lnd/lntest/harness_node.go
2022-08-23 22:10:24 +08:00

1909 lines
53 KiB
Go

package lntest
import (
"bytes"
"context"
"crypto/rand"
"encoding/hex"
"encoding/json"
"fmt"
"io"
"io/ioutil"
"os"
"os/exec"
"path"
"path/filepath"
"strings"
"sync"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/wire"
"github.com/jackc/pgx/v4/pgxpool"
"github.com/lightningnetwork/lnd/chanbackup"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/chainrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/peersrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lnrpc/watchtowerrpc"
"github.com/lightningnetwork/lnd/lnrpc/wtclientrpc"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/macaroons"
"google.golang.org/grpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/credentials"
"google.golang.org/grpc/status"
"gopkg.in/macaroon.v2"
)
const (
// logPubKeyBytes is the number of bytes of the node's PubKey that will
// be appended to the log file name. The whole PubKey is too long and
// not really necessary to quickly identify what node produced which
// log file.
logPubKeyBytes = 4
// trickleDelay is the amount of time in milliseconds between each
// release of announcements by AuthenticatedGossiper to the network.
trickleDelay = 50
postgresDsn = "postgres://postgres:postgres@localhost:6432/%s?sslmode=disable"
// commitInterval specifies the maximum interval the graph database
// will wait between attempting to flush a batch of modifications to
// disk(db.batch-commit-interval).
commitInterval = 10 * time.Millisecond
)
var (
// numActiveNodes is the number of active nodes within the test network.
numActiveNodes = 0
numActiveNodesMtx sync.Mutex
)
func postgresDatabaseDsn(dbName string) string {
return fmt.Sprintf(postgresDsn, dbName)
}
// BackendConfig is an interface that abstracts away the specific chain backend
// node implementation.
type BackendConfig interface {
// GenArgs returns the arguments needed to be passed to LND at startup
// for using this node as a chain backend.
GenArgs() []string
// ConnectMiner is called to establish a connection to the test miner.
ConnectMiner() error
// DisconnectMiner is called to disconnect the miner.
DisconnectMiner() error
// Name returns the name of the backend type.
Name() string
// Credentials returns the rpc username, password and host for the
// backend.
Credentials() (string, string, string, error)
}
// NodeConfig is the basic interface a node configuration must implement.
type NodeConfig interface {
// BaseConfig returns the base node configuration struct.
BaseConfig() *BaseNodeConfig
// GenerateListeningPorts generates the ports to listen on designated
// for the current lightning network test.
GenerateListeningPorts()
// GenArgs generates a slice of command line arguments from the
// lightning node config struct.
GenArgs() []string
}
// BaseNodeConfig is the base node configuration.
type BaseNodeConfig struct {
Name string
// LogFilenamePrefix is used to prefix node log files. Can be used
// to store the current test case for simpler postmortem debugging.
LogFilenamePrefix string
BackendCfg BackendConfig
NetParams *chaincfg.Params
BaseDir string
ExtraArgs []string
DataDir string
LogDir string
TLSCertPath string
TLSKeyPath string
AdminMacPath string
ReadMacPath string
InvoiceMacPath string
HasSeed bool
Password []byte
P2PPort int
RPCPort int
RESTPort int
ProfilePort int
AcceptKeySend bool
AcceptAMP bool
FeeURL string
DbBackend DatabaseBackend
PostgresDsn string
}
func (cfg BaseNodeConfig) P2PAddr() string {
return fmt.Sprintf(ListenerFormat, cfg.P2PPort)
}
func (cfg BaseNodeConfig) RPCAddr() string {
return fmt.Sprintf(ListenerFormat, cfg.RPCPort)
}
func (cfg BaseNodeConfig) RESTAddr() string {
return fmt.Sprintf(ListenerFormat, cfg.RESTPort)
}
// DBDir returns the holding directory path of the graph database.
func (cfg BaseNodeConfig) DBDir() string {
return filepath.Join(cfg.DataDir, "graph", cfg.NetParams.Name)
}
func (cfg BaseNodeConfig) DBPath() string {
return filepath.Join(cfg.DBDir(), "channel.db")
}
func (cfg BaseNodeConfig) ChanBackupPath() string {
return filepath.Join(
cfg.DataDir, "chain", "bitcoin",
fmt.Sprintf(
"%v/%v", cfg.NetParams.Name,
chanbackup.DefaultBackupFileName,
),
)
}
// GenerateListeningPorts generates the ports to listen on designated for the
// current lightning network test.
func (cfg *BaseNodeConfig) GenerateListeningPorts() {
if cfg.P2PPort == 0 {
cfg.P2PPort = NextAvailablePort()
}
if cfg.RPCPort == 0 {
cfg.RPCPort = NextAvailablePort()
}
if cfg.RESTPort == 0 {
cfg.RESTPort = NextAvailablePort()
}
if cfg.ProfilePort == 0 {
cfg.ProfilePort = NextAvailablePort()
}
}
// BaseConfig returns the base node configuration struct.
func (cfg *BaseNodeConfig) BaseConfig() *BaseNodeConfig {
return cfg
}
// GenArgs generates a slice of command line arguments from the lightning node
// config struct.
func (cfg *BaseNodeConfig) GenArgs() []string {
var args []string
switch cfg.NetParams {
case &chaincfg.TestNet3Params:
args = append(args, "--bitcoin.testnet")
case &chaincfg.SimNetParams:
args = append(args, "--bitcoin.simnet")
case &chaincfg.RegressionNetParams:
args = append(args, "--bitcoin.regtest")
}
backendArgs := cfg.BackendCfg.GenArgs()
args = append(args, backendArgs...)
nodeArgs := []string{
"--bitcoin.active",
"--nobootstrap",
"--debuglevel=debug",
"--bitcoin.defaultchanconfs=1",
"--keep-failed-payment-attempts",
fmt.Sprintf("--db.batch-commit-interval=%v", commitInterval),
fmt.Sprintf("--bitcoin.defaultremotedelay=%v", DefaultCSV),
fmt.Sprintf("--rpclisten=%v", cfg.RPCAddr()),
fmt.Sprintf("--restlisten=%v", cfg.RESTAddr()),
fmt.Sprintf("--restcors=https://%v", cfg.RESTAddr()),
fmt.Sprintf("--listen=%v", cfg.P2PAddr()),
fmt.Sprintf("--externalip=%v", cfg.P2PAddr()),
fmt.Sprintf("--lnddir=%v", cfg.BaseDir),
fmt.Sprintf("--adminmacaroonpath=%v", cfg.AdminMacPath),
fmt.Sprintf("--readonlymacaroonpath=%v", cfg.ReadMacPath),
fmt.Sprintf("--invoicemacaroonpath=%v", cfg.InvoiceMacPath),
fmt.Sprintf("--trickledelay=%v", trickleDelay),
fmt.Sprintf("--profile=%d", cfg.ProfilePort),
fmt.Sprintf("--caches.rpc-graph-cache-duration=%d", 0),
}
args = append(args, nodeArgs...)
if !cfg.HasSeed {
args = append(args, "--noseedbackup")
}
if cfg.ExtraArgs != nil {
args = append(args, cfg.ExtraArgs...)
