lnd/itest/lnd_funding_test.go
Olaoluwa Osuntokun 2c56b3120a
multi: add new tapscript root option to GenTaprootFundingScript
This'll allow us to create a funding output that uses musig2, but uses a tapscript tweak rather than a normal BIP 86 tweak.
2024-08-28 11:52:31 +02:00

1492 lines
52 KiB
Go

package itest
import (
"context"
"fmt"
"testing"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/labels"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
// testBasicChannelFunding performs a test exercising expected behavior from a
// basic funding workflow. The test creates a new channel between Alice and
// Bob, then immediately closes the channel after asserting some expected post
// conditions. Finally, the chain itself is checked to ensure the closing
// transaction was mined.
func testBasicChannelFunding(ht *lntest.HarnessTest) {
// Run through the test with combinations of all the different
// commitment types.
allTypes := []lnrpc.CommitmentType{
lnrpc.CommitmentType_STATIC_REMOTE_KEY,
lnrpc.CommitmentType_ANCHORS,
lnrpc.CommitmentType_SIMPLE_TAPROOT,
}
// testFunding is a function closure that takes Carol and Dave's
// commitment types and test the funding flow.
testFunding := func(ht *lntest.HarnessTest, carolCommitType,
daveCommitType lnrpc.CommitmentType) {
// Based on the current tweak variable for Carol, we'll
// preferentially signal the legacy commitment format. We do
// the same for Dave shortly below.
carolArgs := lntest.NodeArgsForCommitType(carolCommitType)
carol := ht.NewNode("Carol", carolArgs)
// Each time, we'll send Carol a new set of coins in order to
// fund the channel.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
daveArgs := lntest.NodeArgsForCommitType(daveCommitType)
dave := ht.NewNode("Dave", daveArgs)
// Before we start the test, we'll ensure both sides are
// connected to the funding flow can properly be executed.
ht.EnsureConnected(carol, dave)
var privateChan bool
// If this is to be a taproot channel type, then it needs to be
// private, otherwise it'll be rejected by Dave.
//
// TODO(roasbeef): lift after gossip 1.75
if carolCommitType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
privateChan = true
}
// If carol wants taproot, but dave wants something
// else, then we'll assert that the channel negotiation
// attempt fails.
if carolCommitType == lnrpc.CommitmentType_SIMPLE_TAPROOT &&
daveCommitType != lnrpc.CommitmentType_SIMPLE_TAPROOT {
expectedErr := fmt.Errorf("requested channel type " +
"not supported")
amt := funding.MaxBtcFundingAmount
ht.OpenChannelAssertErr(
carol, dave, lntest.OpenChannelParams{
Private: privateChan,
Amt: amt,
CommitmentType: carolCommitType,
}, expectedErr,
)
return
}
carolChan, daveChan, closeChan := basicChannelFundingTest(
ht, carol, dave, nil, privateChan, &carolCommitType,
)
// Both nodes should report the same commitment
// type.
chansCommitType := carolChan.CommitmentType
require.Equal(ht, chansCommitType, daveChan.CommitmentType,
"commit types don't match")
// Now check that the commitment type reported by both nodes is
// what we expect. It will be the minimum of the two nodes'
// preference, in the order Legacy, Tweakless, Anchors.
expType := carolCommitType
switch daveCommitType {
// Dave supports taproot, type will be what Carol supports.
case lnrpc.CommitmentType_SIMPLE_TAPROOT:
// Dave supports anchors, type will be what Carol supports.
case lnrpc.CommitmentType_ANCHORS:
// However if Alice wants taproot chans, then we
// downgrade to anchors as this is still using implicit
// negotiation.
if expType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
expType = lnrpc.CommitmentType_ANCHORS
}
// Dave only supports tweakless, channel will be downgraded to
// this type if Carol supports anchors.
case lnrpc.CommitmentType_STATIC_REMOTE_KEY:
switch expType {
case lnrpc.CommitmentType_ANCHORS:
expType = lnrpc.CommitmentType_STATIC_REMOTE_KEY
case lnrpc.CommitmentType_SIMPLE_TAPROOT:
expType = lnrpc.CommitmentType_STATIC_REMOTE_KEY
}
// Dave only supports legacy type, channel will be downgraded
// to this type.
case lnrpc.CommitmentType_LEGACY:
expType = lnrpc.CommitmentType_LEGACY
default:
ht.Fatalf("invalid commit type %v", daveCommitType)
}
// Check that the signalled type matches what we expect.
switch {
case expType == lnrpc.CommitmentType_ANCHORS &&
chansCommitType == lnrpc.CommitmentType_ANCHORS:
case expType == lnrpc.CommitmentType_STATIC_REMOTE_KEY &&
chansCommitType == lnrpc.CommitmentType_STATIC_REMOTE_KEY: //nolint:lll
case expType == lnrpc.CommitmentType_LEGACY &&
chansCommitType == lnrpc.CommitmentType_LEGACY:
case expType == lnrpc.CommitmentType_SIMPLE_TAPROOT &&
chansCommitType == lnrpc.CommitmentType_SIMPLE_TAPROOT:
default:
ht.Fatalf("expected nodes to signal "+
"commit type %v, instead got "+
"%v", expType, chansCommitType)
}
// As we've concluded this sub-test case we'll now close out
// the channel for both sides.
closeChan()
}
test:
// We'll test all possible combinations of the feature bit presence
// that both nodes can signal for this new channel type. We'll make a
// new Carol+Dave for each test instance as well.
for _, carolCommitType := range allTypes {
for _, daveCommitType := range allTypes {
cc := carolCommitType
dc := daveCommitType
testName := fmt.Sprintf(
"carol_commit=%v,dave_commit=%v", cc, dc,
)
success := ht.Run(testName, func(t *testing.T) {
st := ht.Subtest(t)
testFunding(st, cc, dc)
})
if !success {
break test
}
}
}
}
// basicChannelFundingTest is a sub-test of the main testBasicChannelFunding
// test. Given two nodes: Alice and Bob, it'll assert proper channel creation,
// then return a function closure that should be called to assert proper
// channel closure.
func basicChannelFundingTest(ht *lntest.HarnessTest,
alice, bob *node.HarnessNode, fundingShim *lnrpc.FundingShim,
privateChan bool, commitType *lnrpc.CommitmentType) (*lnrpc.Channel,
*lnrpc.Channel, func()) {
chanAmt := funding.MaxBtcFundingAmount
pushAmt := btcutil.Amount(100000)
satPerVbyte := btcutil.Amount(1)
// Record nodes' channel balance before testing.
