lnd/lnwallet/channel.go
Elle Mouton ab7aae0708
multi: rename nolint:lll to nolint:ll
Find and replace all nolint instances refering to the `lll` linter and
replace with `ll` which is the name of our custom version of the `lll`
linter which can be used to ignore log lines during linting.

The next commit will do the configuration of the custom linter and
disable the default one.
2024-12-02 09:14:21 +02:00

9819 lines
326 KiB
Go

package lnwallet
import (
"bytes"
"cmp"
"context"
"crypto/sha256"
"errors"
"fmt"
"math"
"slices"
"sync"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/ecdsa"
"github.com/btcsuite/btcd/btcec/v2/schnorr/musig2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/btcutil/txsort"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/mempool"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btclog/v2"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/graph/db/models"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnutils"
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/shachain"
"github.com/lightningnetwork/lnd/tlv"
)
var (
// ErrChanClosing is returned when a caller attempts to close a channel
// that has already been closed or is in the process of being closed.
ErrChanClosing = fmt.Errorf("channel is being closed, operation disallowed")
// ErrNoWindow is returned when revocation window is exhausted.
ErrNoWindow = fmt.Errorf("unable to sign new commitment, the current" +
" revocation window is exhausted")
// ErrMaxWeightCost is returned when the cost/weight (see segwit)
// exceeds the widely used maximum allowed policy weight limit. In this
// case the commitment transaction can't be propagated through the
// network.
ErrMaxWeightCost = fmt.Errorf("commitment transaction exceed max " +
"available cost")
// ErrMaxHTLCNumber is returned when a proposed HTLC would exceed the
// maximum number of allowed HTLC's if committed in a state transition
ErrMaxHTLCNumber = fmt.Errorf("commitment transaction exceed max " +
"htlc number")
// ErrMaxPendingAmount is returned when a proposed HTLC would exceed
// the overall maximum pending value of all HTLCs if committed in a
// state transition.
ErrMaxPendingAmount = fmt.Errorf("commitment transaction exceed max" +
"overall pending htlc value")
// ErrBelowChanReserve is returned when a proposed HTLC would cause
// one of the peer's funds to dip below the channel reserve limit.
ErrBelowChanReserve = fmt.Errorf("commitment transaction dips peer " +
"below chan reserve")
// ErrBelowMinHTLC is returned when a proposed HTLC has a value that
// is below the minimum HTLC value constraint for either us or our
// peer depending on which flags are set.
ErrBelowMinHTLC = fmt.Errorf("proposed HTLC value is below minimum " +
"allowed HTLC value")
// ErrFeeBufferNotInitiator is returned when the FeeBuffer is enforced
// although the channel was not initiated (opened) locally.
ErrFeeBufferNotInitiator = fmt.Errorf("unable to enforce FeeBuffer, " +
"not initiator of the channel")
// ErrInvalidHTLCAmt signals that a proposed HTLC has a value that is
// not positive.
ErrInvalidHTLCAmt = fmt.Errorf("proposed HTLC value must be positive")
// ErrCannotSyncCommitChains is returned if, upon receiving a ChanSync
// message, the state machine deems that is unable to properly
// synchronize states with the remote peer. In this case we should fail
// the channel, but we won't automatically force close.
ErrCannotSyncCommitChains = fmt.Errorf("unable to sync commit chains")
// ErrInvalidLastCommitSecret is returned in the case that the
// commitment secret sent by the remote party in their
// ChannelReestablish message doesn't match the last secret we sent.
ErrInvalidLastCommitSecret = fmt.Errorf("commit secret is incorrect")
// ErrInvalidLocalUnrevokedCommitPoint is returned in the case that the
// commitment point sent by the remote party in their
// ChannelReestablish message doesn't match the last unrevoked commit
// point they sent us.
ErrInvalidLocalUnrevokedCommitPoint = fmt.Errorf("unrevoked commit " +
"point is invalid")
// ErrCommitSyncRemoteDataLoss is returned in the case that we receive
// a ChannelReestablish message from the remote that advertises a
// NextLocalCommitHeight that is lower than what they have already
// ACKed, or a RemoteCommitTailHeight that is lower than our revoked
// height. In this case we should force close the channel such that
// both parties can retrieve their funds.
ErrCommitSyncRemoteDataLoss = fmt.Errorf("possible remote commitment " +