}
if cfg.AcceptKeySend {
args = append(args, "--accept-keysend")
}
if cfg.AcceptAMP {
args = append(args, "--accept-amp")
}
switch cfg.DbBackend {
case BackendEtcd:
args = append(args, "--db.backend=etcd")
args = append(args, "--db.etcd.embedded")
args = append(
args, fmt.Sprintf(
"--db.etcd.embedded_client_port=%v",
NextAvailablePort(),
),
)
args = append(
args, fmt.Sprintf(
"--db.etcd.embedded_peer_port=%v",
NextAvailablePort(),
),
)
args = append(
args, fmt.Sprintf(
"--db.etcd.embedded_log_file=%v",
path.Join(cfg.LogDir, "etcd.log"),
),
)
case BackendPostgres:
args = append(args, "--db.backend=postgres")
args = append(args, "--db.postgres.dsn="+cfg.PostgresDsn)
}
if cfg.FeeURL != "" {
args = append(args, "--feeurl="+cfg.FeeURL)
}
return args
}
// policyUpdateMap defines a type to store channel policy updates. It has the
// format,
//
// {
// "chanPoint1": {
// "advertisingNode1": [
// policy1, policy2, ...
// ],
// "advertisingNode2": [
// policy1, policy2, ...
// ]
// },
// "chanPoint2": ...
// }.
type policyUpdateMap map[string]map[string][]*lnrpc.RoutingPolicy
// HarnessNode represents an instance of lnd running within our test network
// harness. Each HarnessNode instance also fully embeds an RPC client in
// order to pragmatically drive the node.
type HarnessNode struct {
Cfg *BaseNodeConfig
// NodeID is a unique identifier for the node within a NetworkHarness.
NodeID int
// PubKey is the serialized compressed identity public key of the node.
// This field will only be populated once the node itself has been
// started via the start() method.
PubKey [33]byte
PubKeyStr string
// rpc holds a list of RPC clients.
rpc *RPCClients
// chanWatchRequests receives a request for watching a particular event
// for a given channel.
chanWatchRequests chan *chanWatchRequest
// For each outpoint, we'll track an integer which denotes the number of
// edges seen for that channel within the network. When this number
// reaches 2, then it means that both edge advertisements has propagated
// through the network.
openChans map[wire.OutPoint]int
openChanWatchers map[wire.OutPoint][]chan struct{}
closedChans map[wire.OutPoint]struct{}
closeChanWatchers map[wire.OutPoint][]chan struct{}
// policyUpdates stores a slice of seen polices by each advertising
// node and the outpoint.
policyUpdates policyUpdateMap
// backupDbDir is the path where a database backup is stored, if any.
backupDbDir string
// postgresDbName is the name of the postgres database where lnd data is
// stored in.
postgresDbName string
// runCtx is a context with cancel method. It's used to signal when the
// node needs to quit, and used as the parent context when spawning
// children contexts for RPC requests.
runCtx context.Context
cancel context.CancelFunc
wg sync.WaitGroup
cmd *exec.Cmd
logFile *os.File
// TODO(yy): remove
lnrpc.LightningClient
lnrpc.WalletUnlockerClient
invoicesrpc.InvoicesClient
peersrpc.PeersClient
SignerClient signrpc.SignerClient
RouterClient routerrpc.RouterClient
WalletKitClient walletrpc.WalletKitClient
Watchtower watchtowerrpc.WatchtowerClient
WatchtowerClient wtclientrpc.WatchtowerClientClient
StateClient lnrpc.StateClient
ChainClient chainrpc.ChainNotifierClient
}
// RPCClients wraps a list of RPC clients into a single struct for easier
// access.
type RPCClients struct {
// conn is the underlying connection to the grpc endpoint of the node.
conn *grpc.ClientConn
LN lnrpc.LightningClient
WalletUnlocker lnrpc.WalletUnlockerClient
Invoice invoicesrpc.InvoicesClient
Signer signrpc.SignerClient
Router routerrpc.RouterClient
WalletKit walletrpc.WalletKitClient
Watchtower watchtowerrpc.WatchtowerClient
WatchtowerClient wtclientrpc.WatchtowerClientClient
State lnrpc.StateClient
ChainClient chainrpc.ChainNotifierClient
}
// Assert *HarnessNode implements the lnrpc.LightningClient interface.
var _ lnrpc.LightningClient = (*HarnessNode)(nil)
var _ lnrpc.WalletUnlockerClient = (*HarnessNode)(nil)
var _ invoicesrpc.InvoicesClient = (*HarnessNode)(nil)
var _ peersrpc.PeersClient = (*HarnessNode)(nil)
// nextNodeID generates a unique sequence to be used as the node's ID.
func nextNodeID() int {
numActiveNodesMtx.Lock()
defer numActiveNodesMtx.Unlock()
nodeNum := numActiveNodes
numActiveNodes++
return nodeNum
}
// newNode creates a new test lightning node instance from the passed config.
func newNode(cfg *BaseNodeConfig) (*HarnessNode, error) {
if cfg.BaseDir == "" {
var err error
cfg.BaseDir, err = ioutil.TempDir("", "lndtest-node")
if err != nil {
return nil, err
}
}
cfg.DataDir = filepath.Join(cfg.BaseDir, "data")
cfg.LogDir = filepath.Join(cfg.BaseDir, "logs")
cfg.TLSCertPath = filepath.Join(cfg.BaseDir, "tls.cert")
cfg.TLSKeyPath = filepath.Join(cfg.BaseDir, "tls.key")
networkDir := filepath.Join(
cfg.DataDir, "chain", "bitcoin", cfg.NetParams.Name,
)
cfg.AdminMacPath = filepath.Join(networkDir, "admin.macaroon")
cfg.ReadMacPath = filepath.Join(networkDir, "readonly.macaroon")
cfg.InvoiceMacPath = filepath.Join(networkDir, "invoice.macaroon")
cfg.GenerateListeningPorts()
// Run all tests with accept keysend. The keysend code is very isolated
// and it is highly unlikely that it would affect regular itests when
// enabled.
cfg.AcceptKeySend = true
// Create temporary database.
var dbName string
if cfg.DbBackend == BackendPostgres {
var err error
dbName, err = createTempPgDb()
if err != nil {
return nil, err
}
cfg.PostgresDsn = postgresDatabaseDsn(dbName)
}
return &HarnessNode{
Cfg: cfg,
NodeID: nextNodeID(),
chanWatchRequests: make(chan *chanWatchRequest),
openChans: make(map[wire.OutPoint]int),
openChanWatchers: make(map[wire.OutPoint][]chan struct{}),
closedChans: make(map[wire.OutPoint]struct{}),
closeChanWatchers: make(map[wire.OutPoint][]chan struct{}),
policyUpdates: policyUpdateMap{},
postgresDbName: dbName,
}, nil
}
func createTempPgDb() (string, error) {
// Create random database name.
