mirror of
https://github.com/lightningnetwork/lnd.git
synced 2024-11-19 09:53:54 +01:00
ac5f88bae8
multi: optimistically shutdown link during coop close
3253 lines
102 KiB
Go
3253 lines
102 KiB
Go
package peer
|
|
|
|
import (
|
|
"bytes"
|
|
"container/list"
|
|
"errors"
|
|
"fmt"
|
|
"net"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/connmgr"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/davecgh/go-spew/spew"
|
|
|
|
"github.com/lightningnetwork/lnd/buffer"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/channelnotifier"
|
|
"github.com/lightningnetwork/lnd/contractcourt"
|
|
"github.com/lightningnetwork/lnd/discovery"
|
|
"github.com/lightningnetwork/lnd/feature"
|
|
"github.com/lightningnetwork/lnd/funding"
|
|
"github.com/lightningnetwork/lnd/htlcswitch"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hop"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/invoices"
|
|
"github.com/lightningnetwork/lnd/lnpeer"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chancloser"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/netann"
|
|
"github.com/lightningnetwork/lnd/pool"
|
|
"github.com/lightningnetwork/lnd/queue"
|
|
"github.com/lightningnetwork/lnd/ticker"
|
|
"github.com/lightningnetwork/lnd/watchtower/wtclient"
|
|
)
|
|
|
|
const (
|
|
// pingInterval is the interval at which ping messages are sent.
|
|
pingInterval = 1 * time.Minute
|
|
|
|
// idleTimeout is the duration of inactivity before we time out a peer.
|
|
idleTimeout = 5 * time.Minute
|
|
|
|
// writeMessageTimeout is the timeout used when writing a message to the
|
|
// peer.
|
|
writeMessageTimeout = 5 * time.Second
|
|
|
|
// readMessageTimeout is the timeout used when reading a message from a
|
|
// peer.
|
|
readMessageTimeout = 5 * time.Second
|
|
|
|
// handshakeTimeout is the timeout used when waiting for the peer's init
|
|
// message.
|
|
handshakeTimeout = 15 * time.Second
|
|
|
|
// outgoingQueueLen is the buffer size of the channel which houses
|
|
// messages to be sent across the wire, requested by objects outside
|
|
// this struct.
|
|
outgoingQueueLen = 50
|
|
|
|
// ErrorBufferSize is the number of historic peer errors that we store.
|
|
ErrorBufferSize = 10
|
|
)
|
|
|
|
var (
|
|
// ErrChannelNotFound is an error returned when a channel is queried and
|
|
// either the Brontide doesn't know of it, or the channel in question
|
|
// is pending.
|
|
ErrChannelNotFound = fmt.Errorf("channel not found")
|
|
)
|
|
|
|
// outgoingMsg packages an lnwire.Message to be sent out on the wire, along with
|
|
// a buffered channel which will be sent upon once the write is complete. This
|
|
// buffered channel acts as a semaphore to be used for synchronization purposes.
|
|
type outgoingMsg struct {
|
|
priority bool
|
|
msg lnwire.Message
|
|
errChan chan error // MUST be buffered.
|
|
}
|
|
|
|
// newChannelMsg packages a channeldb.OpenChannel with a channel that allows
|
|
// the receiver of the request to report when the channel creation process has
|
|
// completed.
|
|
type newChannelMsg struct {
|
|
channel *channeldb.OpenChannel
|
|
err chan error
|
|
}
|
|
|
|
// closeMsg is a wrapper struct around any wire messages that deal with the
|
|
// cooperative channel closure negotiation process. This struct includes the
|
|
// raw channel ID targeted along with the original message.
|
|
type closeMsg struct {
|
|
cid lnwire.ChannelID
|
|
msg lnwire.Message
|
|
}
|
|
|
|
// PendingUpdate describes the pending state of a closing channel.
|
|
type PendingUpdate struct {
|
|
Txid []byte
|
|
OutputIndex uint32
|
|
}
|
|
|
|
// ChannelCloseUpdate contains the outcome of the close channel operation.
|
|
type ChannelCloseUpdate struct {
|
|
ClosingTxid []byte
|
|
Success bool
|
|
}
|
|
|
|
// TimestampedError is a timestamped error that is used to store the most recent
|
|
// errors we have experienced with our peers.
|
|
type TimestampedError struct {
|
|
Error error
|
|
Timestamp time.Time
|
|
}
|
|
|
|
// Config defines configuration fields that are necessary for a peer object
|
|
// to function.
|
|
type Config struct {
|
|
// Conn is the underlying network connection for this peer.
|
|
Conn MessageConn
|
|
|
|
// ConnReq stores information related to the persistent connection request
|
|
// for this peer.
|
|
ConnReq *connmgr.ConnReq
|
|
|
|
// PubKeyBytes is the serialized, compressed public key of this peer.
|
|
PubKeyBytes [33]byte
|
|
|
|
// Addr is the network address of the peer.
|
|
Addr *lnwire.NetAddress
|
|
|
|
// Inbound indicates whether or not the peer is an inbound peer.
|
|
Inbound bool
|
|
|
|
// Features is the set of features that we advertise to the remote party.
|
|
Features *lnwire.FeatureVector
|
|
|
|
// LegacyFeatures is the set of features that we advertise to the remote
|
|
// peer for backwards compatibility. Nodes that have not implemented
|
|
// flat features will still be able to read our feature bits from the
|
|
// legacy global field, but we will also advertise everything in the
|
|
// default features field.
|
|
LegacyFeatures *lnwire.FeatureVector
|
|
|
|
// OutgoingCltvRejectDelta defines the number of blocks before expiry of
|
|
// an htlc where we don't offer it anymore.
|
|
OutgoingCltvRejectDelta uint32
|
|
|
|
// ChanActiveTimeout specifies the duration the peer will wait to request
|
|
// a channel reenable, beginning from the time the peer was started.
|
|
ChanActiveTimeout time.Duration
|
|
|
|
// ErrorBuffer stores a set of errors related to a peer. It contains error
|
|
// messages that our peer has recently sent us over the wire and records of
|
|
// unknown messages that were sent to us so that we can have a full track
|
|
// record of the communication errors we have had with our peer. If we
|
|
// choose to disconnect from a peer, it also stores the reason we had for
|
|
// disconnecting.
|
|
ErrorBuffer *queue.CircularBuffer
|
|
|
|
// WritePool is the task pool that manages reuse of write buffers. Write
|
|
// tasks are submitted to the pool in order to conserve the total number of
|
|
// write buffers allocated at any one time, and decouple write buffer
|
|
// allocation from the peer life cycle.
|
|
WritePool *pool.Write
|
|
|
|
// ReadPool is the task pool that manages reuse of read buffers.
|
|
ReadPool *pool.Read
|
|
|
|
// Switch is a pointer to the htlcswitch. It is used to setup, get, and
|
|
// tear-down ChannelLinks.
|
|
Switch messageSwitch
|
|
|
|
// InterceptSwitch is a pointer to the InterceptableSwitch, a wrapper around
|
|
// the regular Switch. We only export it here to pass ForwardPackets to the
|
|
// ChannelLinkConfig.
|
|
InterceptSwitch *htlcswitch.InterceptableSwitch
|
|
|
|
// ChannelDB is used to fetch opened channels, and closed channels.
|
|
ChannelDB *channeldb.DB
|
|
|
|
// ChannelGraph is a pointer to the channel graph which is used to
|
|
// query information about the set of known active channels.
|
|
ChannelGraph *channeldb.ChannelGraph
|
|
|
|
// ChainArb is used to subscribe to channel events, update contract signals,
|
|
// and force close channels.
|
|
ChainArb *contractcourt.ChainArbitrator
|
|
|
|
// AuthGossiper is needed so that the Brontide impl can register with the
|
|
// gossiper and process remote channel announcements.
|
|
AuthGossiper *discovery.AuthenticatedGossiper
|
|
|
|
// ChanStatusMgr is used to set or un-set the disabled bit in channel
|
|
// updates.
|
|
ChanStatusMgr *netann.ChanStatusManager
|
|
|
|
// ChainIO is used to retrieve the best block.
|
|
ChainIO lnwallet.BlockChainIO
|
|
|
|
// FeeEstimator is used to compute our target ideal fee-per-kw when
|
|
// initializing the coop close process.
|
|
FeeEstimator chainfee.Estimator
|
|
|
|
// Signer is used when creating *lnwallet.LightningChannel instances.
|
|
Signer input.Signer
|
|
|
|
// SigPool is used when creating *lnwallet.LightningChannel instances.
|
|
SigPool *lnwallet.SigPool
|
|
|
|
// Wallet is used to publish transactions and generates delivery
|
|
// scripts during the coop close process.
|
|
Wallet *lnwallet.LightningWallet
|
|
|
|
// ChainNotifier is used to receive confirmations of a coop close
|
|
// transaction.
|
|
ChainNotifier chainntnfs.ChainNotifier
|
|
|
|
// RoutingPolicy is used to set the forwarding policy for links created by
|
|
// the Brontide.
|
|
RoutingPolicy htlcswitch.ForwardingPolicy
|
|
|
|
// Sphinx is used when setting up ChannelLinks so they can decode sphinx
|
|
// onion blobs.
|
|
Sphinx *hop.OnionProcessor
|
|
|
|
// WitnessBeacon is used when setting up ChannelLinks so they can add any
|
|
// preimages that they learn.
|
|
WitnessBeacon contractcourt.WitnessBeacon
|
|
|
|
// Invoices is passed to the ChannelLink on creation and handles all
|
|
// invoice-related logic.
|
|
Invoices *invoices.InvoiceRegistry
|
|
|
|
// ChannelNotifier is used by the link to notify other sub-systems about
|
|
// channel-related events and by the Brontide to subscribe to
|
|
// ActiveLinkEvents.
|
|
ChannelNotifier *channelnotifier.ChannelNotifier
|
|
|
|
// HtlcNotifier is used when creating a ChannelLink.
|
|
HtlcNotifier *htlcswitch.HtlcNotifier
|
|
|
|
// TowerClient is used by legacy channels to backup revoked states.
|
|
TowerClient wtclient.Client
|
|
|
|
// AnchorTowerClient is used by anchor channels to backup revoked
|
|
// states.
|
|
AnchorTowerClient wtclient.Client
|
|
|
|
// DisconnectPeer is used to disconnect this peer if the cooperative close
|
|
// process fails.
|
|
DisconnectPeer func(*btcec.PublicKey) error
|
|
|
|
// GenNodeAnnouncement is used to send our node announcement to the remote
|
|
// on startup.
|
|
GenNodeAnnouncement func(bool,
|
|
...netann.NodeAnnModifier) (lnwire.NodeAnnouncement, error)
|
|
|
|
// PrunePersistentPeerConnection is used to remove all internal state
|
|
// related to this peer in the server.
|
|
PrunePersistentPeerConnection func([33]byte)
|
|
|
|
// FetchLastChanUpdate fetches our latest channel update for a target
|
|
// channel.
|
|
FetchLastChanUpdate func(lnwire.ShortChannelID) (*lnwire.ChannelUpdate,
|
|
error)
|
|
|
|
// FundingManager is an implementation of the funding.Controller interface.
|
|
FundingManager funding.Controller
|
|
|
|
// Hodl is used when creating ChannelLinks to specify HodlFlags as
|
|
// breakpoints in dev builds.
|
|
Hodl *hodl.Config
|
|
|
|
// UnsafeReplay is used when creating ChannelLinks to specify whether or
|
|
// not to replay adds on its commitment tx.
|
|
UnsafeReplay bool
|
|
|
|
// MaxOutgoingCltvExpiry is used when creating ChannelLinks and is the max
|
|
// number of blocks that funds could be locked up for when forwarding
|
|
// payments.
|
|
MaxOutgoingCltvExpiry uint32
|
|
|
|
// MaxChannelFeeAllocation is used when creating ChannelLinks and is the
|
|
// maximum percentage of total funds that can be allocated to a channel's
|
|
// commitment fee. This only applies for the initiator of the channel.
|
|
MaxChannelFeeAllocation float64
|
|
|
|
// MaxAnchorsCommitFeeRate is the maximum fee rate we'll use as an
|
|
// initiator for anchor channel commitments.
|
|
MaxAnchorsCommitFeeRate chainfee.SatPerKWeight
|
|
|
|
// CoopCloseTargetConfs is the confirmation target that will be used
|
|
// to estimate the fee rate to use during a cooperative channel
|
|
// closure initiated by the remote peer.
|
|
CoopCloseTargetConfs uint32
|
|
|
|
// ServerPubKey is the serialized, compressed public key of our lnd node.
|
|
// It is used to determine which policy (channel edge) to pass to the
|
|
// ChannelLink.
|
|
ServerPubKey [33]byte
|
|
|
|
// ChannelCommitInterval is the maximum time that is allowed to pass between
|
|
// receiving a channel state update and signing the next commitment.
|
|
// Setting this to a longer duration allows for more efficient channel
|
|
// operations at the cost of latency.
|
|
ChannelCommitInterval time.Duration
|
|
|
|
// ChannelCommitBatchSize is the maximum number of channel state updates
|
|
// that is accumulated before signing a new commitment.
|
|
ChannelCommitBatchSize uint32
|
|
|
|
// Quit is the server's quit channel. If this is closed, we halt operation.
|
|
Quit chan struct{}
|
|
}
|
|
|
|
// Brontide is an active peer on the Lightning Network. This struct is responsible
|
|
// for managing any channel state related to this peer. To do so, it has
|
|
// several helper goroutines to handle events such as HTLC timeouts, new
|
|
// funding workflow, and detecting an uncooperative closure of any active
|
|
// channels.
|
|
// TODO(roasbeef): proper reconnection logic
|
|
type Brontide struct {
|
|
// MUST be used atomically.
|
|
started int32
|
|
disconnect int32
|
|
|
|
// MUST be used atomically.
|
|
bytesReceived uint64
|
|
bytesSent uint64
|
|
|
|
// pingTime is a rough estimate of the RTT (round-trip-time) between us
|
|
// and the connected peer. This time is expressed in microseconds.
|
|
// To be used atomically.
|
|
// TODO(roasbeef): also use a WMA or EMA?
|
|
pingTime int64
|
|
|
|
// pingLastSend is the Unix time expressed in nanoseconds when we sent
|
|
// our last ping message. To be used atomically.
|
|
pingLastSend int64
|
|
|
|
// lastPingPayload stores an unsafe pointer wrapped as an atomic
|
|
// variable which points to the last payload the remote party sent us
|
|
// as their ping.
|
|
//
|
|
// MUST be used atomically.
|
|
lastPingPayload atomic.Value
|
|
|
|
cfg Config
|
|
|
|
// activeSignal when closed signals that the peer is now active and
|
|
// ready to process messages.
|
|
activeSignal chan struct{}
|
|
|
|
// startTime is the time this peer connection was successfully established.
|
|
// It will be zero for peers that did not successfully call Start().
|
|
startTime time.Time
|
|
|
|
// sendQueue is the channel which is used to queue outgoing messages to be
|
|
// written onto the wire. Note that this channel is unbuffered.
|
|
sendQueue chan outgoingMsg
|
|
|
|
// outgoingQueue is a buffered channel which allows second/third party
|
|
// objects to queue messages to be sent out on the wire.
|
|
outgoingQueue chan outgoingMsg
|
|
|
|
// activeChanMtx protects access to the activeChannels and
|
|
// addedChannels maps.
|
|
activeChanMtx sync.RWMutex
|
|
|
|
// activeChannels is a map which stores the state machines of all
|
|
// active channels. Channels are indexed into the map by the txid of
|
|
// the funding transaction which opened the channel.
|
|
//
|
|
// NOTE: On startup, pending channels are stored as nil in this map.
