lnd/lnwallet/channel_test.go
Olaoluwa Osuntokun c9dbaa1403
lnwallet: include r-hash of canceled htlc in log entry for cancel
This commit modifies the logic around adding cancel entries to the
update log for the commitment state machine slightly by also including
the r-hash of the HTLC that’s been cancelled in the entry for the
cancellation. With this change, we can accurately track which HTLC is
being cancelled within outer sub-systems.
2017-01-07 21:22:01 -08:00

1256 lines
43 KiB
Go

package lnwallet
import (
"bytes"
"fmt"
"io/ioutil"
"os"
"testing"
"github.com/btcsuite/fastsha256"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/elkrem"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/roasbeef/btcd/blockchain"
"github.com/roasbeef/btcd/btcec"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/txscript"
"github.com/roasbeef/btcd/wire"
"github.com/roasbeef/btcutil"
)
var (
privPass = []byte("private-test")
// For simplicity a single priv key controls all of our test outputs.
testWalletPrivKey = []byte{
0x2b, 0xd8, 0x06, 0xc9, 0x7f, 0x0e, 0x00, 0xaf,
0x1a, 0x1f, 0xc3, 0x32, 0x8f, 0xa7, 0x63, 0xa9,
0x26, 0x97, 0x23, 0xc8, 0xdb, 0x8f, 0xac, 0x4f,
0x93, 0xaf, 0x71, 0xdb, 0x18, 0x6d, 0x6e, 0x90,
}
// We're alice :)
bobsPrivKey = []byte{
0x81, 0xb6, 0x37, 0xd8, 0xfc, 0xd2, 0xc6, 0xda,
0x63, 0x59, 0xe6, 0x96, 0x31, 0x13, 0xa1, 0x17,
0xd, 0xe7, 0x95, 0xe4, 0xb7, 0x25, 0xb8, 0x4d,
0x1e, 0xb, 0x4c, 0xfd, 0x9e, 0xc5, 0x8c, 0xe9,
}
// Use a hard-coded HD seed.
testHdSeed = [32]byte{
0xb7, 0x94, 0x38, 0x5f, 0x2d, 0x1e, 0xf7, 0xab,
0x4d, 0x92, 0x73, 0xd1, 0x90, 0x63, 0x81, 0xb4,
0x4f, 0x2f, 0x6f, 0x25, 0x88, 0xa3, 0xef, 0xb9,
0x6a, 0x49, 0x18, 0x83, 0x31, 0x98, 0x47, 0x53,
}
// The number of confirmations required to consider any created channel
// open.
numReqConfs = uint16(1)
)
type mockSigner struct {
key *btcec.PrivateKey
}
func (m *mockSigner) SignOutputRaw(tx *wire.MsgTx, signDesc *SignDescriptor) ([]byte, error) {
amt := signDesc.Output.Value
witnessScript := signDesc.WitnessScript
privKey := m.key
sig, err := txscript.RawTxInWitnessSignature(tx, signDesc.SigHashes,
signDesc.InputIndex, amt, witnessScript, txscript.SigHashAll, privKey)
if err != nil {
return nil, err
}
return sig[:len(sig)-1], nil
}
func (m *mockSigner) ComputeInputScript(tx *wire.MsgTx, signDesc *SignDescriptor) (*InputScript, error) {
witnessScript, err := txscript.WitnessScript(tx, signDesc.SigHashes,
signDesc.InputIndex, signDesc.Output.Value, signDesc.Output.PkScript,
txscript.SigHashAll, m.key, true)
if err != nil {
return nil, err
}
return &InputScript{
Witness: witnessScript,
}, nil
}
type mockNotfier struct {
}
func (m *mockNotfier) RegisterConfirmationsNtfn(txid *chainhash.Hash, numConfs uint32) (*chainntnfs.ConfirmationEvent, error) {
return nil, nil
}
func (m *mockNotfier) RegisterBlockEpochNtfn() (*chainntnfs.BlockEpochEvent, error) {
return nil, nil
}
func (m *mockNotfier) Start() error {
return nil
}
func (m *mockNotfier) Stop() error {
return nil
}
func (m *mockNotfier) RegisterSpendNtfn(outpoint *wire.OutPoint) (*chainntnfs.SpendEvent, error) {
return &chainntnfs.SpendEvent{
Spend: make(chan *chainntnfs.SpendDetail),
}, nil
}
// initRevocationWindows simulates a new channel being opened within the p2p
// network by populating the initial revocation windows of the passed
// commitment state machines.
func initRevocationWindows(chanA, chanB *LightningChannel, windowSize int) error {
for i := 0; i < windowSize; i++ {
aliceNextRevoke, err := chanA.ExtendRevocationWindow()
if err != nil {
return err
}
if htlcs, err := chanB.ReceiveRevocation(aliceNextRevoke); err != nil {
return err
} else if htlcs != nil {
return err
}
bobNextRevoke, err := chanB.ExtendRevocationWindow()
if err != nil {
return err
}
if htlcs, err := chanA.ReceiveRevocation(bobNextRevoke); err != nil {
return err
} else if htlcs != nil {
return err
}
}
return nil
}
// forceStateTransition executes the necessary interaction between the two
// commitment state machines to transition to a new state locking in any
// pending updates.
