break
}
// For real hops, retrieve the channel policy for this hop's
// channel ID in the direction pointing away from the hopSource
// node.
policy, err := getNodeChannelPolicy(
cfg, hop.channelID, hopSource,
)
if err != nil {
return nil, 0, 0, err
}
policies[hop.channelID] = policy
// This hop's pub key will be the policy creator for the next
// hop.
hopSource = hop.pubKey
}
var (
dummyHopPolicy *BlindedHopPolicy
err error
)
// If the path does have dummy hops, we need to decide which policy
// values to use for these hops.
if hasDummyHops {
dummyHopPolicy, err = computeDummyHopPolicy(
cfg.DefaultDummyHopPolicy, cfg.FetchOurOpenChannels,
policies,
)
if err != nil {
return nil, 0, 0, err
}
}
// We iterate through the hops one more time. This time it is to
// buffer the policy values, collect the payment relay info to send to
// each hop, and to compute the min and max HTLC values for the path.
var (
hops = make([]*hopRelayInfo, 0, len(path.hops))
minHTLC lnwire.MilliSatoshi
maxHTLC lnwire.MilliSatoshi
)
// The first pub key is that of the introduction node.
hopSource = path.introNode
for _, hop := range path.hops {
var (
policy = dummyHopPolicy
ok bool
err error
)
if !hop.isDummy {
policy, ok = policies[hop.channelID]
if !ok {
return nil, 0, 0, fmt.Errorf("no cached "+
"policy found for channel ID: %d",
hop.channelID)
}
}
if policy.MinHTLCMsat > cfg.ValueMsat {
return nil, 0, 0, fmt.Errorf("%w: minHTLC of hop "+
"policy larger than payment amt: sentAmt(%v), "+
"minHTLC(%v)", errInvalidBlindedPath,
cfg.ValueMsat, policy.MinHTLCMsat)
}
bufferPolicy, err := cfg.AddPolicyBuffer(policy)
if err != nil {
return nil, 0, 0, err
}
// We only use the new buffered policy if the new minHTLC value
// does not violate the sender amount.
//
// NOTE: We don't check this for maxHTLC, because the payment
// amount can always be splitted using MPP.
if bufferPolicy.MinHTLCMsat <= cfg.ValueMsat {
policy = bufferPolicy
}
// If this is the first policy we are collecting, then use this
// policy to set the base values for min/max htlc.
if len(hops) == 0 {
minHTLC = policy.MinHTLCMsat
maxHTLC = policy.MaxHTLCMsat
} else {
if policy.MinHTLCMsat > minHTLC {
minHTLC = policy.MinHTLCMsat
}
if policy.MaxHTLCMsat < maxHTLC {
maxHTLC = policy.MaxHTLCMsat
}
}
// From the policy values for this hop, we can collect the
// payment relay info that we will send to this hop.
hops = append(hops, &hopRelayInfo{
hopPubKey: hopSource,
nextSCID: lnwire.NewShortChanIDFromInt(hop.channelID),
relayInfo: &record.PaymentRelayInfo{
FeeRate: policy.FeeRate,
BaseFee: policy.BaseFee,
CltvExpiryDelta: policy.CLTVExpiryDelta,
},
nextHopIsDummy: hop.isDummy,
})
// This hop's pub key will be the policy creator for the next
// hop.
hopSource = hop.pubKey
}
// It can happen that there is no HTLC-range overlap between the various
// hops along the path. We return errInvalidBlindedPath to indicate that
// this route was not usable
if minHTLC > maxHTLC {
return nil, 0, 0, fmt.Errorf("%w: resulting blinded path min "+
"HTLC value is larger than the resulting max HTLC "+
"value", errInvalidBlindedPath)
}
return hops, minHTLC, maxHTLC, nil
}
// buildDummyRouteData constructs the record.BlindedRouteData struct for the
// given a hop in a blinded route where the following hop is a dummy hop.