|
|
// Confirmed channels have channel data populated in the map. This means
|
|
// that accesses to this map should nil-check the LightningChannel to
|
|
// see if this is a pending channel or not. The tradeoff here is either
|
|
// having two maps everywhere (one for pending, one for confirmed chans)
|
|
// or having an extra nil-check per access.
|
|
activeChannels map[lnwire.ChannelID]*lnwallet.LightningChannel
|
|
|
|
// addedChannels tracks any new channels opened during this peer's
|
|
// lifecycle. We use this to filter out these new channels when the time
|
|
// comes to request a reenable for active channels, since they will have
|
|
// waited a shorter duration.
|
|
addedChannels map[lnwire.ChannelID]struct{}
|
|
|
|
// newChannels is used by the fundingManager to send fully opened
|
|
// channels to the source peer which handled the funding workflow.
|
|
newChannels chan *newChannelMsg
|
|
|
|
// activeMsgStreams is a map from channel id to the channel streams that
|
|
// proxy messages to individual, active links.
|
|
activeMsgStreams map[lnwire.ChannelID]*msgStream
|
|
|
|
// activeChanCloses is a map that keeps track of all the active
|
|
// cooperative channel closures. Any channel closing messages are directed
|
|
// to one of these active state machines. Once the channel has been closed,
|
|
// the state machine will be deleted from the map.
|
|
activeChanCloses map[lnwire.ChannelID]*chancloser.ChanCloser
|
|
|
|
// localCloseChanReqs is a channel in which any local requests to close
|
|
// a particular channel are sent over.
|
|
localCloseChanReqs chan *htlcswitch.ChanClose
|
|
|
|
// linkFailures receives all reported channel failures from the switch,
|
|
// and instructs the channelManager to clean remaining channel state.
|
|
linkFailures chan linkFailureReport
|
|
|
|
// chanCloseMsgs is a channel that any message related to channel
|
|
// closures are sent over. This includes lnwire.Shutdown message as
|
|
// well as lnwire.ClosingSigned messages.
|
|
chanCloseMsgs chan *closeMsg
|
|
|
|
// remoteFeatures is the feature vector received from the peer during
|
|
// the connection handshake.
|
|
remoteFeatures *lnwire.FeatureVector
|
|
|
|
// resentChanSyncMsg is a set that keeps track of which channels we
|
|
// have re-sent channel reestablishment messages for. This is done to
|
|
// avoid getting into loop where both peers will respond to the other
|
|
// peer's chansync message with its own over and over again.
|
|
resentChanSyncMsg map[lnwire.ChannelID]struct{}
|
|
|
|
queueQuit chan struct{}
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
// A compile-time check to ensure that Brontide satisfies the lnpeer.Peer interface.
|
|
var _ lnpeer.Peer = (*Brontide)(nil)
|
|
|
|
// NewBrontide creates a new Brontide from a peer.Config struct.
|
|
func NewBrontide(cfg Config) *Brontide {
|
|
p := &Brontide{
|
|
cfg: cfg,
|
|
activeSignal: make(chan struct{}),
|
|
sendQueue: make(chan outgoingMsg),
|
|
outgoingQueue: make(chan outgoingMsg),
|
|
addedChannels: make(map[lnwire.ChannelID]struct{}),
|
|
activeChannels: make(map[lnwire.ChannelID]*lnwallet.LightningChannel),
|
|
newChannels: make(chan *newChannelMsg, 1),
|
|
|
|
activeMsgStreams: make(map[lnwire.ChannelID]*msgStream),
|
|
activeChanCloses: make(map[lnwire.ChannelID]*chancloser.ChanCloser),
|
|
localCloseChanReqs: make(chan *htlcswitch.ChanClose),
|
|
linkFailures: make(chan linkFailureReport),
|
|
chanCloseMsgs: make(chan *closeMsg),
|
|
resentChanSyncMsg: make(map[lnwire.ChannelID]struct{}),
|
|
queueQuit: make(chan struct{}),
|
|
quit: make(chan struct{}),
|
|
}
|
|
|
|
return p
|
|
}
|
|
|
|
// Start starts all helper goroutines the peer needs for normal operations. In
|
|
// the case this peer has already been started, then this function is a noop.
|
|
func (p *Brontide) Start() error {
|
|
if atomic.AddInt32(&p.started, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
peerLog.Tracef("Peer %v starting", p)
|
|
|
|
// Fetch and then load all the active channels we have with this remote
|
|
// peer from the database.
|
|
activeChans, err := p.cfg.ChannelDB.FetchOpenChannels(
|
|
p.cfg.Addr.IdentityKey,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("Unable to fetch active chans "+
|
|
"for peer %v: %v", p, err)
|
|
return err
|
|
}
|
|
|
|
if len(activeChans) == 0 {
|
|
p.cfg.PrunePersistentPeerConnection(p.cfg.PubKeyBytes)
|
|
}
|
|
|
|
// Quickly check if we have any existing legacy channels with this
|
|
// peer.
|
|
haveLegacyChan := false
|
|
for _, c := range activeChans {
|
|
if c.ChanType.IsTweakless() {
|
|
continue
|
|
}
|
|
|
|
haveLegacyChan = true
|
|
break
|
|
}
|
|
|
|
// Exchange local and global features, the init message should be very
|
|
// first between two nodes.
|
|
if err := p.sendInitMsg(haveLegacyChan); err != nil {
|
|
return fmt.Errorf("unable to send init msg: %v", err)
|
|
}
|
|
|
|
// Before we launch any of the helper goroutines off the peer struct,
|
|
// we'll first ensure proper adherence to the p2p protocol. The init
|
|
// message MUST be sent before any other message.
|
|
readErr := make(chan error, 1)
|
|
msgChan := make(chan lnwire.Message, 1)
|
|
p.wg.Add(1)
|
|
go func() {
|
|
defer p.wg.Done()
|
|
|
|
msg, err := p.readNextMessage()
|
|
if err != nil {
|
|
readErr <- err
|
|
msgChan <- nil
|
|
return
|
|
}
|
|
readErr <- nil
|
|
msgChan <- msg
|
|
}()
|
|
|
|
select {
|
|
// In order to avoid blocking indefinitely, we'll give the other peer
|
|
// an upper timeout to respond before we bail out early.
|
|
case <-time.After(handshakeTimeout):
|
|
return fmt.Errorf("peer did not complete handshake within %v",
|
|
handshakeTimeout)
|
|
case err := <-readErr:
|
|
if err != nil {
|
|
return fmt.Errorf("unable to read init msg: %v", err)
|
|
}
|
|
}
|
|
|
|
// Once the init message arrives, we can parse it so we can figure out
|
|
// the negotiation of features for this session.
|
|
msg := <-msgChan
|
|
if msg, ok := msg.(*lnwire.Init); ok {
|
|
if err := p.handleInitMsg(msg); err != nil {
|
|
p.storeError(err)
|
|
return err
|
|
}
|
|
} else {
|
|
return errors.New("very first message between nodes " +
|
|
"must be init message")
|
|
}
|
|
|
|
// Next, load all the active channels we have with this peer,
|
|
// registering them with the switch and launching the necessary
|
|
// goroutines required to operate them.
|
|
peerLog.Debugf("Loaded %v active channels from database with "+
|
|
"NodeKey(%x)", len(activeChans), p.PubKey())
|
|
|
|
msgs, err := p.loadActiveChannels(activeChans)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to load channels: %v", err)
|
|
}
|
|
|
|
p.startTime = time.Now()
|
|
|
|
p.wg.Add(5)
|
|
go p.queueHandler()
|
|
go p.writeHandler()
|
|
go p.readHandler()
|
|
go p.channelManager()
|
|
go p.pingHandler()
|
|
|
|
// Signal to any external processes that the peer is now active.
|
|
close(p.activeSignal)
|
|
|
|
// Now that the peer has started up, we send any channel sync messages
|
|
// that must be resent for borked channels.
|
|
if len(msgs) > 0 {
|
|
peerLog.Infof("Sending %d channel sync messages to peer after "+
|
|
"loading active channels", len(msgs))
|
|
if err := p.SendMessage(true, msgs...); err != nil {
|
|
peerLog.Warnf("Failed sending channel sync "+
|
|
"messages to peer %v: %v", p, err)
|
|
}
|
|
}
|
|
|
|
// Node announcements don't propagate very well throughout the network
|
|
// as there isn't a way to efficiently query for them through their
|
|
// timestamp, mostly affecting nodes that were offline during the time
|
|
// of broadcast. We'll resend our node announcement to the remote peer
|
|
// as a best-effort delivery such that it can also propagate to their
|
|
// peers. To ensure they can successfully process it in most cases,
|
|
// we'll only resend it as long as we have at least one confirmed
|
|
// advertised channel with the remote peer.
|
|
//
|
|
// TODO(wilmer): Remove this once we're able to query for node
|
|
// announcements through their timestamps.
|
|
p.maybeSendNodeAnn(activeChans)
|
|
|
|
return nil
|
|
}
|
|
|
|
// initGossipSync initializes either a gossip syncer or an initial routing
|
|
// dump, depending on the negotiated synchronization method.
|
|
func (p *Brontide) initGossipSync() {
|
|
|
|
// If the remote peer knows of the new gossip queries feature, then
|
|
// we'll create a new gossipSyncer in the AuthenticatedGossiper for it.
|
|
if p.remoteFeatures.HasFeature(lnwire.GossipQueriesOptional) {
|
|
peerLog.Infof("Negotiated chan series queries with %x",
|
|
p.cfg.PubKeyBytes[:])
|
|
|
|
// Register the peer's gossip syncer with the gossiper.
|
|
// This blocks synchronously to ensure the gossip syncer is
|
|
// registered with the gossiper before attempting to read
|
|
// messages from the remote peer.
|
|
//
|
|
// TODO(wilmer): Only sync updates from non-channel peers. This
|
|
// requires an improved version of the current network
|
|
// bootstrapper to ensure we can find and connect to non-channel
|
|
// peers.
|
|
p.cfg.AuthGossiper.InitSyncState(p)
|
|
}
|
|
}
|
|
|
|
// QuitSignal is a method that should return a channel which will be sent upon
|
|
// or closed once the backing peer exits. This allows callers using the
|
|
// interface to cancel any processing in the event the backing implementation
|
|
// exits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) QuitSignal() <-chan struct{} {
|
|
return p.quit
|
|
}
|
|
|
|
// loadActiveChannels creates indexes within the peer for tracking all active
|
|
// channels returned by the database. It returns a slice of channel reestablish
|
|
// messages that should be sent to the peer immediately, in case we have borked
|
|
// channels that haven't been closed yet.
|
|
func (p *Brontide) loadActiveChannels(chans []*channeldb.OpenChannel) (
|
|
[]lnwire.Message, error) {
|
|
|
|
// Return a slice of messages to send to the peers in case the channel
|
|
// cannot be loaded normally.
|
|
var msgs []lnwire.Message
|
|
|
|
for _, dbChan := range chans {
|
|
lnChan, err := lnwallet.NewLightningChannel(
|
|
p.cfg.Signer, dbChan, p.cfg.SigPool,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
chanPoint := &dbChan.FundingOutpoint
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
peerLog.Infof("NodeKey(%x) loading ChannelPoint(%v)",
|
|
p.PubKey(), chanPoint)
|
|
|
|
// Skip adding any permanently irreconcilable channels to the
|
|
// htlcswitch.
|
|
if !dbChan.HasChanStatus(channeldb.ChanStatusDefault) &&
|
|
!dbChan.HasChanStatus(channeldb.ChanStatusRestored) {
|
|
|
|
peerLog.Warnf("ChannelPoint(%v) has status %v, won't "+
|
|
"start.", chanPoint, dbChan.ChanStatus())
|
|
|
|
// To help our peer recover from a potential data loss,
|
|
// we resend our channel reestablish message if the
|
|
// channel is in a borked state. We won't process any
|
|
// channel reestablish message sent from the peer, but
|
|
// that's okay since the assumption is that we did when
|
|
// marking the channel borked.
|
|
chanSync, err := dbChan.ChanSyncMsg()
|
|
if err != nil {
|
|
peerLog.Errorf("Unable to create channel "+
|
|
"reestablish message for channel %v: "+
|
|
"%v", chanPoint, err)
|
|
continue
|
|
}
|
|
|
|
msgs = append(msgs, chanSync)
|
|
continue
|
|
}
|
|
|
|
// Before we register this new link with the HTLC Switch, we'll
|
|
// need to fetch its current link-layer forwarding policy from
|
|
// the database.
|
|
graph := p.cfg.ChannelGraph
|
|
info, p1, p2, err := graph.FetchChannelEdgesByOutpoint(chanPoint)
|
|
if err != nil && err != channeldb.ErrEdgeNotFound {
|
|
return nil, err
|
|
}
|
|
|
|
// We'll filter out our policy from the directional channel
|
|
// edges based whom the edge connects to. If it doesn't connect
|
|
// to us, then we know that we were the one that advertised the
|
|
// policy.
|
|
//
|
|
// TODO(roasbeef): can add helper method to get policy for
|
|
// particular channel.
|
|
var selfPolicy *channeldb.ChannelEdgePolicy
|
|
if info != nil && bytes.Equal(info.NodeKey1Bytes[:],
|
|
p.cfg.ServerPubKey[:]) {
|
|
|
|
selfPolicy = p1
|
|
} else {
|
|
selfPolicy = p2
|
|
}
|
|
|
|
// If we don't yet have an advertised routing policy, then
|
|
// we'll use the current default, otherwise we'll translate the
|
|
// routing policy into a forwarding policy.
|
|
var forwardingPolicy *htlcswitch.ForwardingPolicy
|
|
if selfPolicy != nil {
|
|
forwardingPolicy = &htlcswitch.ForwardingPolicy{
|
|
MinHTLCOut: selfPolicy.MinHTLC,
|
|
MaxHTLC: selfPolicy.MaxHTLC,
|
|
BaseFee: selfPolicy.FeeBaseMSat,
|
|
FeeRate: selfPolicy.FeeProportionalMillionths,
|
|
TimeLockDelta: uint32(selfPolicy.TimeLockDelta),
|
|
}
|
|
} else {
|
|
peerLog.Warnf("Unable to find our forwarding policy "+
|
|
"for channel %v, using default values",
|
|
chanPoint)
|
|
forwardingPolicy = &p.cfg.RoutingPolicy
|
|
}
|
|
|
|
peerLog.Tracef("Using link policy of: %v",
|
|
spew.Sdump(forwardingPolicy))
|
|
|
|
// If the channel is pending, set the value to nil in the
|
|
// activeChannels map. This is done to signify that the channel is
|
|
// pending. We don't add the link to the switch here - it's the funding
|
|
// manager's responsibility to spin up pending channels. Adding them
|
|
// here would just be extra work as we'll tear them down when creating
|
|
// + adding the final link.
|
|
if lnChan.IsPending() {
|
|
p.activeChanMtx.Lock()
|
|
p.activeChannels[chanID] = nil
|
|
p.activeChanMtx.Unlock()
|
|
|
|
continue
|
|
}
|
|
|
|
// Subscribe to the set of on-chain events for this channel.
|
|
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(
|
|
*chanPoint,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
err = p.addLink(
|
|
chanPoint, lnChan, forwardingPolicy, chainEvents,
|
|
true,
|
|
)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to add link %v to "+
|
|
"switch: %v", chanPoint, err)
|
|
}
|
|
|
|
p.activeChanMtx.Lock()
|
|
p.activeChannels[chanID] = lnChan
|
|
p.activeChanMtx.Unlock()
|
|
}
|
|
|
|
return msgs, nil
|
|
}
|
|
|
|
// addLink creates and adds a new ChannelLink from the specified channel.
|
|
func (p *Brontide) addLink(chanPoint *wire.OutPoint,
|
|
lnChan *lnwallet.LightningChannel,
|
|
forwardingPolicy *htlcswitch.ForwardingPolicy,
|
|
chainEvents *contractcourt.ChainEventSubscription,
|
|
syncStates bool) error {
|
|
|
|
// onChannelFailure will be called by the link in case the channel
|
|
// fails for some reason.