aliceChannelBalance := alice.RPC.ChannelBalance()
bobChannelBalance := bob.RPC.ChannelBalance()
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node *node.HarnessNode,
oldChannelBalance *lnrpc.ChannelBalanceResponse,
local, remote btcutil.Amount) {
newResp := oldChannelBalance
newResp.LocalBalance.Sat += uint64(local)
newResp.LocalBalance.Msat += uint64(
lnwire.NewMSatFromSatoshis(local),
)
newResp.RemoteBalance.Sat += uint64(remote)
newResp.RemoteBalance.Msat += uint64(
lnwire.NewMSatFromSatoshis(remote),
)
// Deprecated fields.
newResp.Balance += int64(local)
ht.AssertChannelBalanceResp(node, newResp)
}
// For taproot channels, the only way we can negotiate is using the
// explicit commitment type. This allows us to continue supporting the
// existing min version comparison for implicit negotiation.
var commitTypeParam lnrpc.CommitmentType
if commitType != nil &&
*commitType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
commitTypeParam = *commitType
}
// First establish a channel with a capacity of 0.5 BTC between Alice
// and Bob with Alice pushing 100k satoshis to Bob's side during
// funding. This function will block until the channel itself is fully
// open or an error occurs in the funding process. A series of
// assertions will be executed to ensure the funding process completed
// successfully.
chanPoint := ht.OpenChannel(alice, bob, lntest.OpenChannelParams{
Private: privateChan,
Amt: chanAmt,
PushAmt: pushAmt,
FundingShim: fundingShim,
SatPerVByte: satPerVbyte,
CommitmentType: commitTypeParam,
})
cType := ht.GetChannelCommitType(alice, chanPoint)
// With the channel open, ensure that the amount specified above has
// properly been pushed to Bob.
aliceLocalBalance := chanAmt - pushAmt - lntest.CalcStaticFee(cType, 0)
checkChannelBalance(
alice, aliceChannelBalance, aliceLocalBalance, pushAmt,
)
checkChannelBalance(
bob, bobChannelBalance, pushAmt, aliceLocalBalance,
)
aliceChannel := ht.GetChannelByChanPoint(alice, chanPoint)
bobChannel := ht.GetChannelByChanPoint(bob, chanPoint)
closeChan := func() {
// Finally, immediately close the channel. This function will
// also block until the channel is closed and will additionally
// assert the relevant channel closing post conditions.
ht.CloseChannel(alice, chanPoint)
}
return aliceChannel, bobChannel, closeChan
}
// testUnconfirmedChannelFunding tests that our unconfirmed change outputs can
// be used to fund channels.
func testUnconfirmedChannelFunding(ht *lntest.HarnessTest) {
const (
chanAmt = funding.MaxBtcFundingAmount
pushAmt = btcutil.Amount(100000)
)
// We'll start off by creating a node for Carol.
carol := ht.NewNode("Carol", nil)
alice := ht.Alice
// We'll send her some unconfirmed funds.
ht.FundCoinsUnconfirmed(2*chanAmt, carol)
// For neutrino backend, we will confirm the coins sent above and let
// Carol send all her funds to herself to create unconfirmed output.
if ht.IsNeutrinoBackend() {
// Confirm the above coins.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Create a new address and send to herself.
resp := carol.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
// Once sent, Carol would have one unconfirmed UTXO.
carol.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
})
}
// Now, we'll connect her to Alice so that they can open a channel
// together. The funding flow should select Carol's unconfirmed output
// as she doesn't have any other funds since it's a new node.
ht.ConnectNodes(carol, alice)
chanOpenUpdate := ht.OpenChannelAssertStream(
carol, alice, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
SpendUnconfirmed: true,
},
)
// Creates a helper closure to be used below which asserts the proper
// response to a channel balance RPC.
checkChannelBalance := func(node *node.HarnessNode,
local, remote, pendingLocal, pendingRemote btcutil.Amount) {
expectedResponse := &lnrpc.ChannelBalanceResponse{
LocalBalance: &lnrpc.Amount{
Sat: uint64(local),
Msat: uint64(lnwire.NewMSatFromSatoshis(
local,
)),
},
RemoteBalance: &lnrpc.Amount{
Sat: uint64(remote),
Msat: uint64(lnwire.NewMSatFromSatoshis(
remote,
)),
},
PendingOpenLocalBalance: &lnrpc.Amount{
Sat: uint64(pendingLocal),
Msat: uint64(lnwire.NewMSatFromSatoshis(
pendingLocal,
)),
},
PendingOpenRemoteBalance: &lnrpc.Amount{
Sat: uint64(pendingRemote),
Msat: uint64(lnwire.NewMSatFromSatoshis(
pendingRemote,
)),
},
UnsettledLocalBalance: &lnrpc.Amount{},
UnsettledRemoteBalance: &lnrpc.Amount{},
// Deprecated fields.
Balance: int64(local),
PendingOpenBalance: int64(pendingLocal),
}
ht.AssertChannelBalanceResp(node, expectedResponse)
}
// As the channel is pending open, it's expected Carol has both zero
// local and remote balances, and pending local/remote should not be
// zero.
//
// Note that atm we haven't obtained the chanPoint yet, so we use the
// type directly.
cType := lnrpc.CommitmentType_STATIC_REMOTE_KEY
carolLocalBalance := chanAmt - pushAmt - lntest.CalcStaticFee(cType, 0)
checkChannelBalance(carol, 0, 0, carolLocalBalance, pushAmt)
// For Alice, her local/remote balances should be zero, and the
// local/remote balances are the mirror of Carol's.
checkChannelBalance(alice, 0, 0, pushAmt, carolLocalBalance)
// Confirm the channel and wait for it to be recognized by both
// parties. For neutrino backend, the funding transaction should be
// mined. Otherwise, two transactions should be mined, the unconfirmed
// spend and the funding tx.
ht.MineBlocksAndAssertNumTxes(6, 2)
chanPoint := ht.WaitForChannelOpenEvent(chanOpenUpdate)
// With the channel open, we'll check the balances on each side of the
// channel as a sanity check to ensure things worked out as intended.
checkChannelBalance(carol, carolLocalBalance, pushAmt, 0, 0)
checkChannelBalance(alice, pushAmt, carolLocalBalance, 0, 0)
// TODO(yy): remove the sleep once the following bug is fixed.
//
// We may get the error `unable to gracefully close channel while peer
// is offline (try force closing it instead): channel link not found`.