func buildDummyRouteData(node route.Vertex, relayInfo *record.PaymentRelayInfo,
constraints *record.PaymentConstraints) (*hopData, error) {
nodeID, err := btcec.ParsePubKey(node[:])
if err != nil {
return nil, err
}
return &hopData{
data: record.NewDummyHopRouteData(
nodeID, *relayInfo, *constraints,
),
nodeID: nodeID,
}, nil
}
// computeDummyHopPolicy determines policy values to use for a dummy hop on a
// blinded path. If other real policy values exist, then we use the average of
// those values for the dummy hop policy values. Otherwise, in the case were
// there are no real policy values due to this node being the introduction node,
// we use the provided default policy values, and we get the average capacity of
// this node's channels to compute a MaxHTLC value.
func computeDummyHopPolicy(defaultPolicy *BlindedHopPolicy,
fetchOurChannels func() ([]*channeldb.OpenChannel, error),
policies map[uint64]*BlindedHopPolicy) (*BlindedHopPolicy, error) {
numPolicies := len(policies)
// If there are no real policies to calculate an average policy from,
// then we use the default. The only thing we need to calculate here
// though is the MaxHTLC value.
if numPolicies == 0 {
chans, err := fetchOurChannels()
if err != nil {
return nil, err
}
if len(chans) == 0 {
return nil, fmt.Errorf("node has no channels to " +
"receive on")
}
// Calculate the average channel capacity and use this as the
// MaxHTLC value.
var maxHTLC btcutil.Amount
for _, c := range chans {
maxHTLC += c.Capacity
}
maxHTLC = btcutil.Amount(float64(maxHTLC) / float64(len(chans)))
return &BlindedHopPolicy{
CLTVExpiryDelta: defaultPolicy.CLTVExpiryDelta,
FeeRate: defaultPolicy.FeeRate,
BaseFee: defaultPolicy.BaseFee,
MinHTLCMsat: defaultPolicy.MinHTLCMsat,
MaxHTLCMsat: lnwire.NewMSatFromSatoshis(maxHTLC),
}, nil
}
var avgPolicy BlindedHopPolicy
for _, policy := range policies {
avgPolicy.MinHTLCMsat += policy.MinHTLCMsat
avgPolicy.MaxHTLCMsat += policy.MaxHTLCMsat
avgPolicy.BaseFee += policy.BaseFee
avgPolicy.FeeRate += policy.FeeRate
avgPolicy.CLTVExpiryDelta += policy.CLTVExpiryDelta
}
avgPolicy.MinHTLCMsat = lnwire.MilliSatoshi(
float64(avgPolicy.MinHTLCMsat) / float64(numPolicies),
)
avgPolicy.MaxHTLCMsat = lnwire.MilliSatoshi(
float64(avgPolicy.MaxHTLCMsat) / float64(numPolicies),
)
avgPolicy.BaseFee = lnwire.MilliSatoshi(
float64(avgPolicy.BaseFee) / float64(numPolicies),
)
avgPolicy.FeeRate = uint32(
float64(avgPolicy.FeeRate) / float64(numPolicies),
)
avgPolicy.CLTVExpiryDelta = uint16(
float64(avgPolicy.CLTVExpiryDelta) / float64(numPolicies),
)
return &avgPolicy, nil
}
// buildHopRouteData constructs the record.BlindedRouteData struct for the given
// non-final hop on a blinded path and packages it with the node's ID.
func buildHopRouteData(node route.Vertex, scid lnwire.ShortChannelID,
relayInfo *record.PaymentRelayInfo,
constraints *record.PaymentConstraints) (*hopData, error) {
// Wrap up the data we want to send to this hop.
blindedRouteHopData := record.NewNonFinalBlindedRouteData(
scid, nil, *relayInfo, constraints, nil,
)
nodeID, err := btcec.ParsePubKey(node[:])
if err != nil {
return nil, err
}
return &hopData{
data: blindedRouteHopData,
nodeID: nodeID,
}, nil
}
// buildFinalHopRouteData constructs the record.BlindedRouteData struct for the
// final hop and packages it with the real node ID of the node it is intended
// for.
func buildFinalHopRouteData(node route.Vertex, pathID []byte,
constraints *record.PaymentConstraints) (*hopData, error) {
blindedRouteHopData := record.NewFinalHopBlindedRouteData(
constraints, pathID,
)
nodeID, err := btcec.ParsePubKey(node[:])
if err != nil {
return nil, err
}
return &hopData{
data: blindedRouteHopData,
nodeID: nodeID,
}, nil
}
// getNodeChanPolicy fetches the routing policy info for the given channel and
// node pair.
func getNodeChannelPolicy(cfg *BuildBlindedPathCfg, chanID uint64,
nodeID route.Vertex) (*BlindedHopPolicy, error) {
// Attempt to fetch channel updates for the given channel. We will have
// at most two updates for a given channel.