|
|
onChannelFailure := func(chanID lnwire.ChannelID,
|
|
shortChanID lnwire.ShortChannelID,
|
|
linkErr htlcswitch.LinkFailureError) {
|
|
|
|
failure := linkFailureReport{
|
|
chanPoint: *chanPoint,
|
|
chanID: chanID,
|
|
shortChanID: shortChanID,
|
|
linkErr: linkErr,
|
|
}
|
|
|
|
select {
|
|
case p.linkFailures <- failure:
|
|
case <-p.quit:
|
|
case <-p.cfg.Quit:
|
|
}
|
|
}
|
|
|
|
updateContractSignals := func(signals *contractcourt.ContractSignals) error {
|
|
return p.cfg.ChainArb.UpdateContractSignals(*chanPoint, signals)
|
|
}
|
|
|
|
chanType := lnChan.State().ChanType
|
|
|
|
// Select the appropriate tower client based on the channel type. It's
|
|
// okay if the clients are disabled altogether and these values are nil,
|
|
// as the link will check for nilness before using either.
|
|
var towerClient htlcswitch.TowerClient
|
|
if chanType.HasAnchors() {
|
|
towerClient = p.cfg.AnchorTowerClient
|
|
} else {
|
|
towerClient = p.cfg.TowerClient
|
|
}
|
|
|
|
linkCfg := htlcswitch.ChannelLinkConfig{
|
|
Peer: p,
|
|
DecodeHopIterators: p.cfg.Sphinx.DecodeHopIterators,
|
|
ExtractErrorEncrypter: p.cfg.Sphinx.ExtractErrorEncrypter,
|
|
FetchLastChannelUpdate: p.cfg.FetchLastChanUpdate,
|
|
HodlMask: p.cfg.Hodl.Mask(),
|
|
Registry: p.cfg.Invoices,
|
|
BestHeight: p.cfg.Switch.BestHeight,
|
|
Circuits: p.cfg.Switch.CircuitModifier(),
|
|
ForwardPackets: p.cfg.InterceptSwitch.ForwardPackets,
|
|
FwrdingPolicy: *forwardingPolicy,
|
|
FeeEstimator: p.cfg.FeeEstimator,
|
|
PreimageCache: p.cfg.WitnessBeacon,
|
|
ChainEvents: chainEvents,
|
|
UpdateContractSignals: updateContractSignals,
|
|
OnChannelFailure: onChannelFailure,
|
|
SyncStates: syncStates,
|
|
BatchTicker: ticker.New(p.cfg.ChannelCommitInterval),
|
|
FwdPkgGCTicker: ticker.New(time.Hour),
|
|
PendingCommitTicker: ticker.New(time.Minute),
|
|
BatchSize: p.cfg.ChannelCommitBatchSize,
|
|
UnsafeReplay: p.cfg.UnsafeReplay,
|
|
MinFeeUpdateTimeout: htlcswitch.DefaultMinLinkFeeUpdateTimeout,
|
|
MaxFeeUpdateTimeout: htlcswitch.DefaultMaxLinkFeeUpdateTimeout,
|
|
OutgoingCltvRejectDelta: p.cfg.OutgoingCltvRejectDelta,
|
|
TowerClient: towerClient,
|
|
MaxOutgoingCltvExpiry: p.cfg.MaxOutgoingCltvExpiry,
|
|
MaxFeeAllocation: p.cfg.MaxChannelFeeAllocation,
|
|
MaxAnchorsCommitFeeRate: p.cfg.MaxAnchorsCommitFeeRate,
|
|
NotifyActiveLink: p.cfg.ChannelNotifier.NotifyActiveLinkEvent,
|
|
NotifyActiveChannel: p.cfg.ChannelNotifier.NotifyActiveChannelEvent,
|
|
NotifyInactiveChannel: p.cfg.ChannelNotifier.NotifyInactiveChannelEvent,
|
|
HtlcNotifier: p.cfg.HtlcNotifier,
|
|
}
|
|
|
|
// Before adding our new link, purge the switch of any pending or live
|
|
// links going by the same channel id. If one is found, we'll shut it
|
|
// down to ensure that the mailboxes are only ever under the control of
|
|
// one link.
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
p.cfg.Switch.RemoveLink(chanID)
|
|
|
|
// With the channel link created, we'll now notify the htlc switch so
|
|
// this channel can be used to dispatch local payments and also
|
|
// passively forward payments.
|
|
return p.cfg.Switch.CreateAndAddLink(linkCfg, lnChan)
|
|
}
|
|
|
|
// maybeSendNodeAnn sends our node announcement to the remote peer if at least
|
|
// one confirmed public channel exists with them.
|
|
func (p *Brontide) maybeSendNodeAnn(channels []*channeldb.OpenChannel) {
|
|
hasConfirmedPublicChan := false
|
|
for _, channel := range channels {
|
|
if channel.IsPending {
|
|
continue
|
|
}
|
|
if channel.ChannelFlags&lnwire.FFAnnounceChannel == 0 {
|
|
continue
|
|
}
|
|
|
|
hasConfirmedPublicChan = true
|
|
break
|
|
}
|
|
if !hasConfirmedPublicChan {
|
|
return
|
|
}
|
|
|
|
ourNodeAnn, err := p.cfg.GenNodeAnnouncement(false)
|
|
if err != nil {
|
|
peerLog.Debugf("Unable to retrieve node announcement: %v", err)
|
|
return
|
|
}
|
|
|
|
if err := p.SendMessageLazy(false, &ourNodeAnn); err != nil {
|
|
peerLog.Debugf("Unable to resend node announcement to %x: %v",
|
|
p.cfg.PubKeyBytes, err)
|
|
}
|
|
}
|
|
|
|
// WaitForDisconnect waits until the peer has disconnected. A peer may be
|
|
// disconnected if the local or remote side terminates the connection, or an
|
|
// irrecoverable protocol error has been encountered. This method will only
|
|
// begin watching the peer's waitgroup after the ready channel or the peer's
|
|
// quit channel are signaled. The ready channel should only be signaled if a
|
|
// call to Start returns no error. Otherwise, if the peer fails to start,
|
|
// calling Disconnect will signal the quit channel and the method will not
|
|
// block, since no goroutines were spawned.
|
|
func (p *Brontide) WaitForDisconnect(ready chan struct{}) {
|
|
select {
|
|
case <-ready:
|
|
case <-p.quit:
|
|
}
|
|
|
|
p.wg.Wait()
|
|
}
|
|
|
|
// Disconnect terminates the connection with the remote peer. Additionally, a
|
|
// signal is sent to the server and htlcSwitch indicating the resources
|
|
// allocated to the peer can now be cleaned up.
|
|
func (p *Brontide) Disconnect(reason error) {
|
|
if !atomic.CompareAndSwapInt32(&p.disconnect, 0, 1) {
|
|
return
|
|
}
|
|
|
|
err := fmt.Errorf("disconnecting %s, reason: %v", p, reason)
|
|
p.storeError(err)
|
|
|
|
peerLog.Infof(err.Error())
|
|
|
|
// Ensure that the TCP connection is properly closed before continuing.
|
|
p.cfg.Conn.Close()
|
|
|
|
close(p.quit)
|
|
}
|
|
|
|
// String returns the string representation of this peer.
|
|
func (p *Brontide) String() string {
|
|
return fmt.Sprintf("%x@%s", p.cfg.PubKeyBytes, p.cfg.Conn.RemoteAddr())
|
|
}
|
|
|
|
// readNextMessage reads, and returns the next message on the wire along with
|
|
// any additional raw payload.
|
|
func (p *Brontide) readNextMessage() (lnwire.Message, error) {
|
|
noiseConn := p.cfg.Conn
|
|
err := noiseConn.SetReadDeadline(time.Time{})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pktLen, err := noiseConn.ReadNextHeader()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// First we'll read the next _full_ message. We do this rather than
|
|
// reading incrementally from the stream as the Lightning wire protocol
|
|
// is message oriented and allows nodes to pad on additional data to
|
|
// the message stream.
|
|
var (
|
|
nextMsg lnwire.Message
|
|
msgLen uint64
|
|
)
|
|
err = p.cfg.ReadPool.Submit(func(buf *buffer.Read) error {
|
|
// Before reading the body of the message, set the read timeout
|
|
// accordingly to ensure we don't block other readers using the
|
|
// pool. We do so only after the task has been scheduled to
|
|
// ensure the deadline doesn't expire while the message is in
|
|
// the process of being scheduled.
|
|
readDeadline := time.Now().Add(readMessageTimeout)
|
|
readErr := noiseConn.SetReadDeadline(readDeadline)
|
|
if readErr != nil {
|
|
return readErr
|
|
}
|
|
|
|
// The ReadNextBody method will actually end up re-using the
|
|
// buffer, so within this closure, we can continue to use
|
|
// rawMsg as it's just a slice into the buf from the buffer
|
|
// pool.
|
|
rawMsg, readErr := noiseConn.ReadNextBody(buf[:pktLen])
|
|
if readErr != nil {
|
|
return readErr
|
|
}
|
|
msgLen = uint64(len(rawMsg))
|
|
|
|
// Next, create a new io.Reader implementation from the raw
|
|
// message, and use this to decode the message directly from.
|
|
msgReader := bytes.NewReader(rawMsg)
|
|
nextMsg, err = lnwire.ReadMessage(msgReader, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// At this point, rawMsg and buf will be returned back to the
|
|
// buffer pool for re-use.
|
|
return nil
|
|
})
|
|
atomic.AddUint64(&p.bytesReceived, msgLen)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
p.logWireMessage(nextMsg, true)
|
|
|
|
return nextMsg, nil
|
|
}
|
|
|
|
// msgStream implements a goroutine-safe, in-order stream of messages to be
|
|
// delivered via closure to a receiver. These messages MUST be in order due to
|
|
// the nature of the lightning channel commitment and gossiper state machines.
|
|
// TODO(conner): use stream handler interface to abstract out stream
|
|
// state/logging
|
|
type msgStream struct {
|
|
streamShutdown int32 // To be used atomically.
|
|
|
|
peer *Brontide
|
|
|
|
apply func(lnwire.Message)
|
|
|
|
startMsg string
|
|
stopMsg string
|
|
|
|
msgCond *sync.Cond
|
|
msgs []lnwire.Message
|
|
|
|
mtx sync.Mutex
|
|
|
|
producerSema chan struct{}
|
|
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
}
|
|
|
|
// newMsgStream creates a new instance of a chanMsgStream for a particular
|
|
// channel identified by its channel ID. bufSize is the max number of messages
|
|
// that should be buffered in the internal queue. Callers should set this to a
|
|
// sane value that avoids blocking unnecessarily, but doesn't allow an
|
|
// unbounded amount of memory to be allocated to buffer incoming messages.
|
|
func newMsgStream(p *Brontide, startMsg, stopMsg string, bufSize uint32,
|
|
apply func(lnwire.Message)) *msgStream {
|
|
|
|
stream := &msgStream{
|
|
peer: p,
|
|
apply: apply,
|
|
startMsg: startMsg,
|
|
stopMsg: stopMsg,
|
|
producerSema: make(chan struct{}, bufSize),
|
|
quit: make(chan struct{}),
|
|
}
|
|
stream.msgCond = sync.NewCond(&stream.mtx)
|
|
|
|
// Before we return the active stream, we'll populate the producer's
|
|
// semaphore channel. We'll use this to ensure that the producer won't
|
|
// attempt to allocate memory in the queue for an item until it has
|
|
// sufficient extra space.
|
|
for i := uint32(0); i < bufSize; i++ {
|
|
stream.producerSema <- struct{}{}
|
|
}
|
|
|
|
return stream
|
|
}
|
|
|
|
// Start starts the chanMsgStream.
|
|
func (ms *msgStream) Start() {
|
|
ms.wg.Add(1)
|
|
go ms.msgConsumer()
|
|
}
|
|
|
|
// Stop stops the chanMsgStream.
|
|
func (ms *msgStream) Stop() {
|
|
// TODO(roasbeef): signal too?
|
|
|
|
close(ms.quit)
|
|
|
|
// Now that we've closed the channel, we'll repeatedly signal the msg
|
|
// consumer until we've detected that it has exited.
|
|
for atomic.LoadInt32(&ms.streamShutdown) == 0 {
|
|
ms.msgCond.Signal()
|
|
time.Sleep(time.Millisecond * 100)
|
|
}
|
|
|
|
ms.wg.Wait()
|
|
}
|
|
|
|
// msgConsumer is the main goroutine that streams messages from the peer's
|
|
// readHandler directly to the target channel.
|
|
func (ms *msgStream) msgConsumer() {
|
|
defer ms.wg.Done()
|
|
defer peerLog.Tracef(ms.stopMsg)
|
|
defer atomic.StoreInt32(&ms.streamShutdown, 1)
|
|
|
|
peerLog.Tracef(ms.startMsg)
|
|
|
|
for {
|
|
// First, we'll check our condition. If the queue of messages
|
|
// is empty, then we'll wait until a new item is added.
|
|
ms.msgCond.L.Lock()
|
|
for len(ms.msgs) == 0 {
|
|
ms.msgCond.Wait()
|
|
|
|
// If we woke up in order to exit, then we'll do so.
|
|
// Otherwise, we'll check the message queue for any new
|
|
// items.
|
|
select {
|
|
case <-ms.peer.quit:
|
|
ms.msgCond.L.Unlock()
|
|
return
|
|
case <-ms.quit:
|
|
ms.msgCond.L.Unlock()
|
|
return
|
|
default:
|
|
}
|
|
}
|
|
|
|
// Grab the message off the front of the queue, shifting the
|
|
// slice's reference down one in order to remove the message
|
|
// from the queue.
|
|
msg := ms.msgs[0]
|
|
ms.msgs[0] = nil // Set to nil to prevent GC leak.
|
|
ms.msgs = ms.msgs[1:]
|
|
|
|
ms.msgCond.L.Unlock()
|
|
|
|
ms.apply(msg)
|
|
|
|
// We've just successfully processed an item, so we'll signal
|
|
// to the producer that a new slot in the buffer. We'll use
|
|
// this to bound the size of the buffer to avoid allowing it to
|
|
// grow indefinitely.
|
|
select {
|
|
case ms.producerSema <- struct{}{}:
|
|
case <-ms.peer.quit:
|
|
return
|
|
case <-ms.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// AddMsg adds a new message to the msgStream. This function is safe for
|
|
// concurrent access.
|
|
func (ms *msgStream) AddMsg(msg lnwire.Message) {
|
|
// First, we'll attempt to receive from the producerSema struct. This
|
|
// acts as a sempahore to prevent us from indefinitely buffering
|
|
// incoming items from the wire. Either the msg queue isn't full, and
|
|
// we'll not block, or the queue is full, and we'll block until either
|
|
// we're signalled to quit, or a slot is freed up.
|
|
select {
|
|
case <-ms.producerSema:
|
|
case <-ms.peer.quit:
|
|
return
|
|
case <-ms.quit:
|
|
return
|
|
}
|
|
|
|
// Next, we'll lock the condition, and add the message to the end of
|
|
// the message queue.
|
|
ms.msgCond.L.Lock()
|
|
ms.msgs = append(ms.msgs, msg)
|
|
ms.msgCond.L.Unlock()
|
|
|
|
// With the message added, we signal to the msgConsumer that there are
|
|
// additional messages to consume.
|
|
ms.msgCond.Signal()
|
|
}
|
|
|
|
// waitUntilLinkActive waits until the target link is active and returns a
|
|
// ChannelLink to pass messages to. It accomplishes this by subscribing to
|
|
// an ActiveLinkEvent which is emitted by the link when it first starts up.
|
|
func waitUntilLinkActive(p *Brontide,
|
|
cid lnwire.ChannelID) htlcswitch.ChannelUpdateHandler {
|
|
|
|
// Subscribe to receive channel events.