// This happens because the channel link hasn't been added yet but we
// now proceed to closing the channel. We may need to revisit how the
// channel open event is created and make sure the event is only sent
// after all relevant states have been updated.
time.Sleep(2 * time.Second)
// Now that we're done with the test, the channel can be closed.
ht.CloseChannel(carol, chanPoint)
}
// testChannelFundingInputTypes tests that any type of supported input type can
// be used to fund channels.
func testChannelFundingInputTypes(ht *lntest.HarnessTest) {
// We'll start off by creating a node for Carol.
carol := ht.NewNode("Carol", nil)
// Now, we'll connect her to Alice so that they can open a
// channel together.
ht.ConnectNodes(carol, ht.Alice)
runChannelFundingInputTypes(ht, ht.Alice, carol)
}
// runChannelFundingInputTypes tests that any type of supported input type can
// be used to fund channels.
func runChannelFundingInputTypes(ht *lntest.HarnessTest, alice,
carol *node.HarnessNode) {
const (
chanAmt = funding.MaxBtcFundingAmount
burnAddr = "bcrt1qxsnqpdc842lu8c0xlllgvejt6rhy49u6fmpgyz"
)
fundMixed := func(amt btcutil.Amount, target *node.HarnessNode) {
ht.FundCoins(amt/5, target)
ht.FundCoins(amt/5, target)
ht.FundCoinsP2TR(amt/5, target)
ht.FundCoinsP2TR(amt/5, target)
ht.FundCoinsP2TR(amt/5, target)
}
fundMultipleP2TR := func(amt btcutil.Amount, target *node.HarnessNode) {
ht.FundCoinsP2TR(amt/4, target)
ht.FundCoinsP2TR(amt/4, target)
ht.FundCoinsP2TR(amt/4, target)
ht.FundCoinsP2TR(amt/4, target)
}
fundWithTypes := []func(amt btcutil.Amount, target *node.HarnessNode){
ht.FundCoins, ht.FundCoinsNP2WKH, ht.FundCoinsP2TR, fundMixed,
fundMultipleP2TR,
}
// Creates a helper closure to be used below which asserts the
// proper response to a channel balance RPC.
checkChannelBalance := func(node *node.HarnessNode, local,
remote, pendingLocal, pendingRemote btcutil.Amount) {
expectedResponse := &lnrpc.ChannelBalanceResponse{
LocalBalance: &lnrpc.Amount{
Sat: uint64(local),
Msat: uint64(lnwire.NewMSatFromSatoshis(local)),
},
RemoteBalance: &lnrpc.Amount{
Sat: uint64(remote),
Msat: uint64(lnwire.NewMSatFromSatoshis(
remote,
)),
},
PendingOpenLocalBalance: &lnrpc.Amount{
Sat: uint64(pendingLocal),
Msat: uint64(lnwire.NewMSatFromSatoshis(
pendingLocal,
)),
},
PendingOpenRemoteBalance: &lnrpc.Amount{
Sat: uint64(pendingRemote),
Msat: uint64(lnwire.NewMSatFromSatoshis(
pendingRemote,
)),
},
UnsettledLocalBalance: &lnrpc.Amount{},
UnsettledRemoteBalance: &lnrpc.Amount{},
// Deprecated fields.
Balance: int64(local),
PendingOpenBalance: int64(pendingLocal),
}
ht.AssertChannelBalanceResp(node, expectedResponse)
}
for _, funder := range fundWithTypes {
// We'll send her some confirmed funds. We send 10% more than
// we need to account for fees.
funder((chanAmt*11)/10, carol)
chanOpenUpdate := ht.OpenChannelAssertStream(
carol, alice, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// As the channel is pending open, it's expected Carol has both
// zero local and remote balances, and pending local/remote
// should not be zero.
//
// Note that atm we haven't obtained the chanPoint yet, so we
// use the type directly.
cType := lnrpc.CommitmentType_STATIC_REMOTE_KEY
carolLocalBalance := chanAmt - lntest.CalcStaticFee(cType, 0)
checkChannelBalance(carol, 0, 0, carolLocalBalance, 0)
// For Alice, her local/remote balances should be zero, and the
// local/remote balances are the mirror of Carol's.
checkChannelBalance(alice, 0, 0, 0, carolLocalBalance)
// Confirm the channel and wait for it to be recognized by both
// parties. Two transactions should be mined, the unconfirmed
// spend and the funding tx.
ht.MineBlocksAndAssertNumTxes(1, 1)
chanPoint := ht.WaitForChannelOpenEvent(chanOpenUpdate)
// With the channel open, we'll check the balances on each side
// of the channel as a sanity check to ensure things worked out
// as intended.
checkChannelBalance(carol, carolLocalBalance, 0, 0, 0)
checkChannelBalance(alice, 0, carolLocalBalance, 0, 0)
// TODO(yy): remove the sleep once the following bug is fixed.
//
// We may get the error `unable to gracefully close channel
// while peer is offline (try force closing it instead):
// channel link not found`. This happens because the channel
// link hasn't been added yet but we now proceed to closing the
// channel. We may need to revisit how the channel open event
// is created and make sure the event is only sent after all
// relevant states have been updated.
time.Sleep(2 * time.Second)
// Now that we're done with the test, the channel can be closed.
ht.CloseChannel(carol, chanPoint)
// Empty out the wallet so there aren't any lingering coins.
sendAllCoinsConfirm(ht, carol, burnAddr)
}
}
// sendAllCoinsConfirm sends all coins of the node's wallet to the given address
// and awaits one confirmation.
func sendAllCoinsConfirm(ht *lntest.HarnessTest, node *node.HarnessNode,
addr string) {
sweepReq := &lnrpc.SendCoinsRequest{
Addr: addr,
SendAll: true,
TargetConf: 6,
}
node.RPC.SendCoins(sweepReq)
ht.MineBlocksAndAssertNumTxes(1, 1)
}
// testExternalFundingChanPoint tests that we're able to carry out a normal
// channel funding workflow given a channel point that was constructed outside
// the main daemon.
func testExternalFundingChanPoint(ht *lntest.HarnessTest) {
runExternalFundingScriptEnforced(ht)
runExternalFundingTaproot(ht)
}
// runExternalFundingChanPoint runs the actual test that tests we're able to
// carry out a normal channel funding workflow given a channel point that was
// constructed outside the main daemon for the script enforced channel type.
func runExternalFundingScriptEnforced(ht *lntest.HarnessTest) {
// First, we'll create two new nodes that we'll use to open channel
// between for this test.
carol := ht.NewNode("carol", nil)
dave := ht.NewNode("dave", nil)
commitmentType := lnrpc.CommitmentType_SCRIPT_ENFORCED_LEASE
// Carol will be funding the channel, so we'll send some coins over to
// her and ensure they have enough confirmations before we proceed.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// Before we start the test, we'll ensure both sides are connected to
// the funding flow can properly be executed.