func forceStateTransition(chanA, chanB *LightningChannel) error {
aliceSig, bobIndex, err := chanA.SignNextCommitment()
if err != nil {
return err
}
if err := chanB.ReceiveNewCommitment(aliceSig, bobIndex); err != nil {
fmt.Println("alice sig invalid")
return err
}
bobSig, aliceIndex, err := chanB.SignNextCommitment()
if err != nil {
return err
}
bobRevocation, err := chanB.RevokeCurrentCommitment()
if err != nil {
return err
}
if err := chanA.ReceiveNewCommitment(bobSig, aliceIndex); err != nil {
fmt.Println("bob sig invalid")
return err
}
aliceRevocation, err := chanA.RevokeCurrentCommitment()
if err != nil {
return err
}
if _, err := chanA.ReceiveRevocation(bobRevocation); err != nil {
return err
}
if _, err := chanB.ReceiveRevocation(aliceRevocation); err != nil {
return err
}
return nil
}
// createTestChannels creates two test channels funded with 10 BTC, with 5 BTC
// allocated to each side. Within the channel, Alice is the initiator.
func createTestChannels(revocationWindow int) (*LightningChannel, *LightningChannel, func(), error) {
aliceKeyPriv, aliceKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
testWalletPrivKey)
bobKeyPriv, bobKeyPub := btcec.PrivKeyFromBytes(btcec.S256(),
bobsPrivKey)
channelCapacity := btcutil.Amount(10 * 1e8)
channelBal := channelCapacity / 2
aliceDustLimit := btcutil.Amount(200)
bobDustLimit := btcutil.Amount(800)
csvTimeoutAlice := uint32(5)
csvTimeoutBob := uint32(4)
witnessScript, _, err := GenFundingPkScript(aliceKeyPub.SerializeCompressed(),
bobKeyPub.SerializeCompressed(), int64(channelCapacity))
if err != nil {
return nil, nil, nil, err
}
prevOut := &wire.OutPoint{
Hash: chainhash.Hash(testHdSeed),
Index: 0,
}
fundingTxIn := wire.NewTxIn(prevOut, nil, nil)
bobElkrem := elkrem.NewElkremSender(deriveElkremRoot(bobKeyPriv, bobKeyPub, aliceKeyPub))
bobFirstRevoke, err := bobElkrem.AtIndex(0)
if err != nil {
return nil, nil, nil, err
}
bobRevokeKey := DeriveRevocationPubkey(aliceKeyPub, bobFirstRevoke[:])
aliceElkrem := elkrem.NewElkremSender(deriveElkremRoot(aliceKeyPriv, aliceKeyPub, bobKeyPub))
aliceFirstRevoke, err := aliceElkrem.AtIndex(0)
if err != nil {
return nil, nil, nil, err
}
aliceRevokeKey := DeriveRevocationPubkey(bobKeyPub, aliceFirstRevoke[:])
aliceCommitTx, err := CreateCommitTx(fundingTxIn, aliceKeyPub,
bobKeyPub, aliceRevokeKey, csvTimeoutAlice, channelBal, channelBal)
if err != nil {
return nil, nil, nil, err
}
bobCommitTx, err := CreateCommitTx(fundingTxIn, bobKeyPub,
aliceKeyPub, bobRevokeKey, csvTimeoutBob, channelBal, channelBal)
if err != nil {
return nil, nil, nil, err
}
alicePath, err := ioutil.TempDir("", "alicedb")
dbAlice, err := channeldb.Open(alicePath)
if err != nil {
return nil, nil, nil, err
}
bobPath, err := ioutil.TempDir("", "bobdb")
dbBob, err := channeldb.Open(bobPath)
if err != nil {
return nil, nil, nil, err
}
var obsfucator [StateHintSize]byte
copy(obsfucator[:], aliceFirstRevoke[:])
aliceChannelState := &channeldb.OpenChannel{
IdentityPub: aliceKeyPub,
ChanID: prevOut,
ChanType: channeldb.SingleFunder,
IsInitiator: true,
StateHintObsfucator: obsfucator,
OurCommitKey: aliceKeyPub,
TheirCommitKey: bobKeyPub,
Capacity: channelCapacity,
OurBalance: channelBal,
TheirBalance: channelBal,
OurCommitTx: aliceCommitTx,
OurCommitSig: bytes.Repeat([]byte{1}, 71),
FundingOutpoint: prevOut,
OurMultiSigKey: aliceKeyPub,
TheirMultiSigKey: bobKeyPub,
FundingWitnessScript: witnessScript,
LocalCsvDelay: csvTimeoutAlice,
RemoteCsvDelay: csvTimeoutBob,
TheirCurrentRevocation: bobRevokeKey,
LocalElkrem: aliceElkrem,
RemoteElkrem: &elkrem.ElkremReceiver{},
TheirDustLimit: bobDustLimit,
OurDustLimit: aliceDustLimit,
Db: dbAlice,
}
bobChannelState := &channeldb.OpenChannel{
IdentityPub: bobKeyPub,
ChanID: prevOut,
ChanType: channeldb.SingleFunder,
IsInitiator: false,
StateHintObsfucator: obsfucator,
OurCommitKey: bobKeyPub,
TheirCommitKey: aliceKeyPub,
Capacity: channelCapacity,
OurBalance: channelBal,
TheirBalance: channelBal,
OurCommitTx: bobCommitTx,
OurCommitSig: bytes.Repeat([]byte{1}, 71),
FundingOutpoint: prevOut,
OurMultiSigKey: bobKeyPub,
TheirMultiSigKey: aliceKeyPub,
FundingWitnessScript: witnessScript,
LocalCsvDelay: csvTimeoutBob,
RemoteCsvDelay: csvTimeoutAlice,
TheirCurrentRevocation: aliceRevokeKey,
LocalElkrem: bobElkrem,
RemoteElkrem: &elkrem.ElkremReceiver{},
TheirDustLimit: aliceDustLimit,
OurDustLimit: bobDustLimit,
Db: dbBob,
}
cleanUpFunc := func() {
os.RemoveAll(bobPath)
os.RemoveAll(alicePath)
}
aliceSigner := &mockSigner{aliceKeyPriv}
bobSigner := &mockSigner{bobKeyPriv}
notifier := &mockNotfier{}
channelAlice, err := NewLightningChannel(aliceSigner, nil, notifier, aliceChannelState)
if err != nil {
return nil, nil, nil, err
}
channelBob, err := NewLightningChannel(bobSigner, nil, notifier, bobChannelState)
if err != nil {
return nil, nil, nil, err
}
// Now that the channel are open, simulate the start of a session by
// having Alice and Bob extend their revocation windows to each other.