_, update1, update2, err := cfg.FetchChannelEdgesByID(chanID)
if err != nil {
return nil, err
}
// Now we need to determine which of the updates was created by the
// node in question. We know the update is the correct one if the
// "ToNode" for the fetched policy is _not_ equal to the node ID in
// question.
var policy *models.ChannelEdgePolicy
switch {
case update1 != nil && !bytes.Equal(update1.ToNode[:], nodeID[:]):
policy = update1
case update2 != nil && !bytes.Equal(update2.ToNode[:], nodeID[:]):
policy = update2
default:
return nil, fmt.Errorf("no channel updates found from node "+
"%s for channel %d", nodeID, chanID)
}
return &BlindedHopPolicy{
CLTVExpiryDelta: policy.TimeLockDelta,
FeeRate: uint32(policy.FeeProportionalMillionths),
BaseFee: policy.FeeBaseMSat,
MinHTLCMsat: policy.MinHTLC,
MaxHTLCMsat: policy.MaxHTLC,
}, nil
}
// candidatePath holds all the information about a route to this node that we
// need in order to build a blinded route.
type candidatePath struct {
introNode route.Vertex
finalNodeID route.Vertex
hops []*blindedPathHop
}
// String returns a string representation of the candidatePath which can be
// useful for logging and debugging.
func (c *candidatePath) String() string {
str := fmt.Sprintf("[%s (intro node)]", c.introNode)
for _, hop := range c.hops {
if hop.isDummy {
str += "--->[dummy hop]"
continue
}
str += fmt.Sprintf("--<%d>-->[%s]", hop.channelID, hop.pubKey)
}
return str
}
// padWithDummyHops will append n dummy hops to the candidatePath hop set. The
// pub key for the dummy hop will be the same as the pub key for the final hop
// of the path. That way, the final hop will be able to decrypt the data
// encrypted for each dummy hop.
func (c *candidatePath) padWithDummyHops(n uint8) {
for len(c.hops) < int(n) {
c.hops = append(c.hops, &blindedPathHop{
pubKey: c.finalNodeID,
isDummy: true,
})
}
}
// blindedPathHop holds the information we need to know about a hop in a route
// in order to use it in the construction of a blinded path.
type blindedPathHop struct {
// pubKey is the real pub key of a node on a blinded path.
pubKey route.Vertex
// channelID is the channel along which the previous hop should forward
// their HTLC in order to reach this hop.
channelID uint64
// isDummy is true if this hop is an appended dummy hop.
isDummy bool
}
// extractCandidatePath extracts the data it needs from the given route.Route in
// order to construct a candidatePath.
func extractCandidatePath(path *route.Route) *candidatePath {
var (
hops = make([]*blindedPathHop, len(path.Hops))
finalNode = path.SourcePubKey
)
for i, hop := range path.Hops {
hops[i] = &blindedPathHop{
pubKey: hop.PubKeyBytes,
channelID: hop.ChannelID,
}
if i == len(path.Hops)-1 {
finalNode = hop.PubKeyBytes
}
}
return &candidatePath{
introNode: path.SourcePubKey,
finalNodeID: finalNode,
hops: hops,
}
}
// BlindedHopPolicy holds the set of relay policy values to use for a channel
// in a blinded path.
type BlindedHopPolicy struct {
CLTVExpiryDelta uint16
FeeRate uint32
BaseFee lnwire.MilliSatoshi
MinHTLCMsat lnwire.MilliSatoshi
MaxHTLCMsat lnwire.MilliSatoshi
}
// AddPolicyBuffer constructs the bufferedChanPolicies for a path hop by taking
// its actual policy values and multiplying them by the given multipliers.