randBytes := make([]byte, 8)
_, err := rand.Read(randBytes)
if err != nil {
return "", err
}
dbName := "itest_" + hex.EncodeToString(randBytes)
// Create database.
err = executePgQuery("CREATE DATABASE " + dbName)
if err != nil {
return "", err
}
return dbName, nil
}
func executePgQuery(query string) error {
pool, err := pgxpool.Connect(
context.Background(),
postgresDatabaseDsn("postgres"),
)
if err != nil {
return fmt.Errorf("unable to connect to database: %v", err)
}
defer pool.Close()
_, err = pool.Exec(context.Background(), query)
return err
}
// String gives the internal state of the node which is useful for debugging.
func (hn *HarnessNode) String() string {
type nodeCfg struct {
LogFilenamePrefix string
ExtraArgs []string
HasSeed bool
P2PPort int
RPCPort int
RESTPort int
ProfilePort int
AcceptKeySend bool
AcceptAMP bool
FeeURL string
}
nodeState := struct {
NodeID int
Name string
PubKey string
OpenChans map[string]int
ClosedChans map[string]struct{}
NodeCfg nodeCfg
}{
NodeID: hn.NodeID,
Name: hn.Cfg.Name,
PubKey: hn.PubKeyStr,
OpenChans: make(map[string]int),
ClosedChans: make(map[string]struct{}),
NodeCfg: nodeCfg{
LogFilenamePrefix: hn.Cfg.LogFilenamePrefix,
ExtraArgs: hn.Cfg.ExtraArgs,
HasSeed: hn.Cfg.HasSeed,
P2PPort: hn.Cfg.P2PPort,
RPCPort: hn.Cfg.RPCPort,
RESTPort: hn.Cfg.RESTPort,
AcceptKeySend: hn.Cfg.AcceptKeySend,
AcceptAMP: hn.Cfg.AcceptAMP,
FeeURL: hn.Cfg.FeeURL,
},
}
for outpoint, count := range hn.openChans {
nodeState.OpenChans[outpoint.String()] = count
}
for outpoint, count := range hn.closedChans {
nodeState.ClosedChans[outpoint.String()] = count
}
stateBytes, err := json.MarshalIndent(nodeState, "", "\t")
if err != nil {
return fmt.Sprintf("\n encode node state with err: %v", err)
}
return fmt.Sprintf("\nnode state: %s", stateBytes)
}
// DBPath returns the filepath to the channeldb database file for this node.
func (hn *HarnessNode) DBPath() string {
return hn.Cfg.DBPath()
}
// DBDir returns the path for the directory holding channeldb file(s).
func (hn *HarnessNode) DBDir() string {
return hn.Cfg.DBDir()
}
// Name returns the name of this node set during initialization.
func (hn *HarnessNode) Name() string {
return hn.Cfg.Name
}
// TLSCertStr returns the path where the TLS certificate is stored.
func (hn *HarnessNode) TLSCertStr() string {
return hn.Cfg.TLSCertPath
}
// TLSKeyStr returns the path where the TLS key is stored.
func (hn *HarnessNode) TLSKeyStr() string {
return hn.Cfg.TLSKeyPath
}
// ChanBackupPath returns the fielpath to the on-disk channel.backup file for
// this node.
func (hn *HarnessNode) ChanBackupPath() string {
return hn.Cfg.ChanBackupPath()
}
// AdminMacPath returns the filepath to the admin.macaroon file for this node.
func (hn *HarnessNode) AdminMacPath() string {
return hn.Cfg.AdminMacPath
}
// ReadMacPath returns the filepath to the readonly.macaroon file for this node.
func (hn *HarnessNode) ReadMacPath() string {
return hn.Cfg.ReadMacPath
}
// InvoiceMacPath returns the filepath to the invoice.macaroon file for this
// node.
func (hn *HarnessNode) InvoiceMacPath() string {
return hn.Cfg.InvoiceMacPath
}
// startLnd handles the startup of lnd, creating log files, and possibly kills
// the process when needed.
func (hn *HarnessNode) startLnd(lndBinary string, lndError chan<- error) error {
args := hn.Cfg.GenArgs()
hn.cmd = exec.Command(lndBinary, args...)
// Redirect stderr output to buffer
var errb bytes.Buffer
hn.cmd.Stderr = &errb
// If the logoutput flag is passed, redirect output from the nodes to
// log files.
var (
fileName string
err error
)
if *logOutput {
fileName, err = addLogFile(hn)
if err != nil {
return err
}
}
if err := hn.cmd.Start(); err != nil {
return err
}
// Launch a new goroutine which that bubbles up any potential fatal
// process errors to the goroutine running the tests.
hn.wg.Add(1)
go func() {
defer hn.wg.Done()
err := hn.cmd.Wait()
if err != nil {
lndError <- fmt.Errorf("%v\n%v", err, errb.String())
}
// Make sure log file is closed and renamed if necessary.
finalizeLogfile(hn, fileName)
// Rename the etcd.log file if the node was running on embedded
// etcd.
finalizeEtcdLog(hn)
}()
return nil
}
// Start launches a new process running lnd. Additionally, the PID of the
// launched process is saved in order to possibly kill the process forcibly
// later.
//
// This may not clean up properly if an error is returned, so the caller should
// call shutdown() regardless of the return value.
func (hn *HarnessNode) start(lndBinary string, lndError chan<- error,
wait bool) error {
// Init the runCtx.
ctxt, cancel := context.WithCancel(context.Background())
hn.runCtx = ctxt
hn.cancel = cancel
// Start lnd and prepare logs.
if err := hn.startLnd(lndBinary, lndError); err != nil {
return err
}
// We may want to skip waiting for the node to come up (eg. the node
// is waiting to become the leader).
if !wait {
return nil
}
// Since Stop uses the LightningClient to stop the node, if we fail to
// get a connected client, we have to kill the process.
useMacaroons := !hn.Cfg.HasSeed
conn, err := hn.ConnectRPC(useMacaroons)
if err != nil {
err = fmt.Errorf("ConnectRPC err: %w", err)
cmdErr := hn.cmd.Process.Kill()
if cmdErr != nil {
err = fmt.Errorf("kill process got err: %w: %v",
cmdErr, err)
}
return err
}
// Init all the RPC clients.
hn.InitRPCClients(conn)
if err := hn.WaitUntilStarted(); err != nil {
return err
}
// If the node was created with a seed, we will need to perform an
// additional step to unlock the wallet. The connection returned will
// only use the TLS certs, and can only perform operations necessary to
// unlock the daemon.
if hn.Cfg.HasSeed {
// TODO(yy): remove
hn.WalletUnlockerClient = lnrpc.NewWalletUnlockerClient(conn)
return nil
}
return hn.initLightningClient()
}
// WaitUntilStarted waits until the wallet state flips from "WAITING_TO_START".