err = initRevocationWindows(channelAlice, channelBob, revocationWindow)
if err != nil {
return nil, nil, nil, err
}
return channelAlice, channelBob, cleanUpFunc, nil
}
// TestSimpleAddSettleWorkflow tests a simple channel scenario wherein the
// local node (Alice in this case) creates a new outgoing HTLC to bob, commits
// this change, then bob immediately commits a settlement of the HTLC after the
// initial add is fully committed in both commit chains.
// TODO(roasbeef): write higher level framework to exercise various states of
// the state machine
// * DSL language perhaps?
// * constructed via input/output files
func TestSimpleAddSettleWorkflow(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// The edge of the revocation window for both sides should be 3 at this
// point.
if aliceChannel.revocationWindowEdge != 3 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
aliceChannel.revocationWindowEdge, 3)
}
if bobChannel.revocationWindowEdge != 3 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
bobChannel.revocationWindowEdge, 3)
}
paymentPreimage := bytes.Repeat([]byte{1}, 32)
paymentHash := fastsha256.Sum256(paymentPreimage)
htlc := &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{paymentHash},
// TODO(roasbeef): properly switch to credits: (1 msat)
Amount: btcutil.Amount(1e8),
Expiry: uint32(5),
}
// First Alice adds the outgoing HTLC to her local channel's state
// update log. Then Alice sends this wire message over to Bob who also
// adds this htlc to his local state update log.
aliceChannel.AddHTLC(htlc)
bobChannel.ReceiveHTLC(htlc)
// Next alice commits this change by sending a signature message.
aliceSig, bobLogIndex, err := aliceChannel.SignNextCommitment()
if err != nil {
t.Fatalf("alice unable to sign commitment: %v", err)
}
// Bob receives this signature message, then generates a signature for
// Alice's commitment transaction, and the revocation to his prior
// commitment transaction.
if err := bobChannel.ReceiveNewCommitment(aliceSig, bobLogIndex); err != nil {
t.Fatalf("bob unable to process alice's new commitment: %v", err)
}
bobSig, aliceLogIndex, err := bobChannel.SignNextCommitment()
if err != nil {
t.Fatalf("bob unable to sign alice's commitment: %v", err)
}
bobRevocation, err := bobChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("unable to generate bob revocation: %v", err)
}
// Alice then processes bob's signature, and generates a revocation for
// bob.
if err := aliceChannel.ReceiveNewCommitment(bobSig, aliceLogIndex); err != nil {
t.Fatalf("alice unable to process bob's new commitment: %v", err)
}
// Alice then processes this revocation, sending her own recovation for
// her prior commitment transaction. Alice shouldn't have any HTLC's to
// forward since she's sending an outgoing HTLC.
if htlcs, err := aliceChannel.ReceiveRevocation(bobRevocation); err != nil {
t.Fatalf("alice unable to rocess bob's revocation: %v", err)
} else if len(htlcs) != 0 {
t.Fatalf("alice forwards %v htlcs, should forward none: ", len(htlcs))
}
aliceRevocation, err := aliceChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("unable to revoke alice channel: %v", err)
}
// Finally Bob processes Alice's revocation, at this point the new HTLC
// is fully locked in within both commitment transactions. Bob should
// also be able to forward an HTLC now that the HTLC has been locked
// into both commitment transactions.
if htlcs, err := bobChannel.ReceiveRevocation(aliceRevocation); err != nil {
t.Fatalf("bob unable to process alive's revocation: %v", err)
} else if len(htlcs) != 1 {
t.Fatalf("bob should be able to forward an HTLC, instead can "+
"forward %v", len(htlcs))
}
// At this point, both sides should have the proper balance, and
// commitment height updated within their local channel state.
aliceBalance := btcutil.Amount(4 * 1e8)
bobBalance := btcutil.Amount(5 * 1e8)
if aliceChannel.channelState.OurBalance != aliceBalance {
t.Fatalf("alice has incorrect local balance %v vs %v",
aliceChannel.channelState.OurBalance, aliceBalance)
}
if aliceChannel.channelState.TheirBalance != bobBalance {
t.Fatalf("alice has incorrect remote balance %v vs %v",
aliceChannel.channelState.TheirBalance, bobBalance)
}
if bobChannel.channelState.OurBalance != bobBalance {
t.Fatalf("bob has incorrect local balance %v vs %v",
bobChannel.channelState.OurBalance, bobBalance)
}
if bobChannel.channelState.TheirBalance != aliceBalance {
t.Fatalf("bob has incorrect remote balance %v vs %v",
bobChannel.channelState.TheirBalance, aliceBalance)
}
if bobChannel.currentHeight != 1 {
t.Fatalf("bob has incorrect commitment height, %v vs %v",
bobChannel.currentHeight, 1)
}
if aliceChannel.currentHeight != 1 {
t.Fatalf("alice has incorrect commitment height, %v vs %v",
aliceChannel.currentHeight, 1)
}
// Alice's revocation window should now be one beyond the size of the
// initial window. Same goes for Bob.
if aliceChannel.revocationWindowEdge != 4 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
aliceChannel.revocationWindowEdge, 4)
}
if bobChannel.revocationWindowEdge != 4 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
bobChannel.revocationWindowEdge, 4)
}
// Now we'll repeat a similar exchange, this time with Bob settling the
// HTLC once he learns of the preimage.