|
|
//
|
|
// NOTE: If the link is already active by SubscribeChannelEvents, then
|
|
// GetLink will retrieve the link and we can send messages. If the link
|
|
// becomes active between SubscribeChannelEvents and GetLink, then GetLink
|
|
// will retrieve the link. If the link becomes active after GetLink, then
|
|
// we will get an ActiveLinkEvent notification and retrieve the link. If
|
|
// the call to GetLink is before SubscribeChannelEvents, however, there
|
|
// will be a race condition.
|
|
sub, err := p.cfg.ChannelNotifier.SubscribeChannelEvents()
|
|
if err != nil {
|
|
// If we have a non-nil error, then the server is shutting down and we
|
|
// can exit here and return nil. This means no message will be delivered
|
|
// to the link.
|
|
return nil
|
|
}
|
|
defer sub.Cancel()
|
|
|
|
// The link may already be active by this point, and we may have missed the
|
|
// ActiveLinkEvent. Check if the link exists.
|
|
link := p.fetchLinkFromKeyAndCid(cid)
|
|
if link != nil {
|
|
return link
|
|
}
|
|
|
|
// If the link is nil, we must wait for it to be active.
|
|
for {
|
|
select {
|
|
// A new event has been sent by the ChannelNotifier. We first check
|
|
// whether the event is an ActiveLinkEvent. If it is, we'll check
|
|
// that the event is for this channel. Otherwise, we discard the
|
|
// message.
|
|
case e := <-sub.Updates():
|
|
event, ok := e.(channelnotifier.ActiveLinkEvent)
|
|
if !ok {
|
|
// Ignore this notification.
|
|
continue
|
|
}
|
|
|
|
chanPoint := event.ChannelPoint
|
|
|
|
// Check whether the retrieved chanPoint matches the target
|
|
// channel id.
|
|
if !cid.IsChanPoint(chanPoint) {
|
|
continue
|
|
}
|
|
|
|
// The link shouldn't be nil as we received an
|
|
// ActiveLinkEvent. If it is nil, we return nil and the
|
|
// calling function should catch it.
|
|
return p.fetchLinkFromKeyAndCid(cid)
|
|
|
|
case <-p.quit:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// newChanMsgStream is used to create a msgStream between the peer and
|
|
// particular channel link in the htlcswitch. We utilize additional
|
|
// synchronization with the fundingManager to ensure we don't attempt to
|
|
// dispatch a message to a channel before it is fully active. A reference to the
|
|
// channel this stream forwards to is held in scope to prevent unnecessary
|
|
// lookups.
|
|
func newChanMsgStream(p *Brontide, cid lnwire.ChannelID) *msgStream {
|
|
|
|
var chanLink htlcswitch.ChannelUpdateHandler
|
|
|
|
apply := func(msg lnwire.Message) {
|
|
// This check is fine because if the link no longer exists, it will
|
|
// be removed from the activeChannels map and subsequent messages
|
|
// shouldn't reach the chan msg stream.
|
|
if chanLink == nil {
|
|
chanLink = waitUntilLinkActive(p, cid)
|
|
|
|
// If the link is still not active and the calling function
|
|
// errored out, just return.
|
|
if chanLink == nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
// In order to avoid unnecessarily delivering message
|
|
// as the peer is exiting, we'll check quickly to see
|
|
// if we need to exit.
|
|
select {
|
|
case <-p.quit:
|
|
return
|
|
default:
|
|
}
|
|
|
|
chanLink.HandleChannelUpdate(msg)
|
|
}
|
|
|
|
return newMsgStream(p,
|
|
fmt.Sprintf("Update stream for ChannelID(%x) created", cid[:]),
|
|
fmt.Sprintf("Update stream for ChannelID(%x) exiting", cid[:]),
|
|
1000,
|
|
apply,
|
|
)
|
|
}
|
|
|
|
// newDiscMsgStream is used to setup a msgStream between the peer and the
|
|
// authenticated gossiper. This stream should be used to forward all remote
|
|
// channel announcements.
|
|
func newDiscMsgStream(p *Brontide) *msgStream {
|
|
apply := func(msg lnwire.Message) {
|
|
p.cfg.AuthGossiper.ProcessRemoteAnnouncement(msg, p)
|
|
}
|
|
|
|
return newMsgStream(
|
|
p,
|
|
"Update stream for gossiper created",
|
|
"Update stream for gossiper exited",
|
|
1000,
|
|
apply,
|
|
)
|
|
}
|
|
|
|
// readHandler is responsible for reading messages off the wire in series, then
|
|
// properly dispatching the handling of the message to the proper subsystem.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) readHandler() {
|
|
defer p.wg.Done()
|
|
|
|
// We'll stop the timer after a new messages is received, and also
|
|
// reset it after we process the next message.
|
|
idleTimer := time.AfterFunc(idleTimeout, func() {
|
|
err := fmt.Errorf("peer %s no answer for %s -- disconnecting",
|
|
p, idleTimeout)
|
|
p.Disconnect(err)
|
|
})
|
|
|
|
// Initialize our negotiated gossip sync method before reading messages
|
|
// off the wire. When using gossip queries, this ensures a gossip
|
|
// syncer is active by the time query messages arrive.
|
|
//
|
|
// TODO(conner): have peer store gossip syncer directly and bypass
|
|
// gossiper?
|
|
p.initGossipSync()
|
|
|
|
discStream := newDiscMsgStream(p)
|
|
discStream.Start()
|
|
defer discStream.Stop()
|
|
out:
|
|
for atomic.LoadInt32(&p.disconnect) == 0 {
|
|
nextMsg, err := p.readNextMessage()
|
|
if !idleTimer.Stop() {
|
|
select {
|
|
case <-idleTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
if err != nil {
|
|
peerLog.Infof("unable to read message from %v: %v",
|
|
p, err)
|
|
|
|
// If we could not read our peer's message due to an
|
|
// unknown type or invalid alias, we continue processing
|
|
// as normal. We store unknown message and address
|
|
// types, as they may provide debugging insight.
|
|
switch e := err.(type) {
|
|
// If this is just a message we don't yet recognize,
|
|
// we'll continue processing as normal as this allows
|
|
// us to introduce new messages in a forwards
|
|
// compatible manner.
|
|
case *lnwire.UnknownMessage:
|
|
p.storeError(e)
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If they sent us an address type that we don't yet
|
|
// know of, then this isn't a wire error, so we'll
|
|
// simply continue parsing the remainder of their
|
|
// messages.
|
|
case *lnwire.ErrUnknownAddrType:
|
|
p.storeError(e)
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If the NodeAnnouncement has an invalid alias, then
|
|
// we'll log that error above and continue so we can
|
|
// continue to read messages from the peer. We do not
|
|
// store this error because it is of little debugging
|
|
// value.
|
|
case *lnwire.ErrInvalidNodeAlias:
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If the error we encountered wasn't just a message we
|
|
// didn't recognize, then we'll stop all processing as
|
|
// this is a fatal error.
|
|
default:
|
|
break out
|
|
}
|
|
}
|
|
|
|
var (
|
|
targetChan lnwire.ChannelID
|
|
isLinkUpdate bool
|
|
)
|
|
|
|
switch msg := nextMsg.(type) {
|
|
case *lnwire.Pong:
|
|
// When we receive a Pong message in response to our
|
|
// last ping message, we'll use the time in which we
|
|
// sent the ping message to measure a rough estimate of
|
|
// round trip time.
|
|
pingSendTime := atomic.LoadInt64(&p.pingLastSend)
|
|
delay := (time.Now().UnixNano() - pingSendTime) / 1000
|
|
atomic.StoreInt64(&p.pingTime, delay)
|
|
|
|
case *lnwire.Ping:
|
|
// First, we'll store their latest ping payload within
|
|
// the relevant atomic variable.
|
|
p.lastPingPayload.Store(msg.PaddingBytes[:])
|
|
|
|
// Next, we'll send over the amount of specified pong
|
|
// bytes.
|
|
//
|
|
// TODO(roasbeef): read out from pong scratch instead?
|
|
pongBytes := make([]byte, msg.NumPongBytes)
|
|
p.queueMsg(lnwire.NewPong(pongBytes), nil)
|
|
|
|
case *lnwire.OpenChannel,
|
|
*lnwire.AcceptChannel,
|
|
*lnwire.FundingCreated,
|
|
*lnwire.FundingSigned,
|
|
*lnwire.FundingLocked:
|
|
|
|
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
|
|
|
|
case *lnwire.Shutdown:
|
|
select {
|
|
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
case *lnwire.ClosingSigned:
|
|
select {
|
|
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
|
|
case *lnwire.Error:
|
|
targetChan = msg.ChanID
|
|
isLinkUpdate = p.handleError(msg)
|
|
|
|
case *lnwire.ChannelReestablish:
|
|
targetChan = msg.ChanID
|
|
isLinkUpdate = p.isActiveChannel(targetChan)
|
|
|
|
// If we failed to find the link in question, and the
|
|
// message received was a channel sync message, then
|
|
// this might be a peer trying to resync closed channel.
|
|
// In this case we'll try to resend our last channel
|
|
// sync message, such that the peer can recover funds
|
|
// from the closed channel.
|
|
if !isLinkUpdate {
|
|
err := p.resendChanSyncMsg(targetChan)
|
|
if err != nil {
|
|
// TODO(halseth): send error to peer?
|
|
peerLog.Errorf("resend failed: %v",
|
|
err)
|
|
}
|
|
}
|
|
|
|
case LinkUpdater:
|
|
targetChan = msg.TargetChanID()
|
|
isLinkUpdate = p.isActiveChannel(targetChan)
|
|
|
|
case *lnwire.ChannelUpdate,
|
|
*lnwire.ChannelAnnouncement,
|
|
*lnwire.NodeAnnouncement,
|
|
*lnwire.AnnounceSignatures,
|
|
*lnwire.GossipTimestampRange,
|
|
*lnwire.QueryShortChanIDs,
|
|
*lnwire.QueryChannelRange,
|
|
*lnwire.ReplyChannelRange,
|
|
*lnwire.ReplyShortChanIDsEnd:
|
|
|
|
discStream.AddMsg(msg)
|
|
|
|
default:
|
|
// If the message we received is unknown to us, store
|
|
// the type to track the failure.
|
|
err := fmt.Errorf("unknown message type %v received",
|
|
uint16(msg.MsgType()))
|
|
p.storeError(err)
|
|
|
|
peerLog.Errorf("peer: %v, %v", p, err)
|
|
}
|
|
|
|
if isLinkUpdate {
|
|
// If this is a channel update, then we need to feed it
|
|
// into the channel's in-order message stream.
|
|
chanStream, ok := p.activeMsgStreams[targetChan]
|
|
if !ok {
|
|
// If a stream hasn't yet been created, then
|
|
// we'll do so, add it to the map, and finally
|
|
// start it.
|
|
chanStream = newChanMsgStream(p, targetChan)
|
|
p.activeMsgStreams[targetChan] = chanStream
|
|
chanStream.Start()
|
|
defer chanStream.Stop()
|
|
}
|
|
|
|
// With the stream obtained, add the message to the
|
|
// stream so we can continue processing message.
|
|
chanStream.AddMsg(nextMsg)
|
|
}
|
|
|
|
idleTimer.Reset(idleTimeout)
|
|
}
|
|
|
|
p.Disconnect(errors.New("read handler closed"))
|
|
|
|
peerLog.Tracef("readHandler for peer %v done", p)
|
|
}
|
|
|
|
// isActiveChannel returns true if the provided channel id is active, otherwise
|
|
// returns false.
|
|
func (p *Brontide) isActiveChannel(chanID lnwire.ChannelID) bool {
|
|
p.activeChanMtx.RLock()
|
|
_, ok := p.activeChannels[chanID]
|
|
p.activeChanMtx.RUnlock()
|
|
return ok
|
|
}
|
|
|
|
// storeError stores an error in our peer's buffer of recent errors with the
|
|
// current timestamp. Errors are only stored if we have at least one active
|
|
// channel with the peer to mitigate a dos vector where a peer costlessly
|
|
// connects to us and spams us with errors.
|
|
func (p *Brontide) storeError(err error) {
|
|
var haveChannels bool
|
|
|
|
p.activeChanMtx.RLock()
|
|
for _, channel := range p.activeChannels {
|
|
// Pending channels will be nil in the activeChannels map.
|
|
if channel == nil {
|
|
continue
|
|
}
|
|
|
|
haveChannels = true
|
|
break
|
|
}
|
|
p.activeChanMtx.RUnlock()
|
|
|
|
// If we do not have any active channels with the peer, we do not store
|
|
// errors as a dos mitigation.
|
|
if !haveChannels {
|
|
peerLog.Tracef("no channels with peer: %v, not storing err", p)
|
|
return
|
|
}
|
|
|
|
p.cfg.ErrorBuffer.Add(
|
|
&TimestampedError{Timestamp: time.Now(), Error: err},
|
|
)
|
|
}
|
|
|
|
// handleError processes an error message read from the remote peer. The boolean
|
|
// returns indicates whether the message should be delivered to a targeted peer.
|
|
// It stores the error we received from the peer in memory if we have a channel
|
|
// open with the peer.
|
|
//
|
|
// NOTE: This method should only be called from within the readHandler.
|
|
func (p *Brontide) handleError(msg *lnwire.Error) bool {
|
|
// Store the error we have received.
|
|
p.storeError(msg)
|
|
|
|
switch {
|
|
|
|
// In the case of an all-zero channel ID we want to forward the error to
|
|
// all channels with this peer.
|
|
case msg.ChanID == lnwire.ConnectionWideID:
|
|
for _, chanStream := range p.activeMsgStreams {
|
|
chanStream.AddMsg(msg)
|
|
}
|
|
return false
|
|
|
|
// If the channel ID for the error message corresponds to a pending
|
|
// channel, then the funding manager will handle the error.
|
|
case p.cfg.FundingManager.IsPendingChannel(msg.ChanID, p):
|
|
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
|
|
return false
|
|
|
|
// If not we hand the error to the channel link for this channel.
|
|
case p.isActiveChannel(msg.ChanID):
|
|
return true
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// messageSummary returns a human-readable string that summarizes a
|
|
// incoming/outgoing message. Not all messages will have a summary, only those
|
|
// which have additional data that can be informative at a glance.
|
|
func messageSummary(msg lnwire.Message) string {
|
|
switch msg := msg.(type) {
|
|
case *lnwire.Init:
|
|
// No summary.
