mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-01-19 05:45:21 +01:00
9e012ecc93
This commit is a step to split the lnwallet package. It puts the Input interface and implementations in a separate package along with all their dependencies from lnwallet.
364 lines
12 KiB
Go
364 lines
12 KiB
Go
package sweep
|
|
|
|
import (
|
|
"fmt"
|
|
"sort"
|
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcutil"
|
|
"github.com/btcsuite/btcwallet/wallet/txrules"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
)
|
|
|
|
var (
|
|
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
|
|
// allowed in a single sweep tx. If more need to be swept, multiple txes
|
|
// are created and published.
|
|
DefaultMaxInputsPerTx = 100
|
|
)
|
|
|
|
// inputSet is a set of inputs that can be used as the basis to generate a tx
|
|
// on.
|
|
type inputSet []input.Input
|
|
|
|
// generateInputPartitionings goes through all given inputs and constructs sets
|
|
// of inputs that can be used to generate a sensible transaction. Each set
|
|
// contains up to the configured maximum number of inputs. Negative yield
|
|
// inputs are skipped. No input sets with a total value after fees below the
|
|
// dust limit are returned.
|
|
func generateInputPartitionings(sweepableInputs []input.Input,
|
|
relayFeePerKW, feePerKW lnwallet.SatPerKWeight,
|
|
maxInputsPerTx int) ([]inputSet, error) {
|
|
|
|
// Calculate dust limit based on the P2WPKH output script of the sweep
|
|
// txes.
|
|
dustLimit := txrules.GetDustThreshold(
|
|
input.P2WPKHSize,
|
|
btcutil.Amount(relayFeePerKW.FeePerKVByte()),
|
|
)
|
|
|
|
// Sort input by yield. We will start constructing input sets starting
|
|
// with the highest yield inputs. This is to prevent the construction
|
|
// of a set with an output below the dust limit, causing the sweep
|
|
// process to stop, while there are still higher value inputs
|
|
// available. It also allows us to stop evaluating more inputs when the
|
|
// first input in this ordering is encountered with a negative yield.
|
|
//
|
|
// Yield is calculated as the difference between value and added fee
|
|
// for this input. The fee calculation excludes fee components that are
|
|
// common to all inputs, as those wouldn't influence the order. The
|
|
// single component that is differentiating is witness size.
|
|
//
|
|
// For witness size, the upper limit is taken. The actual size depends
|
|
// on the signature length, which is not known yet at this point.
|
|
yields := make(map[wire.OutPoint]int64)
|
|
for _, input := range sweepableInputs {
|
|
size, _, err := getInputWitnessSizeUpperBound(input)
|
|
if err != nil {
|
|
return nil, fmt.Errorf(
|
|
"failed adding input weight: %v", err)
|
|
}
|
|
|
|
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
|
|
int64(feePerKW.FeeForWeight(int64(size)))
|
|
}
|
|
|
|
sort.Slice(sweepableInputs, func(i, j int) bool {
|
|
return yields[*sweepableInputs[i].OutPoint()] >
|
|
yields[*sweepableInputs[j].OutPoint()]
|
|
})
|
|
|
|
// Select blocks of inputs up to the configured maximum number.
|
|
var sets []inputSet
|
|
for len(sweepableInputs) > 0 {
|
|
// Get the maximum number of inputs from sweepableInputs that
|
|
// we can use to create a positive yielding set from.
|
|
count, outputValue := getPositiveYieldInputs(
|
|
sweepableInputs, maxInputsPerTx, feePerKW,
|
|
)
|
|
|
|
// If there are no positive yield inputs left, we can stop
|
|
// here.
|
|
if count == 0 {
|
|
return sets, nil
|
|
}
|
|
|
|
// If the output value of this block of inputs does not reach
|
|
// the dust limit, stop sweeping. Because of the sorting,
|
|
// continuing with the remaining inputs will only lead to sets
|
|
// with a even lower output value.
|
|
if outputValue < dustLimit {
|
|
log.Debugf("Set value %v below dust limit of %v",
|
|
outputValue, dustLimit)
|
|
return sets, nil
|
|
}
|
|
|
|
log.Infof("Candidate sweep set of size=%v, has yield=%v",
|
|
count, outputValue)
|
|
|
|
sets = append(sets, sweepableInputs[:count])
|
|
sweepableInputs = sweepableInputs[count:]
|
|
}
|
|
|
|
return sets, nil
|
|
}
|
|
|
|
// getPositiveYieldInputs returns the maximum of a number n for which holds
|
|
// that the inputs [0,n) of sweepableInputs have a positive yield.
|
|
// Additionally, the total values of these inputs minus the fee is returned.
|
|
//
|
|
// TODO(roasbeef): Consider including some negative yield inputs too to clean
|
|
// up the utxo set even if it costs us some fees up front. In the spirit of
|
|
// minimizing any negative externalities we cause for the Bitcoin system as a
|
|
// whole.