var preimage [32]byte
copy(preimage[:], paymentPreimage)
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
if err := aliceChannel.ReceiveHTLCSettle(preimage, settleIndex); err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
bobSig2, aliceIndex2, err := bobChannel.SignNextCommitment()
if err != nil {
t.Fatalf("bob unable to sign settle commitment: %v", err)
}
if err := aliceChannel.ReceiveNewCommitment(bobSig2, aliceIndex2); err != nil {
t.Fatalf("alice unable to process bob's new commitment: %v", err)
}
aliceSig2, bobLogIndex2, err := aliceChannel.SignNextCommitment()
if err != nil {
t.Fatalf("alice unable to sign new commitment: %v", err)
}
aliceRevocation2, err := aliceChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("alice unable to generate revocation: %v", err)
}
if err := bobChannel.ReceiveNewCommitment(aliceSig2, bobLogIndex2); err != nil {
t.Fatalf("bob unable to process alice's new commitment: %v", err)
}
bobRevocation2, err := bobChannel.RevokeCurrentCommitment()
if err != nil {
t.Fatalf("bob unable to revoke commitment: %v", err)
}
if htlcs, err := bobChannel.ReceiveRevocation(aliceRevocation2); err != nil {
t.Fatalf("bob unable to process alice's revocation: %v", err)
} else if len(htlcs) != 0 {
t.Fatalf("bob shouldn't forward any HTLC's after outgoing settle, "+
"instead can forward: %v", spew.Sdump(htlcs))
}
if htlcs, err := aliceChannel.ReceiveRevocation(bobRevocation2); err != nil {
t.Fatalf("alice unable to process bob's revocation: %v", err)
} else if len(htlcs) != 1 {
// Alice should now be able to forward the settlement HTLC to
// any down stream peers.
t.Fatalf("alice should be able to forward a single HTLC, "+
"instead can forward %v: %v", len(htlcs), spew.Sdump(htlcs))
}
// At this point, Bob should have 6 BTC settled, with Alice still having
// 4 BTC. Alice's channel should show 1 BTC sent and Bob's channel should
// show 1 BTC received. They should also be at commitment height two,
// with the revocation window extended by by 1 (5).
aliceSettleBalance := btcutil.Amount(4 * 1e8)
bobSettleBalance := btcutil.Amount(6 * 1e8)
satoshisTransferred := uint64(100000000)
if aliceChannel.channelState.OurBalance != aliceSettleBalance {
t.Fatalf("alice has incorrect local balance %v vs %v",
aliceChannel.channelState.OurBalance, aliceSettleBalance)
}
if aliceChannel.channelState.TheirBalance != bobSettleBalance {
t.Fatalf("alice has incorrect remote balance %v vs %v",
aliceChannel.channelState.TheirBalance, bobSettleBalance)
}
if bobChannel.channelState.OurBalance != bobSettleBalance {
t.Fatalf("bob has incorrect local balance %v vs %v",
bobChannel.channelState.OurBalance, bobSettleBalance)
}
if bobChannel.channelState.TheirBalance != aliceSettleBalance {
t.Fatalf("bob has incorrect remote balance %v vs %v",
bobChannel.channelState.TheirBalance, aliceSettleBalance)
}
if aliceChannel.channelState.TotalSatoshisSent != satoshisTransferred {
t.Fatalf("alice satoshis sent incorrect %v vs %v expected",
aliceChannel.channelState.TotalSatoshisSent, satoshisTransferred)
}
if aliceChannel.channelState.TotalSatoshisReceived != 0 {
t.Fatalf("alice satoshis received incorrect %v vs %v expected",
aliceChannel.channelState.TotalSatoshisSent, 0)
}
if bobChannel.channelState.TotalSatoshisReceived != satoshisTransferred {
t.Fatalf("bob satoshis received incorrect %v vs %v expected",
bobChannel.channelState.TotalSatoshisReceived, satoshisTransferred)
}
if bobChannel.channelState.TotalSatoshisSent != 0 {
t.Fatalf("bob satoshis sent incorrect %v vs %v expected",
bobChannel.channelState.TotalSatoshisReceived, 0)
}
if bobChannel.currentHeight != 2 {
t.Fatalf("bob has incorrect commitment height, %v vs %v",
bobChannel.currentHeight, 2)
}
if aliceChannel.currentHeight != 2 {
t.Fatalf("alice has incorrect commitment height, %v vs %v",
aliceChannel.currentHeight, 2)
}
if aliceChannel.revocationWindowEdge != 5 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
aliceChannel.revocationWindowEdge, 5)
}
if bobChannel.revocationWindowEdge != 5 {
t.Fatalf("alice revocation window not incremented, is %v should be %v",
bobChannel.revocationWindowEdge, 5)
}
// The logs of both sides should now be cleared since the entry adding
// the HTLC should have been removed once both sides recieve the
// revocation.