func (hn *HarnessNode) WaitUntilStarted() error {
return hn.waitTillServerState(func(s lnrpc.WalletState) bool {
return s != lnrpc.WalletState_WAITING_TO_START
})
}
// WaitUntilStateReached waits until the given wallet state (or one of the
// states following it) has been reached.
func (hn *HarnessNode) WaitUntilStateReached(
desiredState lnrpc.WalletState) error {
return hn.waitTillServerState(func(s lnrpc.WalletState) bool {
return s >= desiredState
})
}
// WaitUntilServerActive waits until the lnd daemon is fully started.
func (hn *HarnessNode) WaitUntilServerActive() error {
return hn.waitTillServerState(func(s lnrpc.WalletState) bool {
return s == lnrpc.WalletState_SERVER_ACTIVE
})
}
// WaitUntilLeader attempts to finish the start procedure by initiating an RPC
// connection and setting up the wallet unlocker client. This is needed when
// a node that has recently been started was waiting to become the leader and
// we're at the point when we expect that it is the leader now (awaiting
// unlock).
func (hn *HarnessNode) WaitUntilLeader(timeout time.Duration) error {
var (
conn *grpc.ClientConn
connErr error
)
if err := wait.NoError(func() error {
conn, connErr = hn.ConnectRPC(!hn.Cfg.HasSeed)
return connErr
}, timeout); err != nil {
return err
}
// Init all the RPC clients.
hn.InitRPCClients(conn)
if err := hn.WaitUntilStarted(); err != nil {
return err
}
// If the node was created with a seed, we will need to perform an
// additional step to unlock the wallet. The connection returned will
// only use the TLS certs, and can only perform operations necessary to
// unlock the daemon.
if hn.Cfg.HasSeed {
// TODO(yy): remove
hn.WalletUnlockerClient = lnrpc.NewWalletUnlockerClient(conn)
return nil
}
return hn.initLightningClient()
}
// initClientWhenReady waits until the main gRPC server is detected as active,
// then complete the normal HarnessNode gRPC connection creation. If the node
// is initialized stateless, the macaroon is returned so that the client can
// use it.
func (hn *HarnessNode) initClientWhenReady(stateless bool,
macBytes []byte) error {
// Wait for the wallet to finish unlocking, such that we can connect to
// it via a macaroon-authenticated rpc connection.
var (
conn *grpc.ClientConn
err error
)
if err = wait.NoError(func() error {
// If the node has been initialized stateless, we need to pass
// the macaroon to the client.
if stateless {
adminMac := &macaroon.Macaroon{}
err := adminMac.UnmarshalBinary(macBytes)
if err != nil {
return fmt.Errorf("unmarshal failed: %w", err)
}
conn, err = hn.ConnectRPCWithMacaroon(adminMac)
return err
}
// Normal initialization, we expect a macaroon to be in the
// file system.
conn, err = hn.ConnectRPC(true)
return err
}, DefaultTimeout); err != nil {
return fmt.Errorf("timeout while init client: %w", err)
}
// Init all the RPC clients.
hn.InitRPCClients(conn)
return hn.initLightningClient()
}
// Init initializes a harness node by passing the init request via rpc. After
// the request is submitted, this method will block until a
// macaroon-authenticated RPC connection can be established to the harness
// node. Once established, the new connection is used to initialize the
// LightningClient and subscribes the HarnessNode to topology changes.
func (hn *HarnessNode) Init(
initReq *lnrpc.InitWalletRequest) (*lnrpc.InitWalletResponse, error) {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
response, err := hn.rpc.WalletUnlocker.InitWallet(ctxt, initReq)
if err != nil {
return nil, fmt.Errorf("failed to init wallet: %w", err)
}
err = hn.initClientWhenReady(
initReq.StatelessInit, response.AdminMacaroon,
)
if err != nil {
return nil, fmt.Errorf("failed to init: %w", err)
}
return response, nil
}
// InitChangePassword initializes a harness node by passing the change password
// request via RPC. After the request is submitted, this method will block until
// a macaroon-authenticated RPC connection can be established to the harness
// node. Once established, the new connection is used to initialize the
// LightningClient and subscribes the HarnessNode to topology changes.
func (hn *HarnessNode) InitChangePassword(
chngPwReq *lnrpc.ChangePasswordRequest) (*lnrpc.ChangePasswordResponse,
error) {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
response, err := hn.rpc.WalletUnlocker.ChangePassword(ctxt, chngPwReq)
if err != nil {
return nil, err
}
err = hn.initClientWhenReady(
chngPwReq.StatelessInit, response.AdminMacaroon,
)
if err != nil {
return nil, err
}
return response, nil
}
// Unlock attempts to unlock the wallet of the target HarnessNode. This method
// should be called after the restart of a HarnessNode that was created with a
// seed+password. Once this method returns, the HarnessNode will be ready to
// accept normal gRPC requests and harness command.
func (hn *HarnessNode) Unlock(unlockReq *lnrpc.UnlockWalletRequest) error {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
// Otherwise, we'll need to unlock the node before it's able to start
// up properly.
_, err := hn.rpc.WalletUnlocker.UnlockWallet(ctxt, unlockReq)
if err != nil {
return err
}
// Now that the wallet has been unlocked, we'll wait for the RPC client
// to be ready, then establish the normal gRPC connection.
return hn.initClientWhenReady(false, nil)
}
// waitTillServerState makes a subscription to the server's state change and
// blocks until the server is in the targeted state.
func (hn *HarnessNode) waitTillServerState(
predicate func(state lnrpc.WalletState) bool) error {
ctxt, cancel := context.WithTimeout(hn.runCtx, NodeStartTimeout)
defer cancel()
client, err := hn.rpc.State.SubscribeState(
ctxt, &lnrpc.SubscribeStateRequest{},
)
if err != nil {
return fmt.Errorf("failed to subscribe to state: %w", err)
}
errChan := make(chan error, 1)
done := make(chan struct{})
go func() {
for {
resp, err := client.Recv()
if err != nil {
errChan <- err
return
}
if predicate(resp.State) {
close(done)
return
}
}
}()
var lastErr error
for {
select {
case err := <-errChan:
lastErr = err
case <-done:
return nil
case <-time.After(NodeStartTimeout):
return fmt.Errorf("timeout waiting for state, "+
"got err from stream: %v", lastErr)
}
}
}
// InitRPCClients initializes a list of RPC clients for the node.
func (hn *HarnessNode) InitRPCClients(c *grpc.ClientConn) {
hn.rpc = &RPCClients{
conn: c,
LN: lnrpc.NewLightningClient(c),
Invoice: invoicesrpc.NewInvoicesClient(c),
Router: routerrpc.NewRouterClient(c),
WalletKit: walletrpc.NewWalletKitClient(c),
WalletUnlocker: lnrpc.NewWalletUnlockerClient(c),
Watchtower: watchtowerrpc.NewWatchtowerClient(c),
WatchtowerClient: wtclientrpc.NewWatchtowerClientClient(c),
Signer: signrpc.NewSignerClient(c),
State: lnrpc.NewStateClient(c),
ChainClient: chainrpc.NewChainNotifierClient(c),
}
}
// initLightningClient blocks until the lnd server is fully started and
// subscribes the harness node to graph topology updates. This method also
// spawns a lightning network watcher for this node, which watches for topology
// changes.