ht.EnsureConnected(carol, dave)
// At this point, we're ready to simulate our external channel funding
// flow. To start with, we'll create a pending channel with a shim for
// a transaction that will never be published.
const thawHeight uint32 = 10
const chanSize = funding.MaxBtcFundingAmount
fundingShim1, chanPoint1 := deriveFundingShim(
ht, carol, dave, chanSize, thawHeight, false, commitmentType,
)
ht.OpenChannelAssertPending(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: fundingShim1,
},
)
ht.AssertNodesNumPendingOpenChannels(carol, dave, 1)
// That channel is now pending forever and normally would saturate the
// max pending channel limit for both nodes. But because the channel is
// externally funded, we should still be able to open another one. Let's
// do exactly that now. For this one we publish the transaction so we
// can mine it later.
fundingShim2, chanPoint2 := deriveFundingShim(
ht, carol, dave, chanSize, thawHeight, true, commitmentType,
)
// At this point, we'll now carry out the normal basic channel funding
// test as everything should now proceed as normal (a regular channel
// funding flow).
carolChan, daveChan, _ := basicChannelFundingTest(
ht, carol, dave, fundingShim2, false, nil,
)
// Both channels should be marked as frozen with the proper thaw
// height.
require.Equal(ht, thawHeight, carolChan.ThawHeight,
"thaw height unmatched")
require.Equal(ht, thawHeight, daveChan.ThawHeight,
"thaw height unmatched")
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := dave.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// Now that the channels are open, and we've confirmed that they're
// operational, we'll now ensure that the channels are frozen as
// intended (if requested).
//
// First, we'll try to close the channel as Carol, the initiator. This
// should fail as a frozen channel only allows the responder to
// initiate a channel close.
err := ht.CloseChannelAssertErr(carol, chanPoint2, false)
require.Contains(ht, err.Error(), "cannot co-op close frozen channel")
// Before Dave closes the channel, he needs to check the invoice is
// settled to avoid an error saying cannot close channel due to active
// HTLCs.
ht.AssertInvoiceSettled(dave, resp.PaymentAddr)
// TODO(yy): remove the sleep once the following bug is fixed.
// When the invoice is reported settled, the commitment dance is not
// yet finished, which can cause an error when closing the channel,
// saying there's active HTLCs. We need to investigate this issue and
// reverse the order to, first finish the commitment dance, then report
// the invoice as settled.
time.Sleep(2 * time.Second)
// Next we'll try but this time with Dave (the responder) as the
// initiator. This time the channel should be closed as normal.
ht.CloseChannel(dave, chanPoint2)
// As a last step, we check if we still have the pending channel
// hanging around because we never published the funding TX.
ht.AssertNodesNumPendingOpenChannels(carol, dave, 1)
// Let's make sure we can abandon it.
carol.RPC.AbandonChannel(&lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint1,
PendingFundingShimOnly: true,
})
dave.RPC.AbandonChannel(&lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint1,
PendingFundingShimOnly: true,
})
// It should now not appear in the pending channels anymore.
ht.AssertNodesNumPendingOpenChannels(carol, dave, 0)
}
// runExternalFundingTaproot runs the actual test that tests we're able to carry
// out a normal channel funding workflow given a channel point that was
// constructed outside the main daemon for the taproot channel type.
func runExternalFundingTaproot(ht *lntest.HarnessTest) {
// First, we'll create two new nodes that we'll use to open channel
// between for this test.
commitmentType := lnrpc.CommitmentType_SIMPLE_TAPROOT
args := lntest.NodeArgsForCommitType(commitmentType)
carol := ht.NewNode("carol", args)
// We'll attempt two channels, so Dave will need to accept two pending
// ones.
dave := ht.NewNode("dave", append(args, "--maxpendingchannels=2"))
// Carol will be funding the channel, so we'll send some coins over to
// her and ensure they have enough confirmations before we proceed.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// Before we start the test, we'll ensure both sides are connected to
// the funding flow can properly be executed.
ht.EnsureConnected(carol, dave)
// At this point, we're ready to simulate our external channel funding
// flow. To start with, we'll create a pending channel with a shim for
// a transaction that will never be published.
const thawHeight uint32 = 10
const chanSize = funding.MaxBtcFundingAmount
fundingShim1, chanPoint1 := deriveFundingShim(
ht, carol, dave, chanSize, thawHeight, false, commitmentType,
)
ht.OpenChannelAssertPending(carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: fundingShim1,
CommitmentType: commitmentType,
Private: true,
})
ht.AssertNodesNumPendingOpenChannels(carol, dave, 1)
// That channel is now pending forever and normally would saturate the
// max pending channel limit for both nodes. But because the channel is
// externally funded, we should still be able to open another one. Let's
// do exactly that now. For this one we publish the transaction so we
// can mine it later.
fundingShim2, chanPoint2 := deriveFundingShim(
ht, carol, dave, chanSize, thawHeight, true, commitmentType,
)
// At this point, we'll now carry out the normal basic channel funding
// test as everything should now proceed as normal (a regular channel
// funding flow).
carolChan, daveChan, _ := basicChannelFundingTest(
ht, carol, dave, fundingShim2, true, &commitmentType,
)
// The itest harness doesn't mine blocks for private channels, so we
// want to make sure the channel with the published and mined
// transaction leaves the pending state.
ht.MineBlocks(6)
rpcChanPointToStr := func(cp *lnrpc.ChannelPoint) string {
txid, err := chainhash.NewHash(cp.GetFundingTxidBytes())
require.NoError(ht, err)
return fmt.Sprintf("%v:%d", txid.String(), cp.OutputIndex)
}
pendingCarol := carol.RPC.PendingChannels().PendingOpenChannels
require.Len(ht, pendingCarol, 1)
require.Equal(
ht, rpcChanPointToStr(chanPoint1),
pendingCarol[0].Channel.ChannelPoint,
)
openCarol := carol.RPC.ListChannels(&lnrpc.ListChannelsRequest{
ActiveOnly: true,
PrivateOnly: true,
})
require.Len(ht, openCarol.Channels, 1)
require.Equal(
ht, rpcChanPointToStr(chanPoint2),
openCarol.Channels[0].ChannelPoint,
)
pendingDave := dave.RPC.PendingChannels().PendingOpenChannels
require.Len(ht, pendingDave, 1)
require.Equal(
ht, rpcChanPointToStr(chanPoint1),
pendingDave[0].Channel.ChannelPoint,
)
openDave := dave.RPC.ListChannels(&lnrpc.ListChannelsRequest{
ActiveOnly: true,
PrivateOnly: true,
})
require.Len(ht, openDave.Channels, 1)
require.Equal(
ht, rpcChanPointToStr(chanPoint2),
openDave.Channels[0].ChannelPoint,
)
// Both channels should be marked as frozen with the proper thaw height.
require.EqualValues(ht, thawHeight, carolChan.ThawHeight, "thaw height")
require.EqualValues(ht, thawHeight, daveChan.ThawHeight, "thaw height")
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := dave.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// Now that the channels are open, and we've confirmed that they're
// operational, we'll now ensure that the channels are frozen as
// intended (if requested).