if aliceChannel.ourUpdateLog.Len() != 0 {
t.Fatalf("alice's local not updated, should be empty, has %v entries "+
"instead", aliceChannel.ourUpdateLog.Len())
}
if aliceChannel.theirUpdateLog.Len() != 0 {
t.Fatalf("alice's remote not updated, should be empty, has %v entries "+
"instead", aliceChannel.theirUpdateLog.Len())
}
if len(aliceChannel.ourLogIndex) != 0 {
t.Fatalf("alice's local log index not cleared, should be empty but "+
"has %v entries", len(aliceChannel.ourLogIndex))
}
if len(aliceChannel.theirLogIndex) != 0 {
t.Fatalf("alice's remote log index not cleared, should be empty but "+
"has %v entries", len(aliceChannel.theirLogIndex))
}
if bobChannel.ourUpdateLog.Len() != 0 {
t.Fatalf("bob's local log not updated, should be empty, has %v entries "+
"instead", bobChannel.ourUpdateLog.Len())
}
if bobChannel.theirUpdateLog.Len() != 0 {
t.Fatalf("bob's remote log not updated, should be empty, has %v entries "+
"instead", bobChannel.theirUpdateLog.Len())
}
if len(bobChannel.ourLogIndex) != 0 {
t.Fatalf("bob's local log index not cleared, should be empty but "+
"has %v entries", len(bobChannel.ourLogIndex))
}
if len(bobChannel.theirLogIndex) != 0 {
t.Fatalf("bob's remote log index not cleared, should be empty but "+
"has %v entries", len(bobChannel.theirLogIndex))
}
}
// TestCheckCommitTxSize checks that estimation size of commitment
// transaction with some degree of error corresponds to the actual size.
func TestCheckCommitTxSize(t *testing.T) {
checkSize := func(channel *LightningChannel, count int) {
// Due to variable size of the signatures (71-73) we may have
// an estimation error.
BaseCommitmentTxSizeEstimationError := 4
commitTx, err := channel.getSignedCommitTx()
if err != nil {
t.Fatalf("unable to initiate alice force close: %v", err)
}
actualCost := blockchain.GetTransactionWeight(btcutil.NewTx(commitTx))
estimatedCost := estimateCommitTxCost(count, false)
diff := int(estimatedCost - actualCost)
if 0 > diff || BaseCommitmentTxSizeEstimationError < diff {
t.Fatalf("estimation is wrong")
}
}
createHTLC := func(i int) (*lnwire.HTLCAddRequest, [32]byte) {
preimage := bytes.Repeat([]byte{byte(i)}, 32)
paymentHash := fastsha256.Sum256(preimage)
var returnPreimage [32]byte
copy(returnPreimage[:], preimage)
return &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{paymentHash},
Amount: btcutil.Amount(1e7),
Expiry: uint32(5),
}, returnPreimage
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Check that weight estimation of the commitment transaction without
// HTLCs is right.
checkSize(aliceChannel, 0)
checkSize(bobChannel, 0)
// Adding HTLCs and check that size stays in allowable estimation
// error window.
for i := 1; i <= 10; i++ {
htlc, _ := createHTLC(i)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
forceStateTransition(aliceChannel, bobChannel)
checkSize(aliceChannel, i)
checkSize(bobChannel, i)
}
// Settle HTLCs and check that estimation is counting cost of settle
// HTLCs properly.
for i := 10; i >= 1; i-- {
_, preimage := createHTLC(i)
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = aliceChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
forceStateTransition(aliceChannel, bobChannel)
checkSize(aliceChannel, i-1)
checkSize(bobChannel, i-1)
}
}
func TestCooperativeChannelClosure(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// First we test the channel initiator requesting a cooperative close.
sig, txid, err := aliceChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to initiate alice cooperative close: %v", err)
}
finalSig := append(sig, byte(txscript.SigHashAll))
closeTx, err := bobChannel.CompleteCooperativeClose(finalSig)
if err != nil {
t.Fatalf("unable to complete alice cooperative close: %v", err)
}
bobCloseSha := closeTx.TxHash()
if !bobCloseSha.IsEqual(txid) {
t.Fatalf("alice's transactions doesn't match: %x vs %x",
bobCloseSha[:], txid[:])
}
aliceChannel.status = channelOpen
bobChannel.status = channelOpen
// Next we test the channel recipient requesting a cooperative closure.
// First we test the channel initiator requesting a cooperative close.
sig, txid, err = bobChannel.InitCooperativeClose()
if err != nil {
t.Fatalf("unable to initiate bob cooperative close: %v", err)
}
finalSig = append(sig, byte(txscript.SigHashAll))
closeTx, err = aliceChannel.CompleteCooperativeClose(finalSig)
if err != nil {
t.Fatalf("unable to complete bob cooperative close: %v", err)
}
aliceCloseSha := closeTx.TxHash()
if !aliceCloseSha.IsEqual(txid) {
t.Fatalf("bob's closure transactions don't match: %x vs %x",
aliceCloseSha[:], txid[:])
}
}
// TestCheckHTLCNumberConstraint checks that we can't add HTLC or receive
// HTLC if number of HTLCs exceed maximum available number, also this test
// checks that if for some reason max number of HTLCs was exceeded and not
// caught before, the creation of new commitment will not be possible because
// of validation error.
func TestCheckHTLCNumberConstraint(t *testing.T) {
createHTLC := func(i int) *lnwire.HTLCAddRequest {
preimage := bytes.Repeat([]byte{byte(i)}, 32)
paymentHash := fastsha256.Sum256(preimage)
return &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{paymentHash},
Amount: btcutil.Amount(1e7),
Expiry: uint32(5),
}
}
checkError := func(err error) error {
if err == nil {
return errors.New("Exceed max htlc count error was " +
"not received")
} else if err != ErrMaxHTLCNumber {
return errors.Errorf("Unexpected error occured: %v", err)
}
return nil
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Add max available number of HTLCs.
for i := 0; i < MaxHTLCNumber; i++ {
htlc := createHTLC(i)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
}
// Next addition should cause HTLC max number validation error.
htlc := createHTLC(0)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := bobChannel.AddHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := aliceChannel.ReceiveHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
if err := checkError(err); err != nil {
t.Fatal(err)
}
} else {
t.Fatal("Error was not received")
}
// Manually add HTLC to check SignNextCommitment validation error.