func (hn *HarnessNode) initLightningClient() error {
// TODO(yy): remove
// Construct the LightningClient that will allow us to use the
// HarnessNode directly for normal rpc operations.
conn := hn.rpc.conn
hn.LightningClient = lnrpc.NewLightningClient(conn)
hn.InvoicesClient = invoicesrpc.NewInvoicesClient(conn)
hn.RouterClient = routerrpc.NewRouterClient(conn)
hn.WalletKitClient = walletrpc.NewWalletKitClient(conn)
hn.Watchtower = watchtowerrpc.NewWatchtowerClient(conn)
hn.WatchtowerClient = wtclientrpc.NewWatchtowerClientClient(conn)
hn.SignerClient = signrpc.NewSignerClient(conn)
hn.PeersClient = peersrpc.NewPeersClient(conn)
hn.StateClient = lnrpc.NewStateClient(conn)
hn.ChainClient = chainrpc.NewChainNotifierClient(conn)
// Wait until the server is fully started.
if err := hn.WaitUntilServerActive(); err != nil {
return err
}
// Set the harness node's pubkey to what the node claims in GetInfo.
// The RPC must have been started at this point.
if err := hn.FetchNodeInfo(); err != nil {
return err
}
// Launch the watcher that will hook into graph related topology change
// from the PoV of this node.
hn.wg.Add(1)
go hn.lightningNetworkWatcher()
return nil
}
// FetchNodeInfo queries an unlocked node to retrieve its public key.
func (hn *HarnessNode) FetchNodeInfo() error {
// Obtain the lnid of this node for quick identification purposes.
info, err := hn.rpc.LN.GetInfo(hn.runCtx, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
hn.PubKeyStr = info.IdentityPubkey
pubkey, err := hex.DecodeString(info.IdentityPubkey)
if err != nil {
return err
}
copy(hn.PubKey[:], pubkey)
return nil
}
// AddToLogf adds a line of choice to the node's logfile. This is useful
// to interleave test output with output from the node.
func (hn *HarnessNode) AddToLogf(format string, a ...interface{}) {
// If this node was not set up with a log file, just return early.
if hn.logFile == nil {
return
}
desc := fmt.Sprintf("itest: %s\n", fmt.Sprintf(format, a...))
if _, err := hn.logFile.WriteString(desc); err != nil {
hn.PrintErrf("write to log err: %v", err)
}
}
// ReadMacaroon waits a given duration for the macaroon file to be created. If
// the file is readable within the timeout, its content is de-serialized as a
// macaroon and returned.
func (hn *HarnessNode) ReadMacaroon(macPath string, timeout time.Duration) (
*macaroon.Macaroon, error) {
// Wait until macaroon file is created and has valid content before
// using it.
var mac *macaroon.Macaroon
err := wait.NoError(func() error {
macBytes, err := ioutil.ReadFile(macPath)
if err != nil {
return fmt.Errorf("error reading macaroon file: %v",
err)
}
newMac := &macaroon.Macaroon{}
if err = newMac.UnmarshalBinary(macBytes); err != nil {
return fmt.Errorf("error unmarshalling macaroon "+
"file: %v", err)
}
mac = newMac
return nil
}, timeout)
return mac, err
}
// ConnectRPCWithMacaroon uses the TLS certificate and given macaroon to
// create a gRPC client connection.
func (hn *HarnessNode) ConnectRPCWithMacaroon(mac *macaroon.Macaroon) (
*grpc.ClientConn, error) {
// Wait until TLS certificate is created and has valid content before
// using it, up to 30 sec.
var tlsCreds credentials.TransportCredentials
err := wait.NoError(func() error {
var err error
tlsCreds, err = credentials.NewClientTLSFromFile(
hn.Cfg.TLSCertPath, "",
)
return err
}, DefaultTimeout)
if err != nil {
return nil, fmt.Errorf("error reading TLS cert: %v", err)
}
opts := []grpc.DialOption{
grpc.WithBlock(),
grpc.WithTransportCredentials(tlsCreds),
}
ctx, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
if mac == nil {
return grpc.DialContext(ctx, hn.Cfg.RPCAddr(), opts...)
}
macCred, err := macaroons.NewMacaroonCredential(mac)
if err != nil {
return nil, fmt.Errorf("error cloning mac: %v", err)
}
opts = append(opts, grpc.WithPerRPCCredentials(macCred))
return grpc.DialContext(ctx, hn.Cfg.RPCAddr(), opts...)
}
// ConnectRPC uses the TLS certificate and admin macaroon files written by the
// lnd node to create a gRPC client connection.
func (hn *HarnessNode) ConnectRPC(useMacs bool) (*grpc.ClientConn, error) {
// If we don't want to use macaroons, just pass nil, the next method
// will handle it correctly.
if !useMacs {
return hn.ConnectRPCWithMacaroon(nil)
}
// If we should use a macaroon, always take the admin macaroon as a
// default.
mac, err := hn.ReadMacaroon(hn.Cfg.AdminMacPath, DefaultTimeout)
if err != nil {
return nil, err
}
return hn.ConnectRPCWithMacaroon(mac)
}
// SetExtraArgs assigns the ExtraArgs field for the node's configuration. The
// changes will take effect on restart.
func (hn *HarnessNode) SetExtraArgs(extraArgs []string) {
hn.Cfg.ExtraArgs = extraArgs
}
// cleanup cleans up all the temporary files created by the node's process.
func (hn *HarnessNode) cleanup() error {
if hn.backupDbDir != "" {
err := os.RemoveAll(hn.backupDbDir)
if err != nil {
return fmt.Errorf("unable to remove backup dir: %v",
err)
}
}
return os.RemoveAll(hn.Cfg.BaseDir)
}
// Stop attempts to stop the active lnd process.
func (hn *HarnessNode) stop() error {
// Do nothing if the process is not running.
if hn.runCtx == nil {
return nil
}
// If start() failed before creating clients, we will just wait for the
// child process to die.
if hn.rpc != nil && hn.rpc.LN != nil {
// Don't watch for error because sometimes the RPC connection
// gets closed before a response is returned.
req := lnrpc.StopRequest{}
err := wait.NoError(func() error {
_, err := hn.rpc.LN.StopDaemon(hn.runCtx, &req)
switch {
case err == nil:
return nil
// Try again if a recovery/rescan is in progress.
case strings.Contains(
err.Error(), "recovery in progress",
):
return err
default:
return nil
}
}, DefaultTimeout)
if err != nil {
return err
}
}
// Stop the runCtx and wait for goroutines to finish.
hn.cancel()
// Wait for lnd process to exit.
err := wait.NoError(func() error {
if hn.cmd.ProcessState == nil {
return fmt.Errorf("process did not exit")
}
if !hn.cmd.ProcessState.Exited() {
return fmt.Errorf("process did not exit")
}
// Wait for goroutines to be finished.