// The base fee, fee rate and minimum HTLC msat values are adjusted via the
// incMultiplier while the maximum HTLC msat value is adjusted via the
// decMultiplier. If adjustments of the HTLC values no longer make sense
// then the original HTLC value is used.
func AddPolicyBuffer(policy *BlindedHopPolicy, incMultiplier,
decMultiplier float64) (*BlindedHopPolicy, error) {
if incMultiplier < 1 {
return nil, fmt.Errorf("blinded path policy increase " +
"multiplier must be greater than or equal to 1")
}
if decMultiplier < 0 || decMultiplier > 1 {
return nil, fmt.Errorf("blinded path policy decrease " +
"multiplier must be in the range [0;1]")
}
var (
minHTLCMsat = lnwire.MilliSatoshi(
float64(policy.MinHTLCMsat) * incMultiplier,
)
maxHTLCMsat = lnwire.MilliSatoshi(
float64(policy.MaxHTLCMsat) * decMultiplier,
)
)
// Make sure the new minimum is not more than the original maximum.
// If it is, then just stick to the original minimum.
if minHTLCMsat > policy.MaxHTLCMsat {
minHTLCMsat = policy.MinHTLCMsat
}
// Make sure the new maximum is not less than the original minimum.
// If it is, then just stick to the original maximum.
if maxHTLCMsat < policy.MinHTLCMsat {
maxHTLCMsat = policy.MaxHTLCMsat
}
// Also ensure that the new htlc bounds make sense. If the new minimum
// is greater than the new maximum, then just let both to their original
// values.
if minHTLCMsat > maxHTLCMsat {
minHTLCMsat = policy.MinHTLCMsat
maxHTLCMsat = policy.MaxHTLCMsat
}
return &BlindedHopPolicy{
CLTVExpiryDelta: uint16(
float64(policy.CLTVExpiryDelta) * incMultiplier,
),
FeeRate: uint32(
float64(policy.FeeRate) * incMultiplier,
),
BaseFee: lnwire.MilliSatoshi(
float64(policy.BaseFee) * incMultiplier,
),
MinHTLCMsat: minHTLCMsat,
MaxHTLCMsat: maxHTLCMsat,
}, nil
}
// calcBlindedPathPolicies computes the accumulated policy values for the path.
// These values include the total base fee, the total proportional fee and the
// total CLTV delta. This function assumes that all the passed relay infos have
// already been adjusted with a buffer to account for easy probing attacks.
func calcBlindedPathPolicies(relayInfo []*record.PaymentRelayInfo,
ourMinFinalCLTVDelta uint16) (lnwire.MilliSatoshi, uint32, uint16) {
var (
totalFeeBase lnwire.MilliSatoshi
totalFeeProp uint32
totalCLTV = ourMinFinalCLTVDelta
)
// Use the algorithms defined in BOLT 4 to calculate the accumulated
// relay fees for the route:
//nolint:lll
// https://github.com/lightning/bolts/blob/db278ab9b2baa0b30cfe79fb3de39280595938d3/04-onion-routing.md?plain=1#L255
for i := len(relayInfo) - 1; i >= 0; i-- {
info := relayInfo[i]
totalFeeBase = calcNextTotalBaseFee(
totalFeeBase, info.BaseFee, info.FeeRate,
)
totalFeeProp = calcNextTotalFeeRate(totalFeeProp, info.FeeRate)
totalCLTV += info.CltvExpiryDelta
}
return totalFeeBase, totalFeeProp, totalCLTV
}
// calcNextTotalBaseFee takes the current total accumulated base fee of a
// blinded path at hop `n` along with the fee rate and base fee of the hop at
// `n+1` and uses these to calculate the accumulated base fee at hop `n+1`.
func calcNextTotalBaseFee(currentTotal, hopBaseFee lnwire.MilliSatoshi,
hopFeeRate uint32) lnwire.MilliSatoshi {
numerator := (uint32(hopBaseFee) * oneMillion) +
(uint32(currentTotal) * (oneMillion + hopFeeRate)) +
oneMillion - 1
return lnwire.MilliSatoshi(numerator / oneMillion)
}
// calculateNextTotalFeeRate takes the current total accumulated fee rate of a
// blinded path at hop `n` along with the fee rate of the hop at `n+1` and uses
// these to calculate the accumulated fee rate at hop `n+1`.