pd := &PaymentDescriptor{Index: aliceChannel.theirLogCounter}
aliceChannel.theirLogIndex[pd.Index] = aliceChannel.theirUpdateLog.PushBack(pd)
aliceChannel.theirLogCounter++
_, _, err = aliceChannel.SignNextCommitment()
if err := checkError(err); err != nil {
t.Fatal(err)
}
// Manually add HTLC to check ReceiveNewCommitment validation error.
pd = &PaymentDescriptor{Index: bobChannel.theirLogCounter}
bobChannel.theirLogIndex[pd.Index] = bobChannel.theirUpdateLog.PushBack(pd)
bobChannel.theirLogCounter++
// And on this stage we should receive the weight error.
someSig := []byte("somesig")
err = bobChannel.ReceiveNewCommitment(someSig, aliceChannel.theirLogCounter)
if err := checkError(err); err != nil {
t.Fatal(err)
}
}
// TestCheckDustLimit checks that unsettled HTLC with dust limit not included in
// commitment transaction as output, but sender balance is decreased (thereby all
// unsettled dust HTLCs will go to miners fee).
func TestCheckDustLimit(t *testing.T) {
createHTLC := func(data, amount btcutil.Amount) (*lnwire.HTLCAddRequest,
[32]byte) {
preimage := bytes.Repeat([]byte{byte(data)}, 32)
paymentHash := fastsha256.Sum256(preimage)
var returnPreimage [32]byte
copy(returnPreimage[:], preimage)
return &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{paymentHash},
Amount: amount,
Expiry: uint32(5),
}, returnPreimage
}
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
aliceDustLimit := aliceChannel.channelState.OurDustLimit
bobDustLimit := bobChannel.channelState.OurDustLimit
htlcAmount := btcutil.Amount(500)
if !((htlcAmount > aliceDustLimit) && (bobDustLimit > htlcAmount)) {
t.Fatal("htlc amount needs to be above Alice's dust limit, but " +
"below Bob's dust limit .")
}
aliceAmount := aliceChannel.channelState.OurBalance
bobAmount := bobChannel.channelState.OurBalance
htlc, preimage := createHTLC(0, htlcAmount)
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("alice unable to add htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("bob unable to receive htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("Can't update the channel state: %v", err)
}
// First two outputs are payment to them and to us. If we encounter
// third output it means that dust HTLC was included. Their channel
// balance shouldn't change because, it will be changed only after
// HTLC will be settled.
// From Alice point of view HTLC's amount is bigger then dust limit.
commitment := aliceChannel.localCommitChain.tip()
if len(commitment.txn.TxOut) != 3 {
t.Fatal("htlc wasn't added")
}
if commitment.ourBalance != aliceAmount-htlcAmount {
t.Fatal("our balance wasn't updated")
}
if commitment.theirBalance != bobAmount {
t.Fatal("their balance was updated")
}
// From Bob point of view HTLC's amount is lower then dust limit.
commitment = bobChannel.localCommitChain.tip()
if len(commitment.txn.TxOut) != 2 {
t.Fatal("HTLC with dust amount was added")
}
if commitment.theirBalance != aliceAmount-htlcAmount {
t.Fatal("their balance wasn't updated")
}
if commitment.ourBalance != bobAmount {
t.Fatal("our balance was updated")
}
// Settle HTLC and sign new commitment.
settleIndex, err := bobChannel.SettleHTLC(preimage)
if err != nil {
t.Fatalf("bob unable to settle inbound htlc: %v", err)
}
err = aliceChannel.ReceiveHTLCSettle(preimage, settleIndex)
if err != nil {
t.Fatalf("alice unable to accept settle of outbound htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("Can't update the channel state: %v", err)
}
commitment = aliceChannel.localCommitChain.tip()
if len(commitment.txn.TxOut) != 2 {
t.Fatal("HTLC wasn't settled")
}
if commitment.ourBalance != aliceAmount-htlcAmount {
t.Fatal("our balance wasn't updated")
}
if commitment.theirBalance != bobAmount+htlcAmount {
t.Fatal("their balance wasn't updated")
}
commitment = bobChannel.localCommitChain.tip()
if len(commitment.txn.TxOut) != 2 {
t.Fatal("HTLC with dust amount wasn't settled")
}
if commitment.ourBalance != bobAmount+htlcAmount {
t.Fatal("our balance wasn't updated")
}
if commitment.theirBalance != aliceAmount-htlcAmount {
t.Fatal("their balance wasn't updated")
}
}
func TestStateUpdatePersistence(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(3)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
if err := aliceChannel.channelState.FullSync(); err != nil {
t.Fatalf("unable to sync alice's channel: %v", err)
}
if err := bobChannel.channelState.FullSync(); err != nil {
t.Fatalf("unable to sync bob's channel: %v", err)
}
aliceStartingBalance := aliceChannel.channelState.OurBalance
bobStartingBalance := bobChannel.channelState.OurBalance
const numHtlcs = 4
// Alice adds 3 HTLC's to the update log, while Bob adds a single HTLC.
var alicePreimage [32]byte
copy(alicePreimage[:], bytes.Repeat([]byte{0xaa}, 32))
var bobPreimage [32]byte
copy(bobPreimage[:], bytes.Repeat([]byte{0xbb}, 32))
for i := 0; i < 3; i++ {
rHash := fastsha256.Sum256(alicePreimage[:])
h := &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{rHash},
Amount: btcutil.Amount(1000),
Expiry: uint32(10),
}
aliceChannel.AddHTLC(h)
bobChannel.ReceiveHTLC(h)
}
rHash := fastsha256.Sum256(bobPreimage[:])
bobh := &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{rHash},
Amount: btcutil.Amount(1000),
Expiry: uint32(10),
}
bobChannel.AddHTLC(bobh)
aliceChannel.ReceiveHTLC(bobh)
// Next, Alice initiates a state transition to lock in the above HTLC's.