hn.wg.Wait()
return nil
}, DefaultTimeout*2)
if err != nil {
return err
}
hn.LightningClient = nil
hn.WalletUnlockerClient = nil
hn.Watchtower = nil
hn.WatchtowerClient = nil
// Close any attempts at further grpc connections.
if hn.rpc.conn != nil {
err := status.Code(hn.rpc.conn.Close())
switch err {
case codes.OK:
return nil
// When the context is canceled above, we might get the
// following error as the context is no longer active.
case codes.Canceled:
return nil
case codes.Unknown:
return fmt.Errorf("unknown error attempting to stop "+
"grpc client: %v", err)
default:
return fmt.Errorf("error attempting to stop "+
"grpc client: %v", err)
}
}
return nil
}
// shutdown stops the active lnd process and cleans up any temporary
// directories created along the way.
func (hn *HarnessNode) shutdown() error {
if err := hn.stop(); err != nil {
return err
}
if err := hn.cleanup(); err != nil {
return err
}
return nil
}
// kill kills the lnd process.
func (hn *HarnessNode) kill() error {
return hn.cmd.Process.Kill()
}
type chanWatchType uint8
const (
// watchOpenChannel specifies that this is a request to watch an open
// channel event.
watchOpenChannel chanWatchType = iota
// watchCloseChannel specifies that this is a request to watch a close
// channel event.
watchCloseChannel
// watchPolicyUpdate specifies that this is a request to watch a policy
// update event.
watchPolicyUpdate
)
// closeChanWatchRequest is a request to the lightningNetworkWatcher to be
// notified once it's detected within the test Lightning Network, that a
// channel has either been added or closed.
type chanWatchRequest struct {
chanPoint wire.OutPoint
chanWatchType chanWatchType
eventChan chan struct{}
advertisingNode string
policy *lnrpc.RoutingPolicy
includeUnannounced bool
}
func (hn *HarnessNode) checkChanPointInGraph(chanPoint wire.OutPoint) bool {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
chanGraph, err := hn.DescribeGraph(ctxt, &lnrpc.ChannelGraphRequest{})
if err != nil {
return false
}
targetChanPoint := chanPoint.String()
for _, chanEdge := range chanGraph.Edges {
candidateChanPoint := chanEdge.ChanPoint
if targetChanPoint == candidateChanPoint {
return true
}
}
return false
}
// lightningNetworkWatcher is a goroutine which is able to dispatch
// notifications once it has been observed that a target channel has been
// closed or opened within the network. In order to dispatch these
// notifications, the GraphTopologySubscription client exposed as part of the
// gRPC interface is used.
func (hn *HarnessNode) lightningNetworkWatcher() {
defer hn.wg.Done()
graphUpdates := make(chan *lnrpc.GraphTopologyUpdate)
// Start a goroutine to receive graph updates.
hn.wg.Add(1)
go func() {
defer hn.wg.Done()
err := hn.receiveTopologyClientStream(graphUpdates)
if err != nil {
hn.PrintErrf("receive topology client stream "+
"got err:%v", err)
}
}()
for {
select {
// A new graph update has just been received, so we'll examine
// the current set of registered clients to see if we can
// dispatch any requests.
case graphUpdate := <-graphUpdates:
hn.handleChannelEdgeUpdates(graphUpdate.ChannelUpdates)
hn.handleClosedChannelUpdate(graphUpdate.ClosedChans)
// TODO(yy): handle node updates too
// A new watch request, has just arrived. We'll either be able
// to dispatch immediately, or need to add the client for
// processing later.
case watchRequest := <-hn.chanWatchRequests:
switch watchRequest.chanWatchType {
case watchOpenChannel:
// TODO(roasbeef): add update type also, checks
// for multiple of 2
hn.handleOpenChannelWatchRequest(watchRequest)
case watchCloseChannel:
hn.handleCloseChannelWatchRequest(watchRequest)
case watchPolicyUpdate:
hn.handlePolicyUpdateWatchRequest(watchRequest)
}
case <-hn.runCtx.Done():
return
}
}
}
// WaitForNetworkChannelOpen will block until a channel with the target
// outpoint is seen as being fully advertised within the network. A channel is
// considered "fully advertised" once both of its directional edges has been
// advertised within the test Lightning Network.
func (hn *HarnessNode) WaitForNetworkChannelOpen(
chanPoint *lnrpc.ChannelPoint) error {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
eventChan := make(chan struct{})
op, err := MakeOutpoint(chanPoint)
if err != nil {
return fmt.Errorf("failed to create outpoint for %v "+
"got err: %v", chanPoint, err)
}
hn.chanWatchRequests <- &chanWatchRequest{
chanPoint: op,
eventChan: eventChan,
chanWatchType: watchOpenChannel,
}
select {
case <-eventChan:
return nil
case <-ctxt.Done():
return fmt.Errorf("channel:%s not opened before timeout: %s",
op, hn)
}
}
// WaitForNetworkChannelClose will block until a channel with the target
// outpoint is seen as closed within the network. A channel is considered
// closed once a transaction spending the funding outpoint is seen within a
// confirmed block.
func (hn *HarnessNode) WaitForNetworkChannelClose(
chanPoint *lnrpc.ChannelPoint) error {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
eventChan := make(chan struct{})
op, err := MakeOutpoint(chanPoint)
if err != nil {
return fmt.Errorf("failed to create outpoint for %v "+
"got err: %v", chanPoint, err)
}
hn.chanWatchRequests <- &chanWatchRequest{
chanPoint: op,
eventChan: eventChan,
chanWatchType: watchCloseChannel,
}
select {
case <-eventChan:
return nil
case <-ctxt.Done():
return fmt.Errorf("channel:%s not closed before timeout: "+
"%s", op, hn)
}
}
// WaitForChannelPolicyUpdate will block until a channel policy with the target
// outpoint and advertisingNode is seen within the network.
func (hn *HarnessNode) WaitForChannelPolicyUpdate(
advertisingNode string, policy *lnrpc.RoutingPolicy,
chanPoint *lnrpc.ChannelPoint, includeUnannounced bool) error {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
eventChan := make(chan struct{})
op, err := MakeOutpoint(chanPoint)
if err != nil {
return fmt.Errorf("failed to create outpoint for %v"+
"got err: %v", chanPoint, err)
}
ticker := time.NewTicker(wait.PollInterval)
defer ticker.Stop()
for {
select {
// Send a watch request every second.
case <-ticker.C:
// Did the event can close in the meantime? We want to
// avoid a "close of closed channel" panic since we're
// re-using the same event chan for multiple requests.
select {
case <-eventChan:
return nil
default:
}
hn.chanWatchRequests <- &chanWatchRequest{
chanPoint: op,
eventChan: eventChan,
chanWatchType: watchPolicyUpdate,
policy: policy,
advertisingNode: advertisingNode,
includeUnannounced: includeUnannounced,
}
case <-eventChan:
return nil
case <-ctxt.Done():
return fmt.Errorf("channel:%s policy not updated "+
"before timeout: [%s:%v] %s", op,
advertisingNode, policy, hn.String())
}
}
}
// WaitForBlockchainSync waits for the target node to be fully synchronized
// with the blockchain. If the passed context object has a set timeout, it will
// continually poll until the timeout has elapsed. In the case that the chain
// isn't synced before the timeout is up, this function will return an error.