|
|
return ""
|
|
|
|
case *lnwire.OpenChannel:
|
|
return fmt.Sprintf("temp_chan_id=%x, chain=%v, csv=%v, amt=%v, "+
|
|
"push_amt=%v, reserve=%v, flags=%v",
|
|
msg.PendingChannelID[:], msg.ChainHash,
|
|
msg.CsvDelay, msg.FundingAmount, msg.PushAmount,
|
|
msg.ChannelReserve, msg.ChannelFlags)
|
|
|
|
case *lnwire.AcceptChannel:
|
|
return fmt.Sprintf("temp_chan_id=%x, reserve=%v, csv=%v, num_confs=%v",
|
|
msg.PendingChannelID[:], msg.ChannelReserve, msg.CsvDelay,
|
|
msg.MinAcceptDepth)
|
|
|
|
case *lnwire.FundingCreated:
|
|
return fmt.Sprintf("temp_chan_id=%x, chan_point=%v",
|
|
msg.PendingChannelID[:], msg.FundingPoint)
|
|
|
|
case *lnwire.FundingSigned:
|
|
return fmt.Sprintf("chan_id=%v", msg.ChanID)
|
|
|
|
case *lnwire.FundingLocked:
|
|
return fmt.Sprintf("chan_id=%v, next_point=%x",
|
|
msg.ChanID, msg.NextPerCommitmentPoint.SerializeCompressed())
|
|
|
|
case *lnwire.Shutdown:
|
|
return fmt.Sprintf("chan_id=%v, script=%x", msg.ChannelID,
|
|
msg.Address[:])
|
|
|
|
case *lnwire.ClosingSigned:
|
|
return fmt.Sprintf("chan_id=%v, fee_sat=%v", msg.ChannelID,
|
|
msg.FeeSatoshis)
|
|
|
|
case *lnwire.UpdateAddHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, amt=%v, expiry=%v, hash=%x",
|
|
msg.ChanID, msg.ID, msg.Amount, msg.Expiry, msg.PaymentHash[:])
|
|
|
|
case *lnwire.UpdateFailHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, reason=%x", msg.ChanID,
|
|
msg.ID, msg.Reason)
|
|
|
|
case *lnwire.UpdateFulfillHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, pre_image=%x",
|
|
msg.ChanID, msg.ID, msg.PaymentPreimage[:])
|
|
|
|
case *lnwire.CommitSig:
|
|
return fmt.Sprintf("chan_id=%v, num_htlcs=%v", msg.ChanID,
|
|
len(msg.HtlcSigs))
|
|
|
|
case *lnwire.RevokeAndAck:
|
|
return fmt.Sprintf("chan_id=%v, rev=%x, next_point=%x",
|
|
msg.ChanID, msg.Revocation[:],
|
|
msg.NextRevocationKey.SerializeCompressed())
|
|
|
|
case *lnwire.UpdateFailMalformedHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, fail_code=%v",
|
|
msg.ChanID, msg.ID, msg.FailureCode)
|
|
|
|
case *lnwire.Error:
|
|
return fmt.Sprintf("%v", msg.Error())
|
|
|
|
case *lnwire.AnnounceSignatures:
|
|
return fmt.Sprintf("chan_id=%v, short_chan_id=%v", msg.ChannelID,
|
|
msg.ShortChannelID.ToUint64())
|
|
|
|
case *lnwire.ChannelAnnouncement:
|
|
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v",
|
|
msg.ChainHash, msg.ShortChannelID.ToUint64())
|
|
|
|
case *lnwire.ChannelUpdate:
|
|
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v, "+
|
|
"mflags=%v, cflags=%v, update_time=%v", msg.ChainHash,
|
|
msg.ShortChannelID.ToUint64(), msg.MessageFlags,
|
|
msg.ChannelFlags, time.Unix(int64(msg.Timestamp), 0))
|
|
|
|
case *lnwire.NodeAnnouncement:
|
|
return fmt.Sprintf("node=%x, update_time=%v",
|
|
msg.NodeID, time.Unix(int64(msg.Timestamp), 0))
|
|
|
|
case *lnwire.Ping:
|
|
return fmt.Sprintf("ping_bytes=%x", msg.PaddingBytes[:])
|
|
|
|
case *lnwire.Pong:
|
|
return fmt.Sprintf("pong_bytes=%x", msg.PongBytes[:])
|
|
|
|
case *lnwire.UpdateFee:
|
|
return fmt.Sprintf("chan_id=%v, fee_update_sat=%v",
|
|
msg.ChanID, int64(msg.FeePerKw))
|
|
|
|
case *lnwire.ChannelReestablish:
|
|
return fmt.Sprintf("next_local_height=%v, remote_tail_height=%v",
|
|
msg.NextLocalCommitHeight, msg.RemoteCommitTailHeight)
|
|
|
|
case *lnwire.ReplyShortChanIDsEnd:
|
|
return fmt.Sprintf("chain_hash=%v, complete=%v", msg.ChainHash,
|
|
msg.Complete)
|
|
|
|
case *lnwire.ReplyChannelRange:
|
|
return fmt.Sprintf("start_height=%v, end_height=%v, "+
|
|
"num_chans=%v, encoding=%v", msg.FirstBlockHeight,
|
|
msg.LastBlockHeight(), len(msg.ShortChanIDs),
|
|
msg.EncodingType)
|
|
|
|
case *lnwire.QueryShortChanIDs:
|
|
return fmt.Sprintf("chain_hash=%v, encoding=%v, num_chans=%v",
|
|
msg.ChainHash, msg.EncodingType, len(msg.ShortChanIDs))
|
|
|
|
case *lnwire.QueryChannelRange:
|
|
return fmt.Sprintf("chain_hash=%v, start_height=%v, "+
|
|
"end_height=%v", msg.ChainHash, msg.FirstBlockHeight,
|
|
msg.LastBlockHeight())
|
|
|
|
case *lnwire.GossipTimestampRange:
|
|
return fmt.Sprintf("chain_hash=%v, first_stamp=%v, "+
|
|
"stamp_range=%v", msg.ChainHash,
|
|
time.Unix(int64(msg.FirstTimestamp), 0),
|
|
msg.TimestampRange)
|
|
|
|
}
|
|
|
|
return ""
|
|
}
|
|
|
|
// logWireMessage logs the receipt or sending of particular wire message. This
|
|
// function is used rather than just logging the message in order to produce
|
|
// less spammy log messages in trace mode by setting the 'Curve" parameter to
|
|
// nil. Doing this avoids printing out each of the field elements in the curve
|
|
// parameters for secp256k1.
|
|
func (p *Brontide) logWireMessage(msg lnwire.Message, read bool) {
|
|
summaryPrefix := "Received"
|
|
if !read {
|
|
summaryPrefix = "Sending"
|
|
}
|
|
|
|
peerLog.Debugf("%v", newLogClosure(func() string {
|
|
// Debug summary of message.
|
|
summary := messageSummary(msg)
|
|
if len(summary) > 0 {
|
|
summary = "(" + summary + ")"
|
|
}
|
|
|
|
preposition := "to"
|
|
if read {
|
|
preposition = "from"
|
|
}
|
|
|
|
return fmt.Sprintf("%v %v%s %v %s", summaryPrefix,
|
|
msg.MsgType(), summary, preposition, p)
|
|
}))
|
|
|
|
switch m := msg.(type) {
|
|
case *lnwire.ChannelReestablish:
|
|
if m.LocalUnrevokedCommitPoint != nil {
|
|
m.LocalUnrevokedCommitPoint.Curve = nil
|
|
}
|
|
case *lnwire.RevokeAndAck:
|
|
m.NextRevocationKey.Curve = nil
|
|
case *lnwire.AcceptChannel:
|
|
m.FundingKey.Curve = nil
|
|
m.RevocationPoint.Curve = nil
|
|
m.PaymentPoint.Curve = nil
|
|
m.DelayedPaymentPoint.Curve = nil
|
|
m.HtlcPoint.Curve = nil
|
|
m.FirstCommitmentPoint.Curve = nil
|
|
case *lnwire.OpenChannel:
|
|
m.FundingKey.Curve = nil
|
|
m.RevocationPoint.Curve = nil
|
|
m.PaymentPoint.Curve = nil
|
|
m.DelayedPaymentPoint.Curve = nil
|
|
m.HtlcPoint.Curve = nil
|
|
m.FirstCommitmentPoint.Curve = nil
|
|
case *lnwire.FundingLocked:
|
|
m.NextPerCommitmentPoint.Curve = nil
|
|
}
|
|
|
|
prefix := "readMessage from"
|
|
if !read {
|
|
prefix = "writeMessage to"
|
|
}
|
|
|
|
peerLog.Tracef(prefix+" %v: %v", p, newLogClosure(func() string {
|
|
return spew.Sdump(msg)
|
|
}))
|
|
}
|
|
|
|
// writeMessage writes and flushes the target lnwire.Message to the remote peer.
|
|
// If the passed message is nil, this method will only try to flush an existing
|
|
// message buffered on the connection. It is safe to call this method again
|
|
// with a nil message iff a timeout error is returned. This will continue to
|
|
// flush the pending message to the wire.
|
|
func (p *Brontide) writeMessage(msg lnwire.Message) error {
|
|
// Simply exit if we're shutting down.
|
|
if atomic.LoadInt32(&p.disconnect) != 0 {
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
|
|
// Only log the message on the first attempt.
|
|
if msg != nil {
|
|
p.logWireMessage(msg, false)
|
|
}
|
|
|
|
noiseConn := p.cfg.Conn
|
|
|
|
flushMsg := func() error {
|
|
// Ensure the write deadline is set before we attempt to send
|
|
// the message.
|
|
writeDeadline := time.Now().Add(writeMessageTimeout)
|
|
err := noiseConn.SetWriteDeadline(writeDeadline)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Flush the pending message to the wire. If an error is
|
|
// encountered, e.g. write timeout, the number of bytes written
|
|
// so far will be returned.
|
|
n, err := noiseConn.Flush()
|
|
|
|
// Record the number of bytes written on the wire, if any.
|
|
if n > 0 {
|
|
atomic.AddUint64(&p.bytesSent, uint64(n))
|
|
}
|
|
|
|
return err
|
|
}
|
|
|
|
// If the current message has already been serialized, encrypted, and
|
|
// buffered on the underlying connection we will skip straight to
|
|
// flushing it to the wire.
|
|
if msg == nil {
|
|
return flushMsg()
|
|
}
|
|
|
|
// Otherwise, this is a new message. We'll acquire a write buffer to
|
|
// serialize the message and buffer the ciphertext on the connection.
|
|
err := p.cfg.WritePool.Submit(func(buf *bytes.Buffer) error {
|
|
// Using a buffer allocated by the write pool, encode the
|
|
// message directly into the buffer.
|
|
_, writeErr := lnwire.WriteMessage(buf, msg, 0)
|
|
if writeErr != nil {
|
|
return writeErr
|
|
}
|
|
|
|
// Finally, write the message itself in a single swoop. This
|
|
// will buffer the ciphertext on the underlying connection. We
|
|
// will defer flushing the message until the write pool has been
|
|
// released.
|
|
return noiseConn.WriteMessage(buf.Bytes())
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return flushMsg()
|
|
}
|
|
|
|
// writeHandler is a goroutine dedicated to reading messages off of an incoming
|
|
// queue, and writing them out to the wire. This goroutine coordinates with the
|
|
// queueHandler in order to ensure the incoming message queue is quickly
|
|
// drained.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) writeHandler() {
|
|
// We'll stop the timer after a new messages is sent, and also reset it
|
|
// after we process the next message.
|
|
idleTimer := time.AfterFunc(idleTimeout, func() {
|
|
err := fmt.Errorf("peer %s no write for %s -- disconnecting",
|
|
p, idleTimeout)
|
|
p.Disconnect(err)
|
|
})
|
|
|
|
var exitErr error
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case outMsg := <-p.sendQueue:
|
|
// If we're about to send a ping message, then log the
|
|
// exact time in which we send the message so we can
|
|
// use the delay as a rough estimate of latency to the
|
|
// remote peer.
|
|
if _, ok := outMsg.msg.(*lnwire.Ping); ok {
|
|
// TODO(roasbeef): do this before the write?
|
|
// possibly account for processing within func?
|
|
now := time.Now().UnixNano()
|
|
atomic.StoreInt64(&p.pingLastSend, now)
|
|
}
|
|
|
|
// Record the time at which we first attempt to send the
|
|
// message.
|
|
startTime := time.Now()
|
|
|
|
retry:
|
|
// Write out the message to the socket. If a timeout
|
|
// error is encountered, we will catch this and retry
|
|
// after backing off in case the remote peer is just
|
|
// slow to process messages from the wire.
|
|
err := p.writeMessage(outMsg.msg)
|
|
if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
|
|
peerLog.Debugf("Write timeout detected for "+
|
|
"peer %s, first write for message "+
|
|
"attempted %v ago", p,
|
|
time.Since(startTime))
|
|
|
|
// If we received a timeout error, this implies
|
|
// that the message was buffered on the
|
|
// connection successfully and that a flush was
|
|
// attempted. We'll set the message to nil so
|
|
// that on a subsequent pass we only try to
|
|
// flush the buffered message, and forgo
|
|
// reserializing or reencrypting it.
|
|
outMsg.msg = nil
|
|
|
|
goto retry
|
|
}
|
|
|
|
// The write succeeded, reset the idle timer to prevent
|
|
// us from disconnecting the peer.
|
|
if !idleTimer.Stop() {
|
|
select {
|
|
case <-idleTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
idleTimer.Reset(idleTimeout)
|
|
|
|
// If the peer requested a synchronous write, respond
|
|
// with the error.
|
|
if outMsg.errChan != nil {
|
|
outMsg.errChan <- err
|
|
}
|
|
|
|
if err != nil {
|
|
exitErr = fmt.Errorf("unable to write "+
|
|
"message: %v", err)
|
|
break out
|
|
}
|
|
|
|
case <-p.quit:
|
|
exitErr = lnpeer.ErrPeerExiting
|
|
break out
|
|
}
|
|
}
|
|
|
|
// Avoid an exit deadlock by ensuring WaitGroups are decremented before
|
|
// disconnect.
|
|
p.wg.Done()
|
|
|
|
p.Disconnect(exitErr)
|
|
|
|
peerLog.Tracef("writeHandler for peer %v done", p)
|
|
}
|
|
|
|
// queueHandler is responsible for accepting messages from outside subsystems
|
|
// to be eventually sent out on the wire by the writeHandler.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) queueHandler() {
|
|
defer p.wg.Done()
|
|
|
|
// priorityMsgs holds an in order list of messages deemed high-priority
|
|
// to be added to the sendQueue. This predominately includes messages
|
|
// from the funding manager and htlcswitch.
|
|
priorityMsgs := list.New()
|
|
|
|
// lazyMsgs holds an in order list of messages deemed low-priority to be
|
|
// added to the sendQueue only after all high-priority messages have
|
|
// been queued. This predominately includes messages from the gossiper.
|
|
lazyMsgs := list.New()
|
|
|
|
for {
|
|
// Examine the front of the priority queue, if it is empty check
|
|
// the low priority queue.
|
|
elem := priorityMsgs.Front()
|
|
if elem == nil {
|
|
elem = lazyMsgs.Front()
|
|
}
|
|
|
|
if elem != nil {
|
|
front := elem.Value.(outgoingMsg)
|
|
|
|
// There's an element on the queue, try adding
|
|
// it to the sendQueue. We also watch for
|
|
// messages on the outgoingQueue, in case the
|
|
// writeHandler cannot accept messages on the
|
|
// sendQueue.
|
|
select {
|
|
case p.sendQueue <- front:
|
|
if front.priority {
|
|
priorityMsgs.Remove(elem)
|
|
} else {
|
|
lazyMsgs.Remove(elem)
|
|
}
|
|
case msg := <-p.outgoingQueue:
|
|
if msg.priority {
|
|
priorityMsgs.PushBack(msg)
|
|
} else {
|
|
lazyMsgs.PushBack(msg)
|
|
}
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
} else {
|
|
// If there weren't any messages to send to the
|
|
// writeHandler, then we'll accept a new message
|
|
// into the queue from outside sub-systems.
|
|
select {
|
|
case msg := <-p.outgoingQueue:
|
|
if msg.priority {
|
|
priorityMsgs.PushBack(msg)
|
|
} else {
|
|
lazyMsgs.PushBack(msg)
|
|
}
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// pingHandler is responsible for periodically sending ping messages to the
|
|
// remote peer in order to keep the connection alive and/or determine if the
|
|
// connection is still active.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) pingHandler() {
|
|
defer p.wg.Done()
|
|
|
|
pingTicker := time.NewTicker(pingInterval)
|
|
defer pingTicker.Stop()
|
|
|
|
// TODO(roasbeef): make dynamic in order to create fake cover traffic
|
|
const numPongBytes = 16
|
|
|
|
blockEpochs, err := p.cfg.ChainNotifier.RegisterBlockEpochNtfn(nil)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to establish block epoch "+
|
|
"subscription: %v", err)
|
|
return
|
|
}
|
|
|
|
var (
|
|
pingPayload [wire.MaxBlockHeaderPayload]byte
|
|
blockHeader *wire.BlockHeader
|
|
)
|
|
out:
|
|
for {
|
|
select {
|
|
// Each time a new block comes in, we'll copy the raw header
|
|
// contents over to our ping payload declared above. Over time,
|
|
// we'll use this to disseminate the latest block header
|
|
// between all our peers, which can later be used to
|
|
// cross-check our own view of the network to mitigate various
|
|
// types of eclipse attacks.