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("unable to lock in HTLC's: %v", err)
}
// The balances of both channels should be updated accordingly.
aliceBalance := aliceChannel.channelState.OurBalance
expectedAliceBalance := aliceStartingBalance - btcutil.Amount(3000)
bobBalance := bobChannel.channelState.OurBalance
expectedBobBalance := bobStartingBalance - btcutil.Amount(1000)
if aliceBalance != expectedAliceBalance {
t.Fatalf("expected %v alice balance, got %v", expectedAliceBalance,
aliceBalance)
}
if bobBalance != expectedBobBalance {
t.Fatalf("expected %v bob balance, got %v", expectedBobBalance,
bobBalance)
}
// The latest commitment from both sides should have all the HTLC's.
numAliceOutgoing := aliceChannel.localCommitChain.tail().outgoingHTLCs
numAliceIncoming := aliceChannel.localCommitChain.tail().incomingHTLCs
if len(numAliceOutgoing) != 3 {
t.Fatalf("expected %v htlcs, instead got %v", 3, numAliceOutgoing)
}
if len(numAliceIncoming) != 1 {
t.Fatalf("expected %v htlcs, instead got %v", 1, numAliceIncoming)
}
numBobOutgoing := bobChannel.localCommitChain.tail().outgoingHTLCs
numBobIncoming := bobChannel.localCommitChain.tail().incomingHTLCs
if len(numBobOutgoing) != 1 {
t.Fatalf("expected %v htlcs, instead got %v", 1, numBobOutgoing)
}
if len(numBobIncoming) != 3 {
t.Fatalf("expected %v htlcs, instead got %v", 3, numBobIncoming)
}
// Now fetch both of the channels created above from disk to simulate a
// node restart with persistence.
alicePub := aliceChannel.channelState.IdentityPub
aliceChannels, err := aliceChannel.channelState.Db.FetchOpenChannels(alicePub)
if err != nil {
t.Fatalf("unable to fetch channel: %v", err)
}
bobPub := bobChannel.channelState.IdentityPub
bobChannels, err := bobChannel.channelState.Db.FetchOpenChannels(bobPub)
if err != nil {
t.Fatalf("unable to fetch channel: %v", err)
}
notifier := aliceChannel.channelEvents
aliceChannelNew, err := NewLightningChannel(aliceChannel.signer, nil, notifier, aliceChannels[0])
if err != nil {
t.Fatalf("unable to create new channel: %v", err)
}
bobChannelNew, err := NewLightningChannel(bobChannel.signer, nil, notifier, bobChannels[0])
if err != nil {
t.Fatalf("unable to create new channel: %v", err)
}
if err := initRevocationWindows(aliceChannelNew, bobChannelNew, 3); err != nil {
t.Fatalf("unable to init revocation windows: %v", err)
}
// The state update logs of the new channels and the old channels
// should now be identical other than the height the HTLC's were added.
if aliceChannel.ourLogCounter != aliceChannelNew.ourLogCounter {
t.Fatalf("alice log counter: expected %v, got %v",
aliceChannel.ourLogCounter, aliceChannelNew.ourLogCounter)
}
if aliceChannel.theirLogCounter != aliceChannelNew.theirLogCounter {
t.Fatalf("alice log counter: expected %v, got %v",
aliceChannel.theirLogCounter, aliceChannelNew.theirLogCounter)
}
if aliceChannel.ourUpdateLog.Len() != aliceChannelNew.ourUpdateLog.Len() {
t.Fatalf("alice log len: expected %v, got %v",
aliceChannel.ourUpdateLog.Len(),
aliceChannelNew.ourUpdateLog.Len())
}
if aliceChannel.theirUpdateLog.Len() != aliceChannelNew.theirUpdateLog.Len() {
t.Fatalf("alice log len: expected %v, got %v",
aliceChannel.theirUpdateLog.Len(),
aliceChannelNew.theirUpdateLog.Len())
}
if bobChannel.ourLogCounter != bobChannelNew.ourLogCounter {
t.Fatalf("bob log counter: expected %v, got %v",
bobChannel.ourLogCounter, bobChannelNew.ourLogCounter)
}
if bobChannel.theirLogCounter != bobChannelNew.theirLogCounter {
t.Fatalf("bob log counter: expected %v, got %v",
bobChannel.theirLogCounter, bobChannelNew.theirLogCounter)
}
if bobChannel.ourUpdateLog.Len() != bobChannelNew.ourUpdateLog.Len() {
t.Fatalf("bob log len: expected %v, got %v",
bobChannelNew.ourUpdateLog.Len(), bobChannelNew.ourUpdateLog.Len())
}
if bobChannel.theirUpdateLog.Len() != bobChannelNew.theirUpdateLog.Len() {
t.Fatalf("bob log len: expected %v, got %v",
bobChannel.theirUpdateLog.Len(), bobChannelNew.theirUpdateLog.Len())
}
// Now settle all the HTLC's, then force a state update. The state
// update should suceed as both sides have identical.
for i := 0; i < 3; i++ {
settleIndex, err := bobChannelNew.SettleHTLC(alicePreimage)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
err = aliceChannelNew.ReceiveHTLCSettle(alicePreimage, settleIndex)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
}
settleIndex, err := aliceChannelNew.SettleHTLC(bobPreimage)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
err = bobChannelNew.ReceiveHTLCSettle(bobPreimage, settleIndex)
if err != nil {
t.Fatalf("unable to settle htlc: %v", err)
}
if err := forceStateTransition(aliceChannelNew, bobChannelNew); err != nil {
t.Fatalf("unable to update commitments: %v", err)
}
// The balances of both sides should have been updated accordingly.