func (hn *HarnessNode) WaitForBlockchainSync() error {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
ticker := time.NewTicker(time.Millisecond * 100)
defer ticker.Stop()
for {
resp, err := hn.rpc.LN.GetInfo(ctxt, &lnrpc.GetInfoRequest{})
if err != nil {
return err
}
if resp.SyncedToChain {
return nil
}
select {
case <-ctxt.Done():
return fmt.Errorf("timeout while waiting for " +
"blockchain sync")
case <-hn.runCtx.Done():
return nil
case <-ticker.C:
}
}
}
// WaitForBalance waits until the node sees the expected confirmed/unconfirmed
// balance within their wallet.
func (hn *HarnessNode) WaitForBalance(expectedBalance btcutil.Amount,
confirmed bool) error {
req := &lnrpc.WalletBalanceRequest{}
var lastBalance btcutil.Amount
doesBalanceMatch := func() bool {
balance, err := hn.rpc.LN.WalletBalance(hn.runCtx, req)
if err != nil {
return false
}
if confirmed {
lastBalance = btcutil.Amount(balance.ConfirmedBalance)
return btcutil.Amount(balance.ConfirmedBalance) ==
expectedBalance
}
lastBalance = btcutil.Amount(balance.UnconfirmedBalance)
return btcutil.Amount(balance.UnconfirmedBalance) ==
expectedBalance
}
err := wait.Predicate(doesBalanceMatch, DefaultTimeout)
if err != nil {
return fmt.Errorf("balances not synced after deadline: "+
"expected %v, only have %v", expectedBalance,
lastBalance)
}
return nil
}
// PrintErrf prints an error to the console.
func (hn *HarnessNode) PrintErrf(format string, a ...interface{}) {
fmt.Printf("itest error from [node:%s]: %s\n", // nolint:forbidigo
hn.Cfg.Name, fmt.Sprintf(format, a...))
}
// handleChannelEdgeUpdates takes a series of channel edge updates, extracts
// the outpoints, and saves them to harness node's internal state.
func (hn *HarnessNode) handleChannelEdgeUpdates(
updates []*lnrpc.ChannelEdgeUpdate) {
// For each new channel, we'll increment the number of
// edges seen by one.
for _, newChan := range updates {
op, err := MakeOutpoint(newChan.ChanPoint)
if err != nil {
hn.PrintErrf("failed to create outpoint for %v "+
"got err: %v", newChan.ChanPoint, err)
return
}
hn.openChans[op]++
// For this new channel, if the number of edges seen is less
// than two, then the channel hasn't been fully announced yet.
if numEdges := hn.openChans[op]; numEdges < 2 {
return
}
// Otherwise, we'll notify all the registered watchers and
// remove the dispatched watchers.
for _, eventChan := range hn.openChanWatchers[op] {
close(eventChan)
}
delete(hn.openChanWatchers, op)
// Check whether there's a routing policy update. If so, save
// it to the node state.
if newChan.RoutingPolicy == nil {
continue
}
// Append the policy to the slice.
node := newChan.AdvertisingNode
policies := hn.policyUpdates[op.String()]
// If the map[op] is nil, we need to initialize the map first.
if policies == nil {
policies = make(map[string][]*lnrpc.RoutingPolicy)
}
policies[node] = append(
policies[node], newChan.RoutingPolicy,
)
hn.policyUpdates[op.String()] = policies
}
}
// handleOpenChannelWatchRequest processes a watch open channel request by
// checking the number of the edges seen for a given channel point. If the
// number is no less than 2 then the channel is considered open. Otherwise, we
// will attempt to find it in its channel graph. If neither can be found, the
// request is added to a watch request list than will be handled by
// handleChannelEdgeUpdates.
func (hn *HarnessNode) handleOpenChannelWatchRequest(req *chanWatchRequest) {
targetChan := req.chanPoint
// If this is an open request, then it can be dispatched if the number
// of edges seen for the channel is at least two.
if numEdges := hn.openChans[targetChan]; numEdges >= 2 {
close(req.eventChan)
return
}
// Before we add the channel to our set of open clients, we'll check to
// see if the channel is already in the channel graph of the target
// node. This lets us handle the case where a node has already seen a
// channel before a notification has been requested, causing us to miss
// it.
chanFound := hn.checkChanPointInGraph(targetChan)
if chanFound {
close(req.eventChan)
return
}
// Otherwise, we'll add this to the list of open channel watchers for
// this out point.
hn.openChanWatchers[targetChan] = append(
hn.openChanWatchers[targetChan],
req.eventChan,
)
}
// handleClosedChannelUpdate takes a series of closed channel updates, extracts
// the outpoints, saves them to harness node's internal state, and notifies all
// registered clients.
func (hn *HarnessNode) handleClosedChannelUpdate(
updates []*lnrpc.ClosedChannelUpdate) {
// For each channel closed, we'll mark that we've detected a channel
// closure while lnd was pruning the channel graph.
for _, closedChan := range updates {
op, err := MakeOutpoint(closedChan.ChanPoint)
if err != nil {
hn.PrintErrf("failed to create outpoint for %v "+
"got err: %v", closedChan.ChanPoint, err)
return
}
hn.closedChans[op] = struct{}{}
// As the channel has been closed, we'll notify all register
// watchers.
for _, eventChan := range hn.closeChanWatchers[op] {
close(eventChan)
}
delete(hn.closeChanWatchers, op)
}
}
// handleCloseChannelWatchRequest processes a watch close channel request by
// checking whether the given channel point can be found in the node's internal
// state. If not, the request is added to a watch request list than will be
// handled by handleCloseChannelWatchRequest.
func (hn *HarnessNode) handleCloseChannelWatchRequest(req *chanWatchRequest) {
targetChan := req.chanPoint
// If this is a close request, then it can be immediately dispatched if
// we've already seen a channel closure for this channel.
if _, ok := hn.closedChans[targetChan]; ok {
close(req.eventChan)
return
}
// Otherwise, we'll add this to the list of close channel watchers for
// this out point.
hn.closeChanWatchers[targetChan] = append(
hn.closeChanWatchers[targetChan],
req.eventChan,
)
}
type topologyClient lnrpc.Lightning_SubscribeChannelGraphClient
// newTopologyClient creates a topology client.
func (hn *HarnessNode) newTopologyClient(
ctx context.Context) (topologyClient, error) {
req := &lnrpc.GraphTopologySubscription{}
client, err := hn.rpc.LN.SubscribeChannelGraph(ctx, req)
if err != nil {
return nil, fmt.Errorf("%s(%d): unable to create topology "+
"client: %v (%s)", hn.Name(), hn.NodeID, err,
time.Now().String())
}
return client, nil
}
// receiveTopologyClientStream initializes a topologyClient to subscribe
// topology update events. Due to a race condition between the ChannelRouter
// starting and us making the subscription request, it's possible for our graph
// subscription to fail. In that case, we will retry the subscription until it
// succeeds or fail after 10 seconds.