|
|
func getPositiveYieldInputs(sweepableInputs []input.Input, maxInputs int,
|
|
feePerKW lnwallet.SatPerKWeight) (int, btcutil.Amount) {
|
|
|
|
var weightEstimate input.TxWeightEstimator
|
|
|
|
// Add the sweep tx output to the weight estimate.
|
|
weightEstimate.AddP2WKHOutput()
|
|
|
|
var total, outputValue btcutil.Amount
|
|
for idx, input := range sweepableInputs {
|
|
// Can ignore error, because it has already been checked when
|
|
// calculating the yields.
|
|
size, isNestedP2SH, _ := getInputWitnessSizeUpperBound(input)
|
|
|
|
// Keep a running weight estimate of the input set.
|
|
if isNestedP2SH {
|
|
weightEstimate.AddNestedP2WSHInput(size)
|
|
} else {
|
|
weightEstimate.AddWitnessInput(size)
|
|
}
|
|
|
|
newTotal := total + btcutil.Amount(input.SignDesc().Output.Value)
|
|
|
|
weight := weightEstimate.Weight()
|
|
fee := feePerKW.FeeForWeight(int64(weight))
|
|
|
|
// Calculate the output value if the current input would be
|
|
// added to the set.
|
|
newOutputValue := newTotal - fee
|
|
|
|
// If adding this input makes the total output value of the set
|
|
// decrease, this is a negative yield input. It shouldn't be
|
|
// added to the set. We return the current index as the number
|
|
// of inputs, so the current input is being excluded.
|
|
if newOutputValue <= outputValue {
|
|
return idx, outputValue
|
|
}
|
|
|
|
// Update running values.
|
|
total = newTotal
|
|
outputValue = newOutputValue
|
|
|
|
// Stop if max inputs is reached.
|
|
if idx == maxInputs-1 {
|
|
return maxInputs, outputValue
|
|
}
|
|
}
|
|
|
|
// We could add all inputs to the set, so return them all.
|
|
return len(sweepableInputs), outputValue
|
|
}
|
|
|
|
// createSweepTx builds a signed tx spending the inputs to a the output script.
|
|
func createSweepTx(inputs []input.Input, outputPkScript []byte,
|
|
currentBlockHeight uint32, feePerKw lnwallet.SatPerKWeight,
|
|
signer input.Signer) (*wire.MsgTx, error) {
|
|
|
|
inputs, txWeight, csvCount, cltvCount := getWeightEstimate(inputs)
|
|
|
|
log.Infof("Creating sweep transaction for %v inputs (%v CSV, %v CLTV) "+
|
|
"using %v sat/kw", len(inputs), csvCount, cltvCount,
|
|
int64(feePerKw))
|
|
|
|
txFee := feePerKw.FeeForWeight(txWeight)
|
|
|
|
// Sum up the total value contained in the inputs.
|
|
var totalSum btcutil.Amount
|
|
for _, o := range inputs {
|
|
totalSum += btcutil.Amount(o.SignDesc().Output.Value)
|
|
}
|
|
|
|
// Sweep as much possible, after subtracting txn fees.
|
|
sweepAmt := int64(totalSum - txFee)
|
|
|
|
// Create the sweep transaction that we will be building. We use
|
|
// version 2 as it is required for CSV. The txn will sweep the amount
|
|
// after fees to the pkscript generated above.
|
|
sweepTx := wire.NewMsgTx(2)
|
|
sweepTx.AddTxOut(&wire.TxOut{
|
|
PkScript: outputPkScript,
|
|
Value: sweepAmt,
|
|
})
|
|
|
|
sweepTx.LockTime = currentBlockHeight
|
|
|
|
// Add all inputs to the sweep transaction. Ensure that for each
|
|
// csvInput, we set the sequence number properly.
|
|
for _, input := range inputs {
|
|
sweepTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: *input.OutPoint(),
|
|
Sequence: input.BlocksToMaturity(),
|
|
})
|
|
}
|
|
|
|
// Before signing the transaction, check to ensure that it meets some
|
|
// basic validity requirements.
|
|
//
|
|
// TODO(conner): add more control to sanity checks, allowing us to
|
|
// delay spending "problem" outputs, e.g. possibly batching with other
|
|
// classes if fees are too low.
|
|
btx := btcutil.NewTx(sweepTx)
|
|
if err := blockchain.CheckTransactionSanity(btx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
hashCache := txscript.NewTxSigHashes(sweepTx)
|
|
|
|
// With all the inputs in place, use each output's unique input script
|
|
// function to generate the final witness required for spending.
|
|
addInputScript := func(idx int, tso input.Input) error {
|
|
inputScript, err := tso.CraftInputScript(
|
|
signer, sweepTx, hashCache, idx,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
sweepTx.TxIn[idx].Witness = inputScript.Witness
|
|
|
|
if len(inputScript.SigScript) != 0 {
|
|
sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// Finally we'll attach a valid input script to each csv and cltv input
|
|
// within the sweeping transaction.