aliceBalance = aliceChannelNew.channelState.OurBalance
expectedAliceBalance = aliceStartingBalance - btcutil.Amount(2000)
bobBalance = bobChannelNew.channelState.OurBalance
expectedBobBalance = bobStartingBalance + btcutil.Amount(2000)
if aliceBalance != expectedAliceBalance {
t.Fatalf("expected %v alice balance, got %v", expectedAliceBalance,
aliceBalance)
}
if bobBalance != expectedBobBalance {
t.Fatalf("expected %v bob balance, got %v", expectedBobBalance,
bobBalance)
}
// The amounts transferred should been updated as per the amounts in
// the HTLCs
if aliceChannelNew.channelState.TotalSatoshisSent != 3000 {
t.Fatalf("expected %v alice satoshis sent, got %v",
3000, aliceChannelNew.channelState.TotalSatoshisSent)
}
if aliceChannelNew.channelState.TotalSatoshisReceived != 1000 {
t.Fatalf("expected %v alice satoshis received, got %v",
1000, aliceChannelNew.channelState.TotalSatoshisReceived)
}
if bobChannelNew.channelState.TotalSatoshisSent != 1000 {
t.Fatalf("expected %v bob satoshis sent, got %v",
1000, bobChannel.channelState.TotalSatoshisSent)
}
if bobChannelNew.channelState.TotalSatoshisReceived != 3000 {
t.Fatalf("expected %v bob satoshis sent, got %v",
3000, bobChannel.channelState.TotalSatoshisSent)
}
}
func TestCancelHTLC(t *testing.T) {
// Create a test channel which will be used for the duration of this
// unittest. The channel will be funded evenly with Alice having 5 BTC,
// and Bob having 5 BTC.
aliceChannel, bobChannel, cleanUp, err := createTestChannels(5)
if err != nil {
t.Fatalf("unable to create test channels: %v", err)
}
defer cleanUp()
// Add a new HTLC from Alice to Bob, then trigger a new state
// transition in order to include it in the latest state.
const htlcAmt = btcutil.SatoshiPerBitcoin
var preImage [32]byte
copy(preImage[:], bytes.Repeat([]byte{0xaa}, 32))
htlc := &lnwire.HTLCAddRequest{
RedemptionHashes: [][32]byte{fastsha256.Sum256(preImage[:])},
Amount: htlcAmt,
Expiry: 10,
}
paymentHash := htlc.RedemptionHashes[0]
if _, err := aliceChannel.AddHTLC(htlc); err != nil {
t.Fatalf("unable to add alice htlc: %v", err)
}
if _, err := bobChannel.ReceiveHTLC(htlc); err != nil {
t.Fatalf("unable to add bob htlc: %v", err)
}
if err := forceStateTransition(aliceChannel, bobChannel); err != nil {
t.Fatalf("unable to create new commitment state: %v", err)
}
// With the HTLC committed, Alice's balance should reflect the clearing
// of the new HTLC.
aliceExpectedBalance := btcutil.Amount(btcutil.SatoshiPerBitcoin * 4)
if aliceChannel.channelState.OurBalance != aliceExpectedBalance {
t.Fatalf("Alice's balance is wrong: expected %v, got %v",
aliceExpectedBalance, aliceChannel.channelState.OurBalance)
}
// Now, with the HTLC committed on both sides, trigger a cancellation
// from Bob to Alice, removing the HTLC.
htlcCancelIndex, err := bobChannel.CancelHTLC(paymentHash)
if err != nil {
t.Fatalf("unable to cancel HTLC: %v", err)
}
if err := aliceChannel.ReceiveCancelHTLC(htlcCancelIndex); err != nil {
t.Fatalf("unable to recv htlc cancel: %v", err)
}
// Now trigger another state transition, the HTLC should now be removed
// from both sides, with balances reflected.
if err := forceStateTransition(bobChannel, aliceChannel); err != nil {
t.Fatalf("unable to create new commitment: %v", err)
}
// Now HTLC's should be present on the commitment transaction for
// either side.
if len(aliceChannel.localCommitChain.tip().outgoingHTLCs) != 0 ||
len(aliceChannel.remoteCommitChain.tip().outgoingHTLCs) != 0 {
t.Fatalf("htlc's still active from alice's POV")
}
if len(aliceChannel.localCommitChain.tip().incomingHTLCs) != 0 ||
len(aliceChannel.remoteCommitChain.tip().incomingHTLCs) != 0 {
t.Fatalf("htlc's still active from alice's POV")
}
if len(bobChannel.localCommitChain.tip().outgoingHTLCs) != 0 ||
len(bobChannel.remoteCommitChain.tip().outgoingHTLCs) != 0 {
t.Fatalf("htlc's still active from bob's POV")
}
if len(bobChannel.localCommitChain.tip().incomingHTLCs) != 0 ||
len(bobChannel.remoteCommitChain.tip().incomingHTLCs) != 0 {
t.Fatalf("htlc's still active from bob's POV")
}
expectedBalance := btcutil.Amount(btcutil.SatoshiPerBitcoin * 5)
if aliceChannel.channelState.OurBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
aliceChannel.channelState.OurBalance, expectedBalance)
}
if aliceChannel.channelState.TheirBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
aliceChannel.channelState.TheirBalance, expectedBalance)
}
if bobChannel.channelState.OurBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
bobChannel.channelState.OurBalance, expectedBalance)
}
if bobChannel.channelState.TheirBalance != expectedBalance {
t.Fatalf("balance is wrong: expected %v, got %v",
bobChannel.channelState.TheirBalance, expectedBalance)
}
}