//
// NOTE: must be run as a goroutine.
func (hn *HarnessNode) receiveTopologyClientStream(
receiver chan *lnrpc.GraphTopologyUpdate) error {
// Create a topology client to receive graph updates.
client, err := hn.newTopologyClient(hn.runCtx)
if err != nil {
return fmt.Errorf("create topologyClient failed: %w", err)
}
// We use the context to time out when retrying graph subscription.
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
for {
update, err := client.Recv()
switch {
case err == nil:
// Good case. We will send the update to the receiver.
case strings.Contains(err.Error(), "router not started"):
// If the router hasn't been started, we will retry
// every 200 ms until it has been started or fail
// after the ctxt is timed out.
select {
case <-ctxt.Done():
return fmt.Errorf("graph subscription: " +
"router not started before timeout")
case <-time.After(wait.PollInterval):
case <-hn.runCtx.Done():
return nil
}
// Re-create the topology client.
client, err = hn.newTopologyClient(hn.runCtx)
if err != nil {
return fmt.Errorf("create topologyClient "+
"failed: %v", err)
}
continue
case strings.Contains(err.Error(), "EOF"):
// End of subscription stream. Do nothing and quit.
return nil
case strings.Contains(err.Error(), context.Canceled.Error()):
// End of subscription stream. Do nothing and quit.
return nil
default:
// An expected error is returned, return and leave it
// to be handled by the caller.
return fmt.Errorf("graph subscription err: %w", err)
}
// Send the update or quit.
select {
case receiver <- update:
case <-hn.runCtx.Done():
return nil
}
}
}
// handlePolicyUpdateWatchRequest checks that if the expected policy can be
// found either in the node's interval state or describe graph response. If
// found, it will signal the request by closing the event channel. Otherwise it
// does nothing but returns nil.
func (hn *HarnessNode) handlePolicyUpdateWatchRequest(req *chanWatchRequest) {
op := req.chanPoint
// Get a list of known policies for this chanPoint+advertisingNode
// combination. Start searching in the node state first.
policies, ok := hn.policyUpdates[op.String()][req.advertisingNode]
if !ok {
// If it cannot be found in the node state, try searching it
// from the node's DescribeGraph.
policyMap := hn.getChannelPolicies(req.includeUnannounced)
policies, ok = policyMap[op.String()][req.advertisingNode]
if !ok {
return
}
}
// Check if there's a matched policy.
for _, policy := range policies {
if CheckChannelPolicy(policy, req.policy) == nil {
close(req.eventChan)
return
}
}
}
// getChannelPolicies queries the channel graph and formats the policies into
// the format defined in type policyUpdateMap.
func (hn *HarnessNode) getChannelPolicies(include bool) policyUpdateMap {
ctxt, cancel := context.WithTimeout(hn.runCtx, DefaultTimeout)
defer cancel()
graph, err := hn.rpc.LN.DescribeGraph(ctxt, &lnrpc.ChannelGraphRequest{
IncludeUnannounced: include,
})
if err != nil {
hn.PrintErrf("DescribeGraph got err: %v", err)
return nil
}
policyUpdates := policyUpdateMap{}
for _, e := range graph.Edges {
policies := policyUpdates[e.ChanPoint]
// If the map[op] is nil, we need to initialize the map first.
if policies == nil {
policies = make(map[string][]*lnrpc.RoutingPolicy)
}
if e.Node1Policy != nil {
policies[e.Node1Pub] = append(
policies[e.Node1Pub], e.Node1Policy,
)
}
if e.Node2Policy != nil {
policies[e.Node2Pub] = append(
policies[e.Node2Pub], e.Node2Policy,
)
}
policyUpdates[e.ChanPoint] = policies
}
return policyUpdates
}
// renameFile is a helper to rename (log) files created during integration
// tests.
func renameFile(fromFileName, toFileName string) {
err := os.Rename(fromFileName, toFileName)
if err != nil {
fmt.Printf("could not rename %s to %s: %v\n", // nolint:forbidigo
fromFileName, toFileName, err)
}
}
// getFinalizedLogFilePrefix returns the finalize log filename.
func getFinalizedLogFilePrefix(hn *HarnessNode) string {
pubKeyHex := hex.EncodeToString(
hn.PubKey[:logPubKeyBytes],
)
return fmt.Sprintf("%s/%d-%s-%s-%s",
GetLogDir(), hn.NodeID,
hn.Cfg.LogFilenamePrefix,
hn.Cfg.Name, pubKeyHex)
}
// finalizeLogfile makes sure the log file cleanup function is initialized,
// even if no log file is created.
func finalizeLogfile(hn *HarnessNode, fileName string) {
if hn.logFile != nil {
hn.logFile.Close()
// If logoutput flag is not set, return early.
if !*logOutput {
return
}
newFileName := fmt.Sprintf("%v.log",
getFinalizedLogFilePrefix(hn),
)
renameFile(fileName, newFileName)
}
}
func finalizeEtcdLog(hn *HarnessNode) {
if hn.Cfg.DbBackend != BackendEtcd {
return
}
etcdLogFileName := fmt.Sprintf("%s/etcd.log", hn.Cfg.LogDir)
newEtcdLogFileName := fmt.Sprintf("%v-etcd.log",
getFinalizedLogFilePrefix(hn),
)
renameFile(etcdLogFileName, newEtcdLogFileName)
}
func addLogFile(hn *HarnessNode) (string, error) {
var fileName string
dir := GetLogDir()
fileName = fmt.Sprintf("%s/%d-%s-%s-%s.log", dir, hn.NodeID,
hn.Cfg.LogFilenamePrefix, hn.Cfg.Name,
hex.EncodeToString(hn.PubKey[:logPubKeyBytes]))
// If the node's PubKey is not yet initialized, create a
// temporary file name. Later, after the PubKey has been
// initialized, the file can be moved to its final name with
// the PubKey included.
if bytes.Equal(hn.PubKey[:4], []byte{0, 0, 0, 0}) {
fileName = fmt.Sprintf("%s/%d-%s-%s-tmp__.log", dir,
hn.NodeID, hn.Cfg.LogFilenamePrefix,
hn.Cfg.Name)
}
// Create file if not exists, otherwise append.
file, err := os.OpenFile(fileName,
os.O_WRONLY|os.O_APPEND|os.O_CREATE, 0666)
if err != nil {
return fileName, err
}
// Pass node's stderr to both errb and the file.
w := io.MultiWriter(hn.cmd.Stderr, file)
hn.cmd.Stderr = w
// Pass the node's stdout only to the file.
hn.cmd.Stdout = file
// Let the node keep a reference to this file, such
// that we can add to it if necessary.
hn.logFile = file
return fileName, nil
}