//
// First, we'll try to close the channel as Carol, the initiator. This
// should fail as a frozen channel only allows the responder to
// initiate a channel close.
err := ht.CloseChannelAssertErr(carol, chanPoint2, false)
require.Contains(ht, err.Error(), "cannot co-op close frozen channel")
// Before Dave closes the channel, he needs to check the invoice is
// settled to avoid an error saying cannot close channel due to active
// HTLCs.
ht.AssertInvoiceSettled(dave, resp.PaymentAddr)
// TODO(yy): remove the sleep once the following bug is fixed.
// When the invoice is reported settled, the commitment dance is not
// yet finished, which can cause an error when closing the channel,
// saying there's active HTLCs. We need to investigate this issue and
// reverse the order to, first finish the commitment dance, then report
// the invoice as settled.
time.Sleep(2 * time.Second)
// Next we'll try but this time with Dave (the responder) as the
// initiator. This time the channel should be closed as normal.
ht.CloseChannel(dave, chanPoint2)
// Let's make sure we can abandon it.
carol.RPC.AbandonChannel(&lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint1,
PendingFundingShimOnly: true,
})
dave.RPC.AbandonChannel(&lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint1,
PendingFundingShimOnly: true,
})
// It should now not appear in the pending channels anymore.
ht.AssertNodesNumPendingOpenChannels(carol, dave, 0)
}
// testFundingPersistence is intended to ensure that the Funding Manager
// persists the state of new channels prior to broadcasting the channel's
// funding transaction. This ensures that the daemon maintains an up-to-date
// representation of channels if the system is restarted or disconnected.
// testFundingPersistence mirrors testBasicChannelFunding, but adds restarts
// and checks for the state of channels with unconfirmed funding transactions.
func testChannelFundingPersistence(ht *lntest.HarnessTest) {
chanAmt := funding.MaxBtcFundingAmount
pushAmt := btcutil.Amount(0)
// As we need to create a channel that requires more than 1
// confirmation before it's open, with the current set of defaults,
// we'll need to create a new node instance.
const numConfs = 5
carolArgs := []string{
fmt.Sprintf("--bitcoin.defaultchanconfs=%v", numConfs),
}
carol := ht.NewNode("Carol", carolArgs)
alice := ht.Alice
ht.ConnectNodes(alice, carol)
// Create a new channel that requires 5 confs before it's considered
// open, then broadcast the funding transaction
param := lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
}
update := ht.OpenChannelAssertPending(alice, carol, param)
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed. Alice and Bob's nodes should reflect
// this when queried via RPC.
ht.AssertNumPendingOpenChannels(alice, 1)
ht.AssertNumPendingOpenChannels(carol, 1)
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
ht.RestartNode(alice)
ht.RestartNode(carol)
fundingTxID, err := chainhash.NewHash(update.Txid)
require.NoError(ht, err, "unable to convert funding txid "+
"into chainhash.Hash")
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened. The funding transaction should be found
// within the newly mined block.
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
ht.AssertTxInBlock(block, fundingTxID)
// Get the height that our transaction confirmed at.
height := int32(ht.CurrentHeight())
// Restart both nodes to test that the appropriate state has been
// persisted and that both nodes recover gracefully.
ht.RestartNode(alice)
ht.RestartNode(carol)
// The following block ensures that after both nodes have restarted,
// they have reconnected before the execution of the next test.
ht.EnsureConnected(alice, carol)
// Next, mine enough blocks s.t the channel will open with a single
// additional block mined.
ht.MineBlocks(3)
// Assert that our wallet has our opening transaction with a label
// that does not have a channel ID set yet, because we have not
// reached our required confirmations.
tx := ht.AssertTxAtHeight(alice, height, fundingTxID)
// At this stage, we expect the transaction to be labelled, but not with
// our channel ID because our transaction has not yet confirmed.
label := labels.MakeLabel(labels.LabelTypeChannelOpen, nil)
require.Equal(ht, label, tx.Label, "open channel label wrong")
// Both nodes should still show a single channel as pending.
ht.AssertNumPendingOpenChannels(alice, 1)
ht.AssertNumPendingOpenChannels(carol, 1)
// Finally, mine the last block which should mark the channel as open.
ht.MineBlocks(1)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
ht.AssertNumPendingOpenChannels(alice, 0)
ht.AssertNumPendingOpenChannels(carol, 0)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := lntest.ChanPointFromPendingUpdate(update)
// Re-lookup our transaction in the block that it confirmed in.
tx = ht.AssertTxAtHeight(alice, height, fundingTxID)
// Check both nodes to ensure that the channel is ready for operation.
chanAlice := ht.AssertChannelExists(alice, chanPoint)
ht.AssertChannelExists(carol, chanPoint)
// Make sure Alice and Carol have seen the channel in their network
// topology.
ht.AssertTopologyChannelOpen(alice, chanPoint)
ht.AssertTopologyChannelOpen(carol, chanPoint)
// Create an additional check for our channel assertion that will
// check that our label is as expected.
shortChanID := lnwire.NewShortChanIDFromInt(chanAlice.ChanId)
label = labels.MakeLabel(labels.LabelTypeChannelOpen, &shortChanID)
require.Equal(ht, label, tx.Label, "open channel label not updated")
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ht.CloseChannel(alice, chanPoint)
}
// testBatchChanFunding makes sure multiple channels can be opened in one batch
// transaction in an atomic way.
func testBatchChanFunding(ht *lntest.HarnessTest) {
// First, we'll create two new nodes that we'll use to open channels
// to during this test. Carol has a high minimum funding amount that
// we'll use to trigger an error during the batch channel open.
carol := ht.NewNode("carol", []string{"--minchansize=200000"})
dave := ht.NewNode("dave", nil)
// Next we create a node that will receive a zero-conf channel open from
// Alice. We'll create the node with the required parameters.