|
|
case epoch, ok := <-blockEpochs.Epochs:
|
|
if !ok {
|
|
peerLog.Debugf("block notifications " +
|
|
"canceled")
|
|
return
|
|
}
|
|
|
|
blockHeader = epoch.BlockHeader
|
|
headerBuf := bytes.NewBuffer(pingPayload[0:0])
|
|
err := blockHeader.Serialize(headerBuf)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to encode header: %v",
|
|
err)
|
|
}
|
|
|
|
case <-pingTicker.C:
|
|
|
|
pingMsg := &lnwire.Ping{
|
|
NumPongBytes: numPongBytes,
|
|
PaddingBytes: pingPayload[:],
|
|
}
|
|
|
|
p.queueMsg(pingMsg, nil)
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
}
|
|
}
|
|
|
|
// PingTime returns the estimated ping time to the peer in microseconds.
|
|
func (p *Brontide) PingTime() int64 {
|
|
return atomic.LoadInt64(&p.pingTime)
|
|
}
|
|
|
|
// queueMsg adds the lnwire.Message to the back of the high priority send queue.
|
|
// If the errChan is non-nil, an error is sent back if the msg failed to queue
|
|
// or failed to write, and nil otherwise.
|
|
func (p *Brontide) queueMsg(msg lnwire.Message, errChan chan error) {
|
|
p.queue(true, msg, errChan)
|
|
}
|
|
|
|
// queueMsgLazy adds the lnwire.Message to the back of the low priority send
|
|
// queue. If the errChan is non-nil, an error is sent back if the msg failed to
|
|
// queue or failed to write, and nil otherwise.
|
|
func (p *Brontide) queueMsgLazy(msg lnwire.Message, errChan chan error) {
|
|
p.queue(false, msg, errChan)
|
|
}
|
|
|
|
// queue sends a given message to the queueHandler using the passed priority. If
|
|
// the errChan is non-nil, an error is sent back if the msg failed to queue or
|
|
// failed to write, and nil otherwise.
|
|
func (p *Brontide) queue(priority bool, msg lnwire.Message,
|
|
errChan chan error) {
|
|
|
|
select {
|
|
case p.outgoingQueue <- outgoingMsg{priority, msg, errChan}:
|
|
case <-p.quit:
|
|
peerLog.Tracef("Peer shutting down, could not enqueue msg: %v.",
|
|
spew.Sdump(msg))
|
|
if errChan != nil {
|
|
errChan <- lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
}
|
|
|
|
// ChannelSnapshots returns a slice of channel snapshots detailing all
|
|
// currently active channels maintained with the remote peer.
|
|
func (p *Brontide) ChannelSnapshots() []*channeldb.ChannelSnapshot {
|
|
p.activeChanMtx.RLock()
|
|
defer p.activeChanMtx.RUnlock()
|
|
|
|
snapshots := make([]*channeldb.ChannelSnapshot, 0, len(p.activeChannels))
|
|
for _, activeChan := range p.activeChannels {
|
|
// If the activeChan is nil, then we skip it as the channel is pending.
|
|
if activeChan == nil {
|
|
continue
|
|
}
|
|
|
|
// We'll only return a snapshot for channels that are
|
|
// *immedately* available for routing payments over.
|
|
if activeChan.RemoteNextRevocation() == nil {
|
|
continue
|
|
}
|
|
|
|
snapshot := activeChan.StateSnapshot()
|
|
snapshots = append(snapshots, snapshot)
|
|
}
|
|
|
|
return snapshots
|
|
}
|
|
|
|
// genDeliveryScript returns a new script to be used to send our funds to in
|
|
// the case of a cooperative channel close negotiation.
|
|
func (p *Brontide) genDeliveryScript() ([]byte, error) {
|
|
deliveryAddr, err := p.cfg.Wallet.NewAddress(
|
|
lnwallet.WitnessPubKey, false, lnwallet.DefaultAccountName,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
peerLog.Infof("Delivery addr for channel close: %v",
|
|
deliveryAddr)
|
|
|
|
return txscript.PayToAddrScript(deliveryAddr)
|
|
}
|
|
|
|
// channelManager is goroutine dedicated to handling all requests/signals
|
|
// pertaining to the opening, cooperative closing, and force closing of all
|
|
// channels maintained with the remote peer.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) channelManager() {
|
|
defer p.wg.Done()
|
|
|
|
// reenableTimeout will fire once after the configured channel status
|
|
// interval has elapsed. This will trigger us to sign new channel
|
|
// updates and broadcast them with the "disabled" flag unset.
|
|
reenableTimeout := time.After(p.cfg.ChanActiveTimeout)
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
// A new channel has arrived which means we've just completed a
|
|
// funding workflow. We'll initialize the necessary local
|
|
// state, and notify the htlc switch of a new link.
|
|
case newChanReq := <-p.newChannels:
|
|
newChan := newChanReq.channel
|
|
chanPoint := &newChan.FundingOutpoint
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
// Only update RemoteNextRevocation if the channel is in the
|
|
// activeChannels map and if we added the link to the switch.
|
|
// Only active channels will be added to the switch.
|
|
p.activeChanMtx.Lock()
|
|
currentChan, ok := p.activeChannels[chanID]
|
|
if ok && currentChan != nil {
|
|
peerLog.Infof("Already have ChannelPoint(%v), "+
|
|
"ignoring.", chanPoint)
|
|
|
|
p.activeChanMtx.Unlock()
|
|
close(newChanReq.err)
|
|
|
|
// If we're being sent a new channel, and our
|
|
// existing channel doesn't have the next
|
|
// revocation, then we need to update the
|
|
// current existing channel.
|
|
if currentChan.RemoteNextRevocation() != nil {
|
|
continue
|
|
}
|
|
|
|
peerLog.Infof("Processing retransmitted "+
|
|
"FundingLocked for ChannelPoint(%v)",
|
|
chanPoint)
|
|
|
|
nextRevoke := newChan.RemoteNextRevocation
|
|
err := currentChan.InitNextRevocation(nextRevoke)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to init chan "+
|
|
"revocation: %v", err)
|
|
continue
|
|
}
|
|
|
|
continue
|
|
}
|
|
|
|
// If not already active, we'll add this channel to the
|
|
// set of active channels, so we can look it up later
|
|
// easily according to its channel ID.
|
|
lnChan, err := lnwallet.NewLightningChannel(
|
|
p.cfg.Signer, newChan, p.cfg.SigPool,
|
|
)
|
|
if err != nil {
|
|
p.activeChanMtx.Unlock()
|
|
err := fmt.Errorf("unable to create "+
|
|
"LightningChannel: %v", err)
|
|
peerLog.Errorf(err.Error())
|
|
|
|
newChanReq.err <- err
|
|
continue
|
|
}
|
|
|
|
// This refreshes the activeChannels entry if the link was not in
|
|
// the switch, also populates for new entries.
|
|
p.activeChannels[chanID] = lnChan
|
|
p.addedChannels[chanID] = struct{}{}
|
|
p.activeChanMtx.Unlock()
|
|
|
|
peerLog.Infof("New channel active ChannelPoint(%v) "+
|
|
"with NodeKey(%x)", chanPoint, p.PubKey())
|
|
|
|
// Next, we'll assemble a ChannelLink along with the
|
|
// necessary items it needs to function.
|
|
//
|
|
// TODO(roasbeef): panic on below?
|
|
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(
|
|
*chanPoint,
|
|
)
|
|
if err != nil {
|
|
err := fmt.Errorf("unable to subscribe to "+
|
|
"chain events: %v", err)
|
|
peerLog.Errorf(err.Error())
|
|
|
|
newChanReq.err <- err
|
|
continue
|
|
}
|
|
|
|
// We'll query the localChanCfg of the new channel to determine the
|
|
// minimum HTLC value that can be forwarded. For the maximum HTLC
|
|
// value that can be forwarded and fees we'll use the default
|
|
// values, as they currently are always set to the default values
|
|
// at initial channel creation. Note that the maximum HTLC value
|
|
// defaults to the cap on the total value of outstanding HTLCs.
|
|
fwdMinHtlc := lnChan.FwdMinHtlc()
|
|
defaultPolicy := p.cfg.RoutingPolicy
|
|
forwardingPolicy := &htlcswitch.ForwardingPolicy{
|
|
MinHTLCOut: fwdMinHtlc,
|
|
MaxHTLC: newChan.LocalChanCfg.MaxPendingAmount,
|
|
BaseFee: defaultPolicy.BaseFee,
|
|
FeeRate: defaultPolicy.FeeRate,
|
|
TimeLockDelta: defaultPolicy.TimeLockDelta,
|
|
}
|
|
|
|
// If we've reached this point, there are two possible scenarios.
|
|
// If the channel was in the active channels map as nil, then it
|
|
// was loaded from disk and we need to send reestablish. Else,
|
|
// it was not loaded from disk and we don't need to send
|
|
// reestablish as this is a fresh channel.
|
|
shouldReestablish := ok
|
|
|
|
// Create the link and add it to the switch.
|
|
err = p.addLink(
|
|
chanPoint, lnChan, forwardingPolicy,
|
|
chainEvents, shouldReestablish,
|
|
)
|
|
if err != nil {
|
|
err := fmt.Errorf("can't register new channel "+
|
|
"link(%v) with NodeKey(%x)", chanPoint,
|
|
p.PubKey())
|
|
peerLog.Errorf(err.Error())
|
|
|
|
newChanReq.err <- err
|
|
continue
|
|
}
|
|
|
|
close(newChanReq.err)
|
|
|
|
// We've just received a local request to close an active
|
|
// channel. It will either kick of a cooperative channel
|
|
// closure negotiation, or be a notification of a breached
|
|
// contract that should be abandoned.
|
|
case req := <-p.localCloseChanReqs:
|
|
p.handleLocalCloseReq(req)
|
|
|
|
// We've received a link failure from a link that was added to
|
|
// the switch. This will initiate the teardown of the link, and
|
|
// initiate any on-chain closures if necessary.
|
|
case failure := <-p.linkFailures:
|
|
p.handleLinkFailure(failure)
|
|
|
|
// We've received a new cooperative channel closure related
|
|
// message from the remote peer, we'll use this message to
|
|
// advance the chan closer state machine.
|
|
case closeMsg := <-p.chanCloseMsgs:
|
|
p.handleCloseMsg(closeMsg)
|
|
|
|
// The channel reannounce delay has elapsed, broadcast the
|
|
// reenabled channel updates to the network. This should only
|
|
// fire once, so we set the reenableTimeout channel to nil to
|
|
// mark it for garbage collection. If the peer is torn down
|
|
// before firing, reenabling will not be attempted.
|
|
// TODO(conner): consolidate reenables timers inside chan status
|
|
// manager
|
|
case <-reenableTimeout:
|
|
p.reenableActiveChannels()
|
|
|
|
// Since this channel will never fire again during the
|
|
// lifecycle of the peer, we nil the channel to mark it
|
|
// eligible for garbage collection, and make this
|
|
// explicitly ineligible to receive in future calls to
|
|
// select. This also shaves a few CPU cycles since the
|
|
// select will ignore this case entirely.
|
|
reenableTimeout = nil
|
|
|
|
case <-p.quit:
|
|
// As, we've been signalled to exit, we'll reset all
|
|
// our active channel back to their default state.
|
|
p.activeChanMtx.Lock()
|
|
for _, channel := range p.activeChannels {
|
|
// If the channel is nil, continue as it's a pending channel.
|
|
if channel == nil {
|
|
continue
|
|
}
|
|
|
|
channel.ResetState()
|
|
}
|
|
p.activeChanMtx.Unlock()
|
|
|
|
break out
|
|
}
|
|
}
|
|
}
|
|
|
|
// reenableActiveChannels searches the index of channels maintained with this
|
|
// peer, and reenables each public, non-pending channel. This is done at the
|
|
// gossip level by broadcasting a new ChannelUpdate with the disabled bit unset.
|
|
// No message will be sent if the channel is already enabled.
|
|
func (p *Brontide) reenableActiveChannels() {
|
|
// First, filter all known channels with this peer for ones that are
|
|
// both public and not pending.
|
|
var activePublicChans []wire.OutPoint
|
|
p.activeChanMtx.RLock()
|
|
for chanID, lnChan := range p.activeChannels {
|
|
// If the lnChan is nil, continue as this is a pending channel.
|
|
if lnChan == nil {
|
|
continue
|
|
}
|
|
|
|
dbChan := lnChan.State()
|
|
isPublic := dbChan.ChannelFlags&lnwire.FFAnnounceChannel != 0
|
|
if !isPublic || dbChan.IsPending {
|
|
continue
|
|
}
|
|
|
|
// We'll also skip any channels added during this peer's
|
|
// lifecycle since they haven't waited out the timeout. Their
|
|
// first announcement will be enabled, and the chan status
|
|
// manager will begin monitoring them passively since they exist
|
|
// in the database.
|
|
if _, ok := p.addedChannels[chanID]; ok {
|
|
continue
|
|
}
|
|
|
|
activePublicChans = append(
|
|
activePublicChans, dbChan.FundingOutpoint,
|
|
)
|
|
}
|
|
p.activeChanMtx.RUnlock()
|
|
|
|
// For each of the public, non-pending channels, set the channel
|
|
// disabled bit to false and send out a new ChannelUpdate. If this
|
|
// channel is already active, the update won't be sent.
|
|
for _, chanPoint := range activePublicChans {
|
|
err := p.cfg.ChanStatusMgr.RequestEnable(chanPoint, false)
|
|
if err == netann.ErrEnableManuallyDisabledChan {
|
|
peerLog.Debugf("Channel(%v) was manually disabled, ignoring "+
|
|
"automatic enable request", chanPoint)
|
|
} else if err != nil {
|
|
peerLog.Errorf("Unable to enable channel %v: %v",
|
|
chanPoint, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// fetchActiveChanCloser attempts to fetch the active chan closer state machine
|
|
// for the target channel ID. If the channel isn't active an error is returned.
|
|
// Otherwise, either an existing state machine will be returned, or a new one
|
|
// will be created.
|
|
func (p *Brontide) fetchActiveChanCloser(chanID lnwire.ChannelID) (
|
|
*chancloser.ChanCloser, error) {
|
|
|
|
// First, we'll ensure that we actually know of the target channel. If
|
|
// not, we'll ignore this message.