|
|
for i, input := range inputs {
|
|
if err := addInputScript(i, input); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
return sweepTx, nil
|
|
}
|
|
|
|
// getInputWitnessSizeUpperBound returns the maximum length of the witness for
|
|
// the given input if it would be included in a tx. We also return if the
|
|
// output itself is a nested p2sh output, if so then we need to take into
|
|
// account the extra sigScript data size.
|
|
func getInputWitnessSizeUpperBound(inp input.Input) (int, bool, error) {
|
|
switch inp.WitnessType() {
|
|
|
|
// Outputs on a remote commitment transaction that pay directly to us.
|
|
case input.WitnessKeyHash:
|
|
fallthrough
|
|
case input.CommitmentNoDelay:
|
|
return input.P2WKHWitnessSize, false, nil
|
|
|
|
// Outputs on a past commitment transaction that pay directly
|
|
// to us.
|
|
case input.CommitmentTimeLock:
|
|
return input.ToLocalTimeoutWitnessSize, false, nil
|
|
|
|
// Outgoing second layer HTLC's that have confirmed within the
|
|
// chain, and the output they produced is now mature enough to
|
|
// sweep.
|
|
case input.HtlcOfferedTimeoutSecondLevel:
|
|
return input.ToLocalTimeoutWitnessSize, false, nil
|
|
|
|
// Incoming second layer HTLC's that have confirmed within the
|
|
// chain, and the output they produced is now mature enough to
|
|
// sweep.
|
|
case input.HtlcAcceptedSuccessSecondLevel:
|
|
return input.ToLocalTimeoutWitnessSize, false, nil
|
|
|
|
// An HTLC on the commitment transaction of the remote party,
|
|
// that has had its absolute timelock expire.
|
|
case input.HtlcOfferedRemoteTimeout:
|
|
return input.AcceptedHtlcTimeoutWitnessSize, false, nil
|
|
|
|
// An HTLC on the commitment transaction of the remote party,
|
|
// that can be swept with the preimage.
|
|
case input.HtlcAcceptedRemoteSuccess:
|
|
return input.OfferedHtlcSuccessWitnessSize, false, nil
|
|
|
|
// A nested P2SH input that has a p2wkh witness script. We'll mark this
|
|
// as nested P2SH so the caller can estimate the weight properly
|
|
// including the sigScript.
|
|
case input.NestedWitnessKeyHash:
|
|
return input.P2WKHWitnessSize, true, nil
|
|
}
|
|
|
|
return 0, false, fmt.Errorf("unexpected witness type: %v",
|
|
inp.WitnessType())
|
|
}
|
|
|
|
// getWeightEstimate returns a weight estimate for the given inputs.
|
|
// Additionally, it returns counts for the number of csv and cltv inputs.
|
|
func getWeightEstimate(inputs []input.Input) ([]input.Input, int64, int, int) {
|
|
// We initialize a weight estimator so we can accurately asses the
|
|
// amount of fees we need to pay for this sweep transaction.
|
|
//
|
|
// TODO(roasbeef): can be more intelligent about buffering outputs to
|
|
// be more efficient on-chain.
|
|
var weightEstimate input.TxWeightEstimator
|
|
|
|
// Our sweep transaction will pay to a single segwit p2wkh address,
|
|
// ensure it contributes to our weight estimate.
|
|
weightEstimate.AddP2WKHOutput()
|
|
|
|
// For each output, use its witness type to determine the estimate
|
|
// weight of its witness, and add it to the proper set of spendable
|
|
// outputs.
|
|
var (
|
|
sweepInputs []input.Input
|
|
csvCount, cltvCount int
|
|
)
|
|
for i := range inputs {
|
|
inp := inputs[i]
|
|
|
|
// For fee estimation purposes, we'll now attempt to obtain an
|
|
// upper bound on the weight this input will add when fully
|
|
// populated.
|
|
size, isNestedP2SH, err := getInputWitnessSizeUpperBound(inp)
|
|
if err != nil {
|
|
log.Warn(err)
|
|
|
|
// Skip inputs for which no weight estimate can be
|
|
// given.
|
|
continue
|
|
}
|
|
|
|
// If this is a nested P2SH input, then we'll need to factor in
|
|
// the additional data push within the sigScript.
|
|
if isNestedP2SH {
|
|
weightEstimate.AddNestedP2WSHInput(size)
|
|
} else {
|
|
weightEstimate.AddWitnessInput(size)
|
|
}
|
|
|
|
switch inp.WitnessType() {
|
|
case input.CommitmentTimeLock,
|
|
input.HtlcOfferedTimeoutSecondLevel,
|
|
input.HtlcAcceptedSuccessSecondLevel:
|
|
csvCount++
|
|
case input.HtlcOfferedRemoteTimeout:
|
|
cltvCount++
|
|
}
|
|
sweepInputs = append(sweepInputs, inp)
|
|
}
|
|
|
|
txWeight := int64(weightEstimate.Weight())
|
|
|
|
return sweepInputs, txWeight, csvCount, cltvCount
|
|
}
|