scidAliasArgs := []string{
"--protocol.option-scid-alias",
"--protocol.zero-conf",
"--protocol.anchors",
}
eve := ht.NewNode("eve", scidAliasArgs)
alice, bob := ht.Alice, ht.Bob
ht.RestartNodeWithExtraArgs(alice, scidAliasArgs)
// Before we start the test, we'll ensure Alice is connected to Carol
// and Dave, so she can open channels to both of them (and Bob).
ht.EnsureConnected(alice, bob)
ht.EnsureConnected(alice, carol)
ht.EnsureConnected(alice, dave)
ht.EnsureConnected(alice, eve)
expectedFeeRate := chainfee.SatPerKWeight(2500)
// We verify that the channel opening uses the correct fee rate.
ht.SetFeeEstimateWithConf(expectedFeeRate, 3)
// Let's create our batch TX request. This first one should fail as we
// open a channel to Carol that is too small for her min chan size.
batchReq := &lnrpc.BatchOpenChannelRequest{
TargetConf: 3,
MinConfs: 1,
Channels: []*lnrpc.BatchOpenChannel{{
NodePubkey: bob.PubKey[:],
LocalFundingAmount: 100_000,
BaseFee: 1337,
UseBaseFee: true,
}, {
NodePubkey: carol.PubKey[:],
LocalFundingAmount: 100_000,
FeeRate: 1337,
UseFeeRate: true,
}, {
NodePubkey: dave.PubKey[:],
LocalFundingAmount: 100_000,
BaseFee: 1337,
UseBaseFee: true,
FeeRate: 1337,
UseFeeRate: true,
}, {
NodePubkey: eve.PubKey[:],
LocalFundingAmount: 100_000,
Private: true,
ZeroConf: true,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
}},
}
// Check that batch opening fails due to the minchansize requirement.
err := alice.RPC.BatchOpenChannelAssertErr(batchReq)
require.Contains(ht, err.Error(), "initial negotiation failed")
// Let's fix the minimum amount for Alice now and try again.
batchReq.Channels[1].LocalFundingAmount = 200_000
// Set up a ChannelAcceptor for Eve to accept a zero-conf opening from
// Alice.
acceptStream, cancel := eve.RPC.ChannelAcceptor()
go acceptChannel(ht.T, true, acceptStream)
// Batch-open all channels.
batchResp := alice.RPC.BatchOpenChannel(batchReq)
require.Len(ht, batchResp.PendingChannels, 4)
txHash, err := chainhash.NewHash(batchResp.PendingChannels[0].Txid)
require.NoError(ht, err)
// Remove the ChannelAcceptor.
cancel()
chanPoint1 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: batchResp.PendingChannels[0].Txid,
},
OutputIndex: batchResp.PendingChannels[0].OutputIndex,
}
chanPoint2 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: batchResp.PendingChannels[1].Txid,
},
OutputIndex: batchResp.PendingChannels[1].OutputIndex,
}
chanPoint3 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: batchResp.PendingChannels[2].Txid,
},
OutputIndex: batchResp.PendingChannels[2].OutputIndex,
}
chanPoint4 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: batchResp.PendingChannels[3].Txid,
},
OutputIndex: batchResp.PendingChannels[3].OutputIndex,
}
// Ensure that Alice can send funds to Eve via the zero-conf channel
// before the batch transaction was mined.
ht.AssertTopologyChannelOpen(alice, chanPoint4)
eveInvoiceParams := &lnrpc.Invoice{
Value: int64(10_000),
Private: true,
}
eveInvoiceResp := eve.RPC.AddInvoice(eveInvoiceParams)
ht.CompletePaymentRequests(
alice, []string{eveInvoiceResp.PaymentRequest},
)
// Mine the batch transaction and check the network topology.
block := ht.MineBlocksAndAssertNumTxes(6, 1)[0]
ht.AssertTxInBlock(block, txHash)
ht.AssertTopologyChannelOpen(alice, chanPoint1)
ht.AssertTopologyChannelOpen(alice, chanPoint2)
ht.AssertTopologyChannelOpen(alice, chanPoint3)
// Check if the change type from the batch_open_channel funding is P2TR.
rawTx := ht.GetRawTransaction(txHash)
require.Len(ht, rawTx.MsgTx().TxOut, 5)
// Check the fee rate of the batch-opening transaction. We expect slight
// inaccuracies because of the DER signature fee estimation.
openingFeeRate := ht.CalculateTxFeeRate(rawTx.MsgTx())
require.InEpsilonf(ht, uint64(expectedFeeRate), uint64(openingFeeRate),
0.01, "want %v, got %v", expectedFeeRate, openingFeeRate)
// For calculating the change output index we use the formula for the
// sum of consecutive of integers (n(n+1)/2). All the channel point
// indexes are known, so we just calculate the difference to get the
// change output index.
// Example: Batch outputs = 4, sum_consecutive_ints(4) = 10
// Subtract all other output indices to get the change index:
// 10 - 0 - 1 - 2 - 3 = 4
changeIndex := uint32(10) - (chanPoint1.OutputIndex +
chanPoint2.OutputIndex + chanPoint3.OutputIndex +
chanPoint4.OutputIndex)
ht.AssertOutputScriptClass(
rawTx, changeIndex, txscript.WitnessV1TaprootTy,
)
// With the channel open, ensure that it is counted towards Alice's
// total channel balance.
balRes := alice.RPC.ChannelBalance()
require.NotEqual(ht, int64(0), balRes.LocalBalance.Sat)
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := carol.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(alice, []string{resp.PaymentRequest})
// Confirm that Alice's channel partners see here initial fee settings.
ensurePolicy(
ht, alice, bob, chanPoint1,
lnwire.MilliSatoshi(batchReq.Channels[0].BaseFee),
chainreg.DefaultBitcoinFeeRate,
)
ensurePolicy(
ht, alice, carol, chanPoint2,
chainreg.DefaultBitcoinBaseFeeMSat,
lnwire.MilliSatoshi(batchReq.Channels[1].FeeRate),
)
ensurePolicy(
ht, alice, dave, chanPoint3,
lnwire.MilliSatoshi(batchReq.Channels[2].BaseFee),
lnwire.MilliSatoshi(batchReq.Channels[2].FeeRate),
)
ensurePolicy(
ht, alice, eve, chanPoint4,
chainreg.DefaultBitcoinBaseFeeMSat,
chainreg.DefaultBitcoinFeeRate,
)
// To conclude, we'll close the newly created channel between Carol and
// Dave. This function will also block until the channel is closed and
// will additionally assert the relevant channel closing post
// conditions.