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[chanID]
|
|
p.activeChanMtx.RUnlock()
|
|
|
|
// If the channel isn't in the map or the channel is nil, return
|
|
// ErrChannelNotFound as the channel is pending.
|
|
if !ok || channel == nil {
|
|
return nil, ErrChannelNotFound
|
|
}
|
|
|
|
// We'll attempt to look up the matching state machine, if we can't
|
|
// find one then this means that the remote party is initiating a
|
|
// cooperative channel closure.
|
|
chanCloser, ok := p.activeChanCloses[chanID]
|
|
if !ok {
|
|
// Optimistically try a link shutdown, erroring out if it
|
|
// failed.
|
|
if err := p.tryLinkShutdown(chanID); err != nil {
|
|
peerLog.Errorf("failed link shutdown: %v", err)
|
|
return nil, err
|
|
}
|
|
|
|
// We'll create a valid closing state machine in order to
|
|
// respond to the initiated cooperative channel closure. First,
|
|
// we set the delivery script that our funds will be paid out
|
|
// to. If an upfront shutdown script was set, we will use it.
|
|
// Otherwise, we get a fresh delivery script.
|
|
//
|
|
// TODO: Expose option to allow upfront shutdown script from
|
|
// watch-only accounts.
|
|
deliveryScript := channel.LocalUpfrontShutdownScript()
|
|
if len(deliveryScript) == 0 {
|
|
var err error
|
|
deliveryScript, err = p.genDeliveryScript()
|
|
if err != nil {
|
|
peerLog.Errorf("unable to gen delivery script: %v", err)
|
|
return nil, fmt.Errorf("close addr unavailable")
|
|
}
|
|
}
|
|
|
|
// In order to begin fee negotiations, we'll first compute our
|
|
// target ideal fee-per-kw.
|
|
feePerKw, err := p.cfg.FeeEstimator.EstimateFeePerKW(
|
|
p.cfg.CoopCloseTargetConfs,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to query fee estimator: %v", err)
|
|
|
|
return nil, fmt.Errorf("unable to estimate fee")
|
|
}
|
|
|
|
_, startingHeight, err := p.cfg.ChainIO.GetBestBlock()
|
|
if err != nil {
|
|
peerLog.Errorf("unable to obtain best block: %v", err)
|
|
return nil, fmt.Errorf("cannot obtain best block")
|
|
}
|
|
|
|
chanCloser = chancloser.NewChanCloser(
|
|
chancloser.ChanCloseCfg{
|
|
Channel: channel,
|
|
BroadcastTx: p.cfg.Wallet.PublishTransaction,
|
|
DisableChannel: func(chanPoint wire.OutPoint) error {
|
|
return p.cfg.ChanStatusMgr.RequestDisable(chanPoint, false)
|
|
},
|
|
Disconnect: func() error {
|
|
return p.cfg.DisconnectPeer(p.IdentityKey())
|
|
},
|
|
Quit: p.quit,
|
|
},
|
|
deliveryScript,
|
|
feePerKw,
|
|
uint32(startingHeight),
|
|
nil,
|
|
false,
|
|
)
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
}
|
|
|
|
return chanCloser, nil
|
|
}
|
|
|
|
// chooseDeliveryScript takes two optionally set shutdown scripts and returns
|
|
// a suitable script to close out to. This may be nil if neither script is
|
|
// set. If both scripts are set, this function will error if they do not match.
|
|
func chooseDeliveryScript(upfront,
|
|
requested lnwire.DeliveryAddress) (lnwire.DeliveryAddress, error) {
|
|
|
|
// If no upfront shutdown script was provided, return the user
|
|
// requested address (which may be nil).
|
|
if len(upfront) == 0 {
|
|
return requested, nil
|
|
}
|
|
|
|
// If an upfront shutdown script was provided, and the user did not request
|
|
// a custom shutdown script, return the upfront address.
|
|
if len(requested) == 0 {
|
|
return upfront, nil
|
|
}
|
|
|
|
// If both an upfront shutdown script and a custom close script were
|
|
// provided, error if the user provided shutdown script does not match
|
|
// the upfront shutdown script (because closing out to a different script
|
|
// would violate upfront shutdown).
|
|
if !bytes.Equal(upfront, requested) {
|
|
return nil, chancloser.ErrUpfrontShutdownScriptMismatch
|
|
}
|
|
|
|
// The user requested script matches the upfront shutdown script, so we
|
|
// can return it without error.
|
|
return upfront, nil
|
|
}
|
|
|
|
// handleLocalCloseReq kicks-off the workflow to execute a cooperative or
|
|
// forced unilateral closure of the channel initiated by a local subsystem.
|
|
func (p *Brontide) handleLocalCloseReq(req *htlcswitch.ChanClose) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(req.ChanPoint)
|
|
|
|
p.activeChanMtx.RLock()
|
|
channel, ok := p.activeChannels[chanID]
|
|
p.activeChanMtx.RUnlock()
|
|
|
|
// Though this function can't be called for pending channels, we still
|
|
// check whether channel is nil for safety.
|
|
if !ok || channel == nil {
|
|
err := fmt.Errorf("unable to close channel, ChannelID(%v) is "+
|
|
"unknown", chanID)
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
switch req.CloseType {
|
|
|
|
// A type of CloseRegular indicates that the user has opted to close
|
|
// out this channel on-chain, so we execute the cooperative channel
|
|
// closure workflow.
|
|
case htlcswitch.CloseRegular:
|
|
// First, we'll choose a delivery address that we'll use to send the
|
|
// funds to in the case of a successful negotiation.
|
|
|
|
// An upfront shutdown and user provided script are both optional,
|
|
// but must be equal if both set (because we cannot serve a request
|
|
// to close out to a script which violates upfront shutdown). Get the
|
|
// appropriate address to close out to (which may be nil if neither
|
|
// are set) and error if they are both set and do not match.
|
|
deliveryScript, err := chooseDeliveryScript(
|
|
channel.LocalUpfrontShutdownScript(), req.DeliveryScript,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("cannot close channel %v: %v", req.ChanPoint, err)
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// If neither an upfront address or a user set address was
|
|
// provided, generate a fresh script.
|
|
if len(deliveryScript) == 0 {
|
|
deliveryScript, err = p.genDeliveryScript()
|
|
if err != nil {
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
}
|
|
|
|
// Next, we'll create a new channel closer state machine to
|
|
// handle the close negotiation.
|
|
_, startingHeight, err := p.cfg.ChainIO.GetBestBlock()
|
|
if err != nil {
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// Optimistically try a link shutdown, erroring out if it
|
|
// failed.
|
|
if err := p.tryLinkShutdown(chanID); err != nil {
|
|
peerLog.Errorf("failed link shutdown: %v", err)
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
chanCloser := chancloser.NewChanCloser(
|
|
chancloser.ChanCloseCfg{
|
|
Channel: channel,
|
|
BroadcastTx: p.cfg.Wallet.PublishTransaction,
|
|
DisableChannel: func(chanPoint wire.OutPoint) error {
|
|
return p.cfg.ChanStatusMgr.RequestDisable(chanPoint, false)
|
|
},
|
|
Disconnect: func() error {
|
|
return p.cfg.DisconnectPeer(p.IdentityKey())
|
|
},
|
|
Quit: p.quit,
|
|
},
|
|
deliveryScript,
|
|
req.TargetFeePerKw,
|
|
uint32(startingHeight),
|
|
req,
|
|
true,
|
|
)
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
|
|
// Finally, we'll initiate the channel shutdown within the
|
|
// chanCloser, and send the shutdown message to the remote
|
|
// party to kick things off.
|
|
shutdownMsg, err := chanCloser.ShutdownChan()
|
|
if err != nil {
|
|
peerLog.Errorf(err.Error())
|
|
req.Err <- err
|
|
delete(p.activeChanCloses, chanID)
|
|
|
|
// As we were unable to shutdown the channel, we'll
|
|
// return it back to its normal state.
|
|
channel.ResetState()
|
|
return
|
|
}
|
|
|
|
p.queueMsg(shutdownMsg, nil)
|
|
|
|
// A type of CloseBreach indicates that the counterparty has breached
|
|
// the channel therefore we need to clean up our local state.
|
|
case htlcswitch.CloseBreach:
|
|
// TODO(roasbeef): no longer need with newer beach logic?
|
|
peerLog.Infof("ChannelPoint(%v) has been breached, wiping "+
|
|
"channel", req.ChanPoint)
|
|
p.WipeChannel(req.ChanPoint)
|
|
}
|
|
}
|
|
|
|
// linkFailureReport is sent to the channelManager whenever a link reports a
|
|
// link failure, and is forced to exit. The report houses the necessary
|
|
// information to clean up the channel state, send back the error message, and
|
|
// force close if necessary.
|
|
type linkFailureReport struct {
|
|
chanPoint wire.OutPoint
|
|
chanID lnwire.ChannelID
|
|
shortChanID lnwire.ShortChannelID
|
|
linkErr htlcswitch.LinkFailureError
|
|
}
|
|
|
|
// handleLinkFailure processes a link failure report when a link in the switch
|
|
// fails. It facilitates the removal of all channel state within the peer,
|
|
// force closing the channel depending on severity, and sending the error
|
|
// message back to the remote party.
|
|
func (p *Brontide) handleLinkFailure(failure linkFailureReport) {
|
|
// Retrieve the channel from the map of active channels. We do this to
|
|
// have access to it even after WipeChannel remove it from the map.
|
|
chanID := lnwire.NewChanIDFromOutPoint(&failure.chanPoint)
|
|
p.activeChanMtx.Lock()
|
|
lnChan := p.activeChannels[chanID]
|
|
p.activeChanMtx.Unlock()
|
|
|
|
// We begin by wiping the link, which will remove it from the switch,
|
|
// such that it won't be attempted used for any more updates.
|
|
//
|
|
// TODO(halseth): should introduce a way to atomically stop/pause the
|
|
// link and cancel back any adds in its mailboxes such that we can
|
|
// safely force close without the link being added again and updates
|
|
// being applied.
|
|
p.WipeChannel(&failure.chanPoint)
|
|
|
|
// If the error encountered was severe enough, we'll now force close the
|
|
// channel to prevent reading it to the switch in the future.
|
|
if failure.linkErr.ForceClose {
|
|
peerLog.Warnf("Force closing link(%v)",
|
|
failure.shortChanID)
|
|
|
|
closeTx, err := p.cfg.ChainArb.ForceCloseContract(
|
|
failure.chanPoint,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("unable to force close "+
|
|
"link(%v): %v", failure.shortChanID, err)
|
|
} else {
|
|
peerLog.Infof("channel(%v) force "+
|
|
"closed with txid %v",
|
|
failure.shortChanID, closeTx.TxHash())
|
|
}
|
|
}
|
|
|
|
// If this is a permanent failure, we will mark the channel borked.
|
|
if failure.linkErr.PermanentFailure && lnChan != nil {
|
|
peerLog.Warnf("Marking link(%v) borked due to permanent "+
|
|
"failure", failure.shortChanID)
|
|
|
|
if err := lnChan.State().MarkBorked(); err != nil {
|
|
peerLog.Errorf("Unable to mark channel %v borked: %v",
|
|
failure.shortChanID, err)
|
|
}
|
|
}
|
|
|
|
// Send an error to the peer, why we failed the channel.
|
|
if failure.linkErr.ShouldSendToPeer() {
|
|
// If SendData is set, send it to the peer. If not, we'll use
|
|
// the standard error messages in the payload. We only include
|
|
// sendData in the cases where the error data does not contain
|
|
// sensitive information.
|
|
data := []byte(failure.linkErr.Error())
|
|
if failure.linkErr.SendData != nil {
|
|
data = failure.linkErr.SendData
|
|
}
|
|
err := p.SendMessage(true, &lnwire.Error{
|
|
ChanID: failure.chanID,
|
|
Data: data,
|
|
})
|
|
if err != nil {
|
|
peerLog.Errorf("unable to send msg to "+
|
|
"remote peer: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
// tryLinkShutdown attempts to fetch a target link from the switch, calls
|
|
// ShutdownIfChannelClean to optimistically trigger a link shutdown, and
|
|
// removes the link from the switch. It returns an error if any step failed.
|
|
func (p *Brontide) tryLinkShutdown(cid lnwire.ChannelID) error {
|
|
// Fetch the appropriate link and call ShutdownIfChannelClean to ensure
|
|
// no other updates can occur.
|
|
chanLink := p.fetchLinkFromKeyAndCid(cid)
|
|
|
|
// If the link happens to be nil, return ErrChannelNotFound so we can
|
|
// ignore the close message.
|
|
if chanLink == nil {
|
|
return ErrChannelNotFound
|
|
}
|
|
|
|
// Else, the link exists, so attempt to trigger shutdown. If this
|
|
// fails, we'll send an error message to the remote peer.
|
|
if err := chanLink.ShutdownIfChannelClean(); err != nil {
|
|
return err
|
|
}
|
|
|
|
// Next, we remove the link from the switch to shut down all of the
|
|
// link's goroutines and remove it from the switch's internal maps. We
|
|
// don't call WipeChannel as the channel must still be in the
|
|
// activeChannels map to process coop close messages.
|
|
p.cfg.Switch.RemoveLink(cid)
|
|
|
|
return nil
|
|
}
|
|
|
|
// fetchLinkFromKeyAndCid fetches a link from the switch via the remote's
|
|
// public key and the channel id.
|
|
func (p *Brontide) fetchLinkFromKeyAndCid(
|
|
cid lnwire.ChannelID) htlcswitch.ChannelUpdateHandler {
|
|
|
|
var chanLink htlcswitch.ChannelUpdateHandler
|
|
|
|
// We don't need to check the error here, and can instead just loop
|
|
// over the slice and return nil.
|
|
links, _ := p.cfg.Switch.GetLinksByInterface(p.cfg.PubKeyBytes)
|
|
for _, link := range links {
|
|
if link.ChanID() == cid {
|
|
chanLink = link
|
|
break
|
|
}
|
|
}
|
|
|
|
return chanLink
|
|
}
|
|
|
|
// finalizeChanClosure performs the final clean up steps once the cooperative
|
|
// closure transaction has been fully broadcast. The finalized closing state
|
|
// machine should be passed in. Once the transaction has been sufficiently
|
|
// confirmed, the channel will be marked as fully closed within the database,
|
|
// and any clients will be notified of updates to the closing state.
|
|
func (p *Brontide) finalizeChanClosure(chanCloser *chancloser.ChanCloser) {
|
|
closeReq := chanCloser.CloseRequest()
|
|
|
|
// First, we'll clear all indexes related to the channel in question.
|
|
chanPoint := chanCloser.Channel().ChannelPoint()
|
|
p.WipeChannel(chanPoint)
|
|
|
|
// Next, we'll launch a goroutine which will request to be notified by
|
|
// the ChainNotifier once the closure transaction obtains a single
|
|
// confirmation.
|
|
notifier := p.cfg.ChainNotifier
|
|
|
|
// If any error happens during waitForChanToClose, forward it to
|
|
// closeReq. If this channel closure is not locally initiated, closeReq
|
|
// will be nil, so just ignore the error.
|
|
errChan := make(chan error, 1)
|
|
if closeReq != nil {
|
|
errChan = closeReq.Err
|
|
}
|
|
|
|
closingTx, err := chanCloser.ClosingTx()
|
|
if err != nil {
|
|
if closeReq != nil {
|
|
peerLog.Error(err)
|
|
closeReq.Err <- err
|
|
}
|
|
}
|
|
|
|
closingTxid := closingTx.TxHash()
|
|
|
|
// If this is a locally requested shutdown, update the caller with a
|
|
// new event detailing the current pending state of this request.
|
|
if closeReq != nil {
|
|
closeReq.Updates <- &PendingUpdate{
|
|
Txid: closingTxid[:],
|
|
}
|
|
}
|
|
|
|
go WaitForChanToClose(chanCloser.NegotiationHeight(), notifier, errChan,
|
|
chanPoint, &closingTxid, closingTx.TxOut[0].PkScript, func() {
|
|
|
|
// Respond to the local subsystem which requested the
|
|
// channel closure.
|
|
if closeReq != nil {
|
|
closeReq.Updates <- &ChannelCloseUpdate{
|
|
ClosingTxid: closingTxid[:],
|
|
Success: true,
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
// WaitForChanToClose uses the passed notifier to wait until the channel has
|
|
// been detected as closed on chain and then concludes by executing the
|
|
// following actions: the channel point will be sent over the settleChan, and
|
|
// finally the callback will be executed. If any error is encountered within
|
|
// the function, then it will be sent over the errChan.