func calcNextTotalFeeRate(currentTotal, hopFeeRate uint32) uint32 {
numerator := (currentTotal+hopFeeRate)*oneMillion +
currentTotal*hopFeeRate + oneMillion - 1
return numerator / oneMillion
}
// hopData packages the record.BlindedRouteData for a hop on a blinded path with
// the real node ID of that hop.
type hopData struct {
data *record.BlindedRouteData
nodeID *btcec.PublicKey
}
// padStats can be used to keep track of various pieces of data that we collect
// during a call to padHopInfo. This is useful for logging and for test
// assertions.
type padStats struct {
minPayloadSize int
maxPayloadSize int
finalPaddedSize int
numIterations int
}
// padHopInfo iterates over a set of record.BlindedRouteData and adds padding
// where needed until the resulting encrypted data blobs are all the same size.
// This may take a few iterations due to the fact that a TLV field is used to
// add this padding. For example, if we want to add a 1 byte padding to a
// record.BlindedRouteData when it does not yet have any padding, then adding
// a 1 byte padding will actually add 3 bytes due to the bytes required when
// adding the initial type and length bytes. However, on the next iteration if
// we again add just 1 byte, then only a single byte will be added. The same
// iteration is required for padding values on the BigSize encoding bucket
// edges. The number of iterations that this function takes is also returned for
// testing purposes. If prePad is true, then zero byte padding is added to each
// payload that does not yet have padding. This will save some iterations for
// the majority of cases. minSize can be used to specify a minimum size that all
// payloads should be.
func padHopInfo(hopInfo []*hopData, prePad bool, minSize int) (
[]*sphinx.HopInfo, *padStats, error) {
var (
paymentPath = make([]*sphinx.HopInfo, len(hopInfo))
stats = padStats{finalPaddedSize: minSize}
)
// Pre-pad each payload with zero byte padding (if it does not yet have
// padding) to save a couple of iterations in the majority of cases.
if prePad {
for _, info := range hopInfo {
if info.data.Padding.IsSome() {
continue
}
info.data.PadBy(0)
}
}
for {
stats.numIterations++
// On each iteration of the loop, we first determine the
// current largest encoded data blob size. This will be the
// size we aim to get the others to match.
var (
maxLen = minSize
minLen = math.MaxInt8
)
for i, hop := range hopInfo {
plainText, err := record.EncodeBlindedRouteData(
hop.data,
)
if err != nil {
return nil, nil, err
}
if len(plainText) > maxLen {
maxLen = len(plainText)
// Update the stats to take note of this new
// max since this may be the final max that all
// payloads will be padded to.
stats.finalPaddedSize = maxLen
}
if len(plainText) < minLen {
minLen = len(plainText)
}
paymentPath[i] = &sphinx.HopInfo{
NodePub: hop.nodeID,
PlainText: plainText,
}
}
// If this is our first iteration, then we take note of the min
// and max lengths of the payloads pre-padding for logging
// later.
if stats.numIterations == 1 {
stats.minPayloadSize = minLen
stats.maxPayloadSize = maxLen
}
// Now we iterate over them again and determine which ones we
// need to add padding to.
var numEqual int
for i, hop := range hopInfo {
plainText := paymentPath[i].PlainText
// If the plaintext length is equal to the desired
// length, then we can continue. We use numEqual to
// keep track of how many have the same length.
if len(plainText) == maxLen {
numEqual++
continue
}
// If we previously added padding to this hop, we keep
// the length of that initial padding too.
var existingPadding int
hop.data.Padding.WhenSome(
func(p tlv.RecordT[tlv.TlvType1, []byte]) {
existingPadding = len(p.Val)
},
)
// Add some padding bytes to the hop.
hop.data.PadBy(
existingPadding + maxLen - len(plainText),
)
}
// If all the payloads have the same length, we can exit the
// loop.
if numEqual == len(hopInfo) {
break
}
}
log.Debugf("Finished padding %d blinded path payloads to %d bytes "+
"each where the pre-padded min and max sizes were %d and %d "+
"bytes respectively", len(hopInfo), stats.finalPaddedSize,
stats.minPayloadSize, stats.maxPayloadSize)
return paymentPath, &stats, nil
}