ht.CloseChannel(alice, chanPoint1)
ht.CloseChannel(alice, chanPoint2)
ht.CloseChannel(alice, chanPoint3)
ht.CloseChannel(alice, chanPoint4)
}
// ensurePolicy ensures that the peer sees alice's channel fee settings.
func ensurePolicy(ht *lntest.HarnessTest, alice, peer *node.HarnessNode,
chanPoint *lnrpc.ChannelPoint, expectedBaseFee lnwire.MilliSatoshi,
expectedFeeRate lnwire.MilliSatoshi) {
channel := ht.AssertChannelExists(peer, chanPoint)
policy, err := peer.RPC.LN.GetChanInfo(
context.Background(), &lnrpc.ChanInfoRequest{
ChanId: channel.ChanId,
},
)
require.NoError(ht, err)
alicePolicy := policy.Node1Policy
if alice.PubKeyStr == policy.Node2Pub {
alicePolicy = policy.Node2Policy
}
require.EqualValues(ht, expectedBaseFee, alicePolicy.FeeBaseMsat)
require.EqualValues(ht, expectedFeeRate, alicePolicy.FeeRateMilliMsat)
}
// deriveFundingShim creates a channel funding shim by deriving the necessary
// keys on both sides.
func deriveFundingShim(ht *lntest.HarnessTest, carol, dave *node.HarnessNode,
chanSize btcutil.Amount, thawHeight uint32, publish bool,
commitType lnrpc.CommitmentType) (*lnrpc.FundingShim,
*lnrpc.ChannelPoint) {
keyLoc := &signrpc.KeyLocator{KeyFamily: 9999}
carolFundingKey := carol.RPC.DeriveKey(keyLoc)
daveFundingKey := dave.RPC.DeriveKey(keyLoc)
// Now that we have the multi-sig keys for each party, we can manually
// construct the funding transaction. We'll instruct the backend to
// immediately create and broadcast a transaction paying out an exact
// amount. Normally this would reside in the mempool, but we just
// confirm it now for simplicity.
var (
fundingOutput *wire.TxOut
musig2 bool
err error
)
if commitType == lnrpc.CommitmentType_SIMPLE_TAPROOT {
var carolKey, daveKey *btcec.PublicKey
carolKey, err = btcec.ParsePubKey(carolFundingKey.RawKeyBytes)
require.NoError(ht, err)
daveKey, err = btcec.ParsePubKey(daveFundingKey.RawKeyBytes)
require.NoError(ht, err)
_, fundingOutput, err = input.GenTaprootFundingScript(
carolKey, daveKey, int64(chanSize),
fn.None[chainhash.Hash](),
)
require.NoError(ht, err)
musig2 = true
} else {
_, fundingOutput, err = input.GenFundingPkScript(
carolFundingKey.RawKeyBytes, daveFundingKey.RawKeyBytes,
int64(chanSize),
)
require.NoError(ht, err)
}
var txid *chainhash.Hash
targetOutputs := []*wire.TxOut{fundingOutput}
if publish {
txid = ht.SendOutputsWithoutChange(targetOutputs, 5)
} else {
tx := ht.CreateTransaction(targetOutputs, 5)
txHash := tx.TxHash()
txid = &txHash
}
// At this point, we can being our external channel funding workflow.
// We'll start by generating a pending channel ID externally that will
// be used to track this new funding type.
pendingChanID := ht.Random32Bytes()
// Now that we have the pending channel ID, Dave (our responder) will
// register the intent to receive a new channel funding workflow using
// the pending channel ID.
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: txid[:],
},
}
chanPointShim := &lnrpc.ChanPointShim{
Amt: int64(chanSize),
ChanPoint: chanPoint,
LocalKey: &lnrpc.KeyDescriptor{
RawKeyBytes: daveFundingKey.RawKeyBytes,
KeyLoc: &lnrpc.KeyLocator{
KeyFamily: daveFundingKey.KeyLoc.KeyFamily,
KeyIndex: daveFundingKey.KeyLoc.KeyIndex,
},
},
RemoteKey: carolFundingKey.RawKeyBytes,
PendingChanId: pendingChanID,
ThawHeight: thawHeight,
Musig2: musig2,
}
fundingShim := &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_ChanPointShim{
ChanPointShim: chanPointShim,
},
}
dave.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_ShimRegister{
ShimRegister: fundingShim,
},
})
// If we attempt to register the same shim (has the same pending chan
// ID), then we should get an error.
dave.RPC.FundingStateStepAssertErr(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_ShimRegister{
ShimRegister: fundingShim,
},
})
// We'll take the chan point shim we just registered for Dave (the
// responder), and swap the local/remote keys before we feed it in as
// Carol's funding shim as the initiator.
fundingShim.GetChanPointShim().LocalKey = &lnrpc.KeyDescriptor{
RawKeyBytes: carolFundingKey.RawKeyBytes,
KeyLoc: &lnrpc.KeyLocator{
KeyFamily: carolFundingKey.KeyLoc.KeyFamily,
KeyIndex: carolFundingKey.KeyLoc.KeyIndex,
},
}
fundingShim.GetChanPointShim().RemoteKey = daveFundingKey.RawKeyBytes
return fundingShim, chanPoint
}
// testChannelFundingWithUnstableUtxos tests channel openings with restricted
// utxo selection. Internal wallet utxos might be restricted due to another
// subsystems still using it therefore it would be unsecure to use them for
// channel openings. This test focuses on unconfirmed utxos which are still
// being used by the sweeper subsystem hence should only be used when confirmed.
func testChannelFundingWithUnstableUtxos(ht *lntest.HarnessTest) {
// Select funding amt below wumbo size because we later use fundMax to
// open a channel with the total balance.
fundingAmt := btcutil.Amount(3_000_000)
// We use STATIC_REMOTE_KEY channels because anchor sweeps would
// interfere and create additional utxos.