|
|
func WaitForChanToClose(bestHeight uint32, notifier chainntnfs.ChainNotifier,
|
|
errChan chan error, chanPoint *wire.OutPoint,
|
|
closingTxID *chainhash.Hash, closeScript []byte, cb func()) {
|
|
|
|
peerLog.Infof("Waiting for confirmation of cooperative close of "+
|
|
"ChannelPoint(%v) with txid: %v", chanPoint,
|
|
closingTxID)
|
|
|
|
// TODO(roasbeef): add param for num needed confs
|
|
confNtfn, err := notifier.RegisterConfirmationsNtfn(
|
|
closingTxID, closeScript, 1, bestHeight,
|
|
)
|
|
if err != nil {
|
|
if errChan != nil {
|
|
errChan <- err
|
|
}
|
|
return
|
|
}
|
|
|
|
// In the case that the ChainNotifier is shutting down, all subscriber
|
|
// notification channels will be closed, generating a nil receive.
|
|
height, ok := <-confNtfn.Confirmed
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// The channel has been closed, remove it from any active indexes, and
|
|
// the database state.
|
|
peerLog.Infof("ChannelPoint(%v) is now closed at "+
|
|
"height %v", chanPoint, height.BlockHeight)
|
|
|
|
// Finally, execute the closure call back to mark the confirmation of
|
|
// the transaction closing the contract.
|
|
cb()
|
|
}
|
|
|
|
// WipeChannel removes the passed channel point from all indexes associated with
|
|
// the peer and the switch.
|
|
func (p *Brontide) WipeChannel(chanPoint *wire.OutPoint) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
p.activeChanMtx.Lock()
|
|
delete(p.activeChannels, chanID)
|
|
p.activeChanMtx.Unlock()
|
|
|
|
// Instruct the HtlcSwitch to close this link as the channel is no
|
|
// longer active.
|
|
p.cfg.Switch.RemoveLink(chanID)
|
|
}
|
|
|
|
// handleInitMsg handles the incoming init message which contains global and
|
|
// local feature vectors. If feature vectors are incompatible then disconnect.
|
|
func (p *Brontide) handleInitMsg(msg *lnwire.Init) error {
|
|
// First, merge any features from the legacy global features field into
|
|
// those presented in the local features fields.
|
|
err := msg.Features.Merge(msg.GlobalFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to merge legacy global features: %v",
|
|
err)
|
|
}
|
|
|
|
// Then, finalize the remote feature vector providing the flattened
|
|
// feature bit namespace.
|
|
p.remoteFeatures = lnwire.NewFeatureVector(
|
|
msg.Features, lnwire.Features,
|
|
)
|
|
|
|
// Now that we have their features loaded, we'll ensure that they
|
|
// didn't set any required bits that we don't know of.
|
|
err = feature.ValidateRequired(p.remoteFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid remote features: %v", err)
|
|
}
|
|
|
|
// Ensure the remote party's feature vector contains all transitive
|
|
// dependencies. We know ours are correct since they are validated
|
|
// during the feature manager's instantiation.
|
|
err = feature.ValidateDeps(p.remoteFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid remote features: %v", err)
|
|
}
|
|
|
|
// Now that we know we understand their requirements, we'll check to
|
|
// see if they don't support anything that we deem to be mandatory.
|
|
if !p.remoteFeatures.HasFeature(lnwire.DataLossProtectRequired) {
|
|
return fmt.Errorf("data loss protection required")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// LocalFeatures returns the set of global features that has been advertised by
|
|
// the local node. This allows sub-systems that use this interface to gate their
|
|
// behavior off the set of negotiated feature bits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) LocalFeatures() *lnwire.FeatureVector {
|
|
return p.cfg.Features
|
|
}
|
|
|
|
// RemoteFeatures returns the set of global features that has been advertised by
|
|
// the remote node. This allows sub-systems that use this interface to gate
|
|
// their behavior off the set of negotiated feature bits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) RemoteFeatures() *lnwire.FeatureVector {
|
|
return p.remoteFeatures
|
|
}
|
|
|
|
// sendInitMsg sends the Init message to the remote peer. This message contains
|
|
// our currently supported local and global features.
|
|
func (p *Brontide) sendInitMsg(legacyChan bool) error {
|
|
features := p.cfg.Features.Clone()
|
|
legacyFeatures := p.cfg.LegacyFeatures.Clone()
|
|
|
|
// If we have a legacy channel open with a peer, we downgrade static
|
|
// remote required to optional in case the peer does not understand the
|
|
// required feature bit. If we do not do this, the peer will reject our
|
|
// connection because it does not understand a required feature bit, and
|
|
// our channel will be unusable.
|
|
if legacyChan && features.RequiresFeature(lnwire.StaticRemoteKeyRequired) {
|
|
peerLog.Infof("Legacy channel open with peer: %x, "+
|
|
"downgrading static remote required feature bit to "+
|
|
"optional", p.PubKey())
|
|
|
|
// Unset and set in both the local and global features to
|
|
// ensure both sets are consistent and merge able by old and
|
|
// new nodes.
|
|
features.Unset(lnwire.StaticRemoteKeyRequired)
|
|
legacyFeatures.Unset(lnwire.StaticRemoteKeyRequired)
|
|
|
|
features.Set(lnwire.StaticRemoteKeyOptional)
|
|
legacyFeatures.Set(lnwire.StaticRemoteKeyOptional)
|
|
}
|
|
|
|
msg := lnwire.NewInitMessage(
|
|
legacyFeatures.RawFeatureVector,
|
|
features.RawFeatureVector,
|
|
)
|
|
|
|
return p.writeMessage(msg)
|
|
}
|
|
|
|
// resendChanSyncMsg will attempt to find a channel sync message for the closed
|
|
// channel and resend it to our peer.
|
|
func (p *Brontide) resendChanSyncMsg(cid lnwire.ChannelID) error {
|
|
// If we already re-sent the mssage for this channel, we won't do it
|
|
// again.
|
|
if _, ok := p.resentChanSyncMsg[cid]; ok {
|
|
return nil
|
|
}
|
|
|
|
// Check if we have any channel sync messages stored for this channel.
|
|
c, err := p.cfg.ChannelDB.FetchClosedChannelForID(cid)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to fetch channel sync messages for "+
|
|
"peer %v: %v", p, err)
|
|
}
|
|
|
|
if c.LastChanSyncMsg == nil {
|
|
return fmt.Errorf("no chan sync message stored for channel %v",
|
|
cid)
|
|
}
|
|
|
|
if !c.RemotePub.IsEqual(p.IdentityKey()) {
|
|
return fmt.Errorf("ignoring channel reestablish from "+
|
|
"peer=%x", p.IdentityKey())
|
|
}
|
|
|
|
peerLog.Debugf("Re-sending channel sync message for channel %v to "+
|
|
"peer %v", cid, p)
|
|
|
|
if err := p.SendMessage(true, c.LastChanSyncMsg); err != nil {
|
|
return fmt.Errorf("failed resending channel sync "+
|
|
"message to peer %v: %v", p, err)
|
|
}
|
|
|
|
peerLog.Debugf("Re-sent channel sync message for channel %v to peer "+
|
|
"%v", cid, p)
|
|
|
|
// Note down that we sent the message, so we won't resend it again for
|
|
// this connection.
|
|
p.resentChanSyncMsg[cid] = struct{}{}
|
|
|
|
return nil
|
|
}
|
|
|
|
// SendMessage sends a variadic number of high-priority messages to the remote
|
|
// peer. The first argument denotes if the method should block until the
|
|
// messages have been sent to the remote peer or an error is returned,
|
|
// otherwise it returns immediately after queuing.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) SendMessage(sync bool, msgs ...lnwire.Message) error {
|
|
return p.sendMessage(sync, true, msgs...)
|
|
}
|
|
|
|
// SendMessageLazy sends a variadic number of low-priority messages to the
|
|
// remote peer. The first argument denotes if the method should block until
|
|
// the messages have been sent to the remote peer or an error is returned,
|
|
// otherwise it returns immediately after queueing.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) SendMessageLazy(sync bool, msgs ...lnwire.Message) error {
|
|
return p.sendMessage(sync, false, msgs...)
|
|
}
|
|
|
|
// sendMessage queues a variadic number of messages using the passed priority
|
|
// to the remote peer. If sync is true, this method will block until the
|
|
// messages have been sent to the remote peer or an error is returned, otherwise
|
|
// it returns immediately after queueing.
|
|
func (p *Brontide) sendMessage(sync, priority bool, msgs ...lnwire.Message) error {
|
|
// Add all incoming messages to the outgoing queue. A list of error
|
|
// chans is populated for each message if the caller requested a sync
|
|
// send.
|
|
var errChans []chan error
|
|
if sync {
|
|
errChans = make([]chan error, 0, len(msgs))
|
|
}
|
|
for _, msg := range msgs {
|
|
// If a sync send was requested, create an error chan to listen
|
|
// for an ack from the writeHandler.
|
|
var errChan chan error
|
|
if sync {
|
|
errChan = make(chan error, 1)
|
|
errChans = append(errChans, errChan)
|
|
}
|
|
|
|
if priority {
|
|
p.queueMsg(msg, errChan)
|
|
} else {
|
|
p.queueMsgLazy(msg, errChan)
|
|
}
|
|
}
|
|
|
|
// Wait for all replies from the writeHandler. For async sends, this
|
|
// will be a NOP as the list of error chans is nil.
|
|
for _, errChan := range errChans {
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
case <-p.cfg.Quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// PubKey returns the pubkey of the peer in compressed serialized format.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) PubKey() [33]byte {
|
|
return p.cfg.PubKeyBytes
|
|
}
|
|
|
|
// IdentityKey returns the public key of the remote peer.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) IdentityKey() *btcec.PublicKey {
|
|
return p.cfg.Addr.IdentityKey
|
|
}
|
|
|
|
// Address returns the network address of the remote peer.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) Address() net.Addr {
|
|
return p.cfg.Addr.Address
|
|
}
|
|
|
|
// AddNewChannel adds a new channel to the peer. The channel should fail to be
|
|
// added if the cancel channel is closed.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) AddNewChannel(channel *channeldb.OpenChannel,
|
|
cancel <-chan struct{}) error {
|
|
|
|
errChan := make(chan error, 1)
|
|
newChanMsg := &newChannelMsg{
|
|
channel: channel,
|
|
err: errChan,
|
|
}
|
|
|
|
select {
|
|
case p.newChannels <- newChanMsg:
|
|
case <-cancel:
|
|
return errors.New("canceled adding new channel")
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
|
|
// We pause here to wait for the peer to recognize the new channel
|
|
// before we close the channel barrier corresponding to the channel.
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
// StartTime returns the time at which the connection was established if the
|
|
// peer started successfully, and zero otherwise.
|
|
func (p *Brontide) StartTime() time.Time {
|
|
return p.startTime
|
|
}
|
|
|
|
// handleCloseMsg is called when a new cooperative channel closure related
|
|
// message is received from the remote peer. We'll use this message to advance
|
|
// the chan closer state machine.
|
|
func (p *Brontide) handleCloseMsg(msg *closeMsg) {
|
|
// We'll now fetch the matching closing state machine in order to continue,
|
|
// or finalize the channel closure process.
|
|
chanCloser, err := p.fetchActiveChanCloser(msg.cid)
|
|
if err != nil {
|
|
// If the channel is not known to us, we'll simply ignore this message.
|
|
if err == ErrChannelNotFound {
|
|
return
|
|
}
|
|
|
|
peerLog.Errorf("Unable to respond to remote close msg: %v", err)
|
|
|
|
errMsg := &lnwire.Error{
|
|
ChanID: msg.cid,
|
|
Data: lnwire.ErrorData(err.Error()),
|
|
}
|
|
p.queueMsg(errMsg, nil)
|
|
return
|
|
}
|
|
|
|
// Next, we'll process the next message using the target state machine.
|
|
// We'll either continue negotiation, or halt.
|
|
msgs, closeFin, err := chanCloser.ProcessCloseMsg(
|
|
msg.msg,
|
|
)
|
|
if err != nil {
|
|
err := fmt.Errorf("unable to process close msg: %v", err)
|
|
peerLog.Error(err)
|
|
|
|
// As the negotiations failed, we'll reset the channel state machine to
|
|
// ensure we act to on-chain events as normal.
|
|
chanCloser.Channel().ResetState()
|
|
|
|
if chanCloser.CloseRequest() != nil {
|
|
chanCloser.CloseRequest().Err <- err
|
|
}
|
|
delete(p.activeChanCloses, msg.cid)
|
|
return
|
|
}
|
|
|
|
// Queue any messages to the remote peer that need to be sent as a part of
|
|
// this latest round of negotiations.
|
|
for _, msg := range msgs {
|
|
p.queueMsg(msg, nil)
|
|
}
|
|
|
|
// If we haven't finished close negotiations, then we'll continue as we
|
|
// can't yet finalize the closure.
|
|
if !closeFin {
|
|
return
|
|
}
|
|
|
|
// Otherwise, we've agreed on a closing fee! In this case, we'll wrap up
|
|
// the channel closure by notifying relevant sub-systems and launching a
|
|
// goroutine to wait for close tx conf.
|
|
p.finalizeChanClosure(chanCloser)
|
|
}
|
|
|
|
// HandleLocalCloseChanReqs accepts a *htlcswitch.ChanClose and passes it onto
|
|
// the channelManager goroutine, which will shut down the link and possibly
|
|
// close the channel.
|
|
func (p *Brontide) HandleLocalCloseChanReqs(req *htlcswitch.ChanClose) {
|
|
select {
|
|
case p.localCloseChanReqs <- req:
|
|
peerLog.Infof("Local close channel request delivered to "+
|
|
"peer: %x", p.PubKey())
|
|
case <-p.quit:
|
|
peerLog.Infof("Unable to deliver local close channel request "+
|
|
"to peer %x", p.PubKey())
|
|
}
|
|
}
|
|
|
|
// NetAddress returns the network of the remote peer as an lnwire.NetAddress.
|
|
func (p *Brontide) NetAddress() *lnwire.NetAddress {
|
|
return p.cfg.Addr
|
|
}
|
|
|
|
// Inbound is a getter for the Brontide's Inbound boolean in cfg.
|
|
func (p *Brontide) Inbound() bool {
|
|
return p.cfg.Inbound
|
|
}
|
|
|
|
// ConnReq is a getter for the Brontide's connReq in cfg.
|
|
func (p *Brontide) ConnReq() *connmgr.ConnReq {
|
|
return p.cfg.ConnReq
|
|
}
|
|
|
|
// ErrorBuffer is a getter for the Brontide's errorBuffer in cfg.
|
|
func (p *Brontide) ErrorBuffer() *queue.CircularBuffer {
|
|
return p.cfg.ErrorBuffer
|
|
}
|
|
|
|
// SetAddress sets the remote peer's address given an address.
|
|
func (p *Brontide) SetAddress(address net.Addr) {
|
|
p.cfg.Addr.Address = address
|
|
}
|
|
|
|
// ActiveSignal returns the peer's active signal.
|
|
func (p *Brontide) ActiveSignal() chan struct{} {
|
|
return p.activeSignal
|
|
}
|
|
|
|
// Conn returns a pointer to the peer's connection struct.
|
|
func (p *Brontide) Conn() net.Conn {
|
|
return p.cfg.Conn
|
|
}
|
|
|
|
// BytesReceived returns the number of bytes received from the peer.
|
|
func (p *Brontide) BytesReceived() uint64 {
|
|
return atomic.LoadUint64(&p.bytesReceived)
|
|
}
|
|
|
|
// BytesSent returns the number of bytes sent to the peer.
|
|
func (p *Brontide) BytesSent() uint64 {
|
|
return atomic.LoadUint64(&p.bytesSent)
|
|
}
|
|
|
|
// LastRemotePingPayload returns the last payload the remote party sent as part
|
|
// of their ping.
|
|
func (p *Brontide) LastRemotePingPayload() []byte {
|
|
pingPayload := p.lastPingPayload.Load()
|
|
if pingPayload == nil {
|
|
return []byte{}
|
|
}
|
|
|
|
pingBytes, ok := pingPayload.(lnwire.PingPayload)
|
|
if !ok {
|
|
return nil
|
|
}
|
|
|
|
return pingBytes
|
|
}
|