// Although its the current default we explicitly signal it.
cType := lnrpc.CommitmentType_STATIC_REMOTE_KEY
// First, we'll create two new nodes that we'll use to open channel
// between for this test.
carol := ht.NewNode("carol", nil)
// We'll attempt at max 2 pending channels, so Dave will need to accept
// two pending ones.
dave := ht.NewNode("dave", []string{
"--maxpendingchannels=2",
})
ht.EnsureConnected(carol, dave)
// Fund Carol's wallet with a confirmed utxo.
ht.FundCoins(fundingAmt, carol)
// Now spend the coins to create an unconfirmed transaction. This is
// necessary to test also the neutrino behaviour. For neutrino nodes
// only unconfirmed transactions originating from this node will be
// recognized as unconfirmed.
req := &lnrpc.NewAddressRequest{Type: AddrTypeTaprootPubkey}
resp := carol.RPC.NewAddress(req)
sendCoinsResp := carol.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
SatPerVbyte: 1,
})
walletUtxo := ht.AssertNumUTXOsUnconfirmed(carol, 1)[0]
require.EqualValues(ht, sendCoinsResp.Txid, walletUtxo.Outpoint.TxidStr)
// We will attempt to open 2 channels at a time.
chanSize := btcutil.Amount(walletUtxo.AmountSat / 3)
// Open a channel to dave with an unconfirmed utxo. Although this utxo
// is unconfirmed it can be used to open a channel because it did not
// originated from the sweeper subsystem.
update := ht.OpenChannelAssertPending(carol, dave,
lntest.OpenChannelParams{
Amt: chanSize,
SpendUnconfirmed: true,
CommitmentType: cType,
})
chanPoint1 := lntest.ChanPointFromPendingUpdate(update)
// Verify that both nodes know about the channel.
ht.AssertNumPendingOpenChannels(carol, 1)
ht.AssertNumPendingOpenChannels(dave, 1)
// We open another channel on the fly, funds are unconfirmed but because
// the tx was not created by the sweeper we can use it and open another
// channel. This is a common use case when opening zeroconf channels,
// so unconfirmed utxos originated from prior channel opening are safe
// to use because channel opening should not be RBFed, at least not for
// now.
update = ht.OpenChannelAssertPending(carol, dave,
lntest.OpenChannelParams{
Amt: chanSize,
SpendUnconfirmed: true,
CommitmentType: cType,
})
chanPoint2 := lntest.ChanPointFromPendingUpdate(update)
ht.AssertNumPendingOpenChannels(carol, 2)
ht.AssertNumPendingOpenChannels(dave, 2)
// We expect the initial funding tx to confirm and also the two
// unconfirmed channel openings.
ht.MineBlocksAndAssertNumTxes(1, 3)
// Now we create an unconfirmed utxo which originated from the sweeper
// subsystem and hence is not safe to use for channel openings. We do
// that by dave force-closing the channel. Which let's carol sweep its
// to_remote output which is not encumbered by any relative locktime.
ht.CloseChannelAssertPending(dave, chanPoint2, true)
// Mine the force close commitment transaction.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Make sure Carol sees her to_remote output from the force close tx.
ht.AssertNumPendingSweeps(carol, 1)
// Mine one block to trigger the sweep transaction.
ht.MineEmptyBlocks(1)
// We need to wait for carol initiating the sweep of the to_remote
// output of chanPoint2.
utxo := ht.AssertNumUTXOsUnconfirmed(carol, 1)[0]
// We now try to open channel using the unconfirmed utxo.
fundingUtxo := utxo
// Now try to open the channel with this utxo and expect an error.
expectedErr := fmt.Errorf("outpoint already spent or "+
"locked by another subsystem: %s:%d",
fundingUtxo.Outpoint.TxidStr,
fundingUtxo.Outpoint.OutputIndex)
ht.OpenChannelAssertErr(carol, dave,
lntest.OpenChannelParams{
FundMax: true,
SpendUnconfirmed: true,
Outpoints: []*lnrpc.OutPoint{
fundingUtxo.Outpoint,
},
}, expectedErr)
// The channel opening failed because the utxo was unconfirmed and
// originated from the sweeper subsystem. Now we confirm the
// to_remote sweep and expect the channel opening to work.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Try opening the channel with the same utxo (now confirmed) again.
update = ht.OpenChannelAssertPending(carol, dave,
lntest.OpenChannelParams{
FundMax: true,
SpendUnconfirmed: true,
Outpoints: []*lnrpc.OutPoint{
fundingUtxo.Outpoint,
},
})
chanPoint3 := lntest.ChanPointFromPendingUpdate(update)
ht.AssertNumPendingOpenChannels(carol, 1)
ht.AssertNumPendingOpenChannels(dave, 1)
// We expect chanPoint3 to confirm.
ht.MineBlocksAndAssertNumTxes(1, 1)
// Force Close the channel and test the opening flow without preselected
// utxos.
// Before we tested the channel funding with a selected coin, now we
// want to make sure that our internal coin selection also adheres to
// the restictions of unstable utxos.
// We create the unconfirmed sweeper originating utxo just like before
// by force-closing a channel from dave's side.
ht.CloseChannelAssertPending(dave, chanPoint3, true)
ht.MineBlocksAndAssertNumTxes(1, 1)
// Make sure Carol sees her to_remote output from the force close tx.
ht.AssertNumPendingSweeps(carol, 1)
// Mine one block to trigger the sweep transaction.
ht.MineEmptyBlocks(1)
// Wait for the to_remote sweep tx to show up in carol's wallet.
ht.AssertNumUTXOsUnconfirmed(carol, 1)
// Calculate the maximum amount our wallet has for the channel funding
// so that we will use all utxos.
carolBalance := carol.RPC.WalletBalance()
// Now calculate the fee for the channel opening transaction. We don't
// have to keep a channel reserve because we are using STATIC_REMOTE_KEY
// channels.
// NOTE: The TotalBalance includes the unconfirmed balance as well.
chanSize = btcutil.Amount(carolBalance.TotalBalance) -
fundingFee(2, false)
// We are trying to open a channel with the maximum amount and expect it
// to fail because one of the utxos cannot be used because it is
// unstable.
expectedErr = fmt.Errorf("not enough witness outputs to create " +
"funding transaction")
ht.OpenChannelAssertErr(carol, dave,
lntest.OpenChannelParams{
Amt: chanSize,
SpendUnconfirmed: true,
CommitmentType: cType,
}, expectedErr)
// Confirm the to_remote sweep utxo.
ht.MineBlocksAndAssertNumTxes(1, 1)
ht.AssertNumUTXOsConfirmed(carol, 2)
// Now after the sweep utxo is confirmed it is stable and can be used
// for channel openings again.
update = ht.OpenChannelAssertPending(carol, dave,
lntest.OpenChannelParams{
Amt: chanSize,
SpendUnconfirmed: true,
CommitmentType: cType,
})
chanPoint4 := lntest.ChanPointFromPendingUpdate(update)
// Verify that both nodes know about the channel.
ht.AssertNumPendingOpenChannels(carol, 1)
ht.AssertNumPendingOpenChannels(dave, 1)
ht.MineBlocksAndAssertNumTxes(1, 1)
ht.CloseChannel(carol, chanPoint1)
ht.CloseChannel(carol, chanPoint4)
}