"state data loss")
// ErrNoRevocationLogFound is returned when both the returned logs are
// nil from querying the revocation log bucket. In theory this should
// never happen as the query will return `ErrLogEntryNotFound`, yet
// we'd still perform a sanity check to make sure at least one of the
// logs is non-nil.
ErrNoRevocationLogFound = errors.New("no revocation log found")
// ErrOutputIndexOutOfRange is returned when an output index is greater
// than or equal to the length of a given transaction's outputs.
ErrOutputIndexOutOfRange = errors.New("output index is out of range")
// ErrRevLogDataMissing is returned when a certain wanted optional field
// in a revocation log entry is missing.
ErrRevLogDataMissing = errors.New("revocation log data missing")
// ErrForceCloseLocalDataLoss is returned in the case a user (or
// another sub-system) attempts to force close when we've detected that
// we've likely lost data ourselves.
ErrForceCloseLocalDataLoss = errors.New("cannot force close " +
"channel with local data loss")
// errNoNonce is returned when a nonce is required, but none is found.
errNoNonce = errors.New("no nonce found")
// errNoPartialSig is returned when a partial signature is required,
// but none is found.
errNoPartialSig = errors.New("no partial signature found")
// errQuit is returned when a quit signal was received, interrupting the
// current operation.
errQuit = errors.New("received quit signal")
)
// ErrCommitSyncLocalDataLoss is returned in the case that we receive a valid
// commit secret within the ChannelReestablish message from the remote node AND
// they advertise a RemoteCommitTailHeight higher than our current known
// height. This means we have lost some critical data, and must fail the
// channel and MUST NOT force close it. Instead we should wait for the remote
// to force close it, such that we can attempt to sweep our funds. The
// commitment point needed to sweep the remote's force close is encapsulated.
type ErrCommitSyncLocalDataLoss struct {
// ChannelPoint is the identifier for the channel that experienced data
// loss.
ChannelPoint wire.OutPoint
// CommitPoint is the last unrevoked commit point, sent to us by the
// remote when we determined we had lost state.
CommitPoint *btcec.PublicKey
}
// Error returns a string representation of the local data loss error.
func (e *ErrCommitSyncLocalDataLoss) Error() string {
return fmt.Sprintf("ChannelPoint(%v) with CommitPoint(%x) had "+
"possible local commitment state data loss", e.ChannelPoint,
e.CommitPoint.SerializeCompressed())
}
// PaymentHash represents the sha256 of a random value. This hash is used to
// uniquely track incoming/outgoing payments within this channel, as well as
// payments requested by the wallet/daemon.
type PaymentHash [32]byte
// commitment represents a commitment to a new state within an active channel.
// New commitments can be initiated by either side. Commitments are ordered
// into a commitment chain, with one existing for both parties. Each side can
// independently extend the other side's commitment chain, up to a certain
// "revocation window", which once reached, disallows new commitments until
// the local nodes receives the revocation for the remote node's chain tail.
type commitment struct {
// height represents the commitment height of this commitment, or the
// update number of this commitment.
height uint64
// whoseCommit indicates whether this is the local or remote node's
// version of the commitment.
whoseCommit lntypes.ChannelParty
// [our|their]MessageIndex are indexes into the HTLC log, up to which
// this commitment transaction includes. These indexes allow both sides
// to independently, and concurrent send create new commitments. Each
// new commitment sent to the remote party includes an index in the
// shared log which details which of their updates we're including in
// this new commitment.
messageIndices lntypes.Dual[uint64]
// [our|their]HtlcIndex are the current running counters for the HTLCs
// offered by either party. This value is incremented each time a party
// offers a new HTLC. The log update methods that consume HTLCs will
// reference these counters, rather than the running cumulative message
// counters.
ourHtlcIndex uint64
theirHtlcIndex uint64
// txn is the commitment transaction generated by including any HTLC
// updates whose index are below the two indexes listed above. If this
// commitment is being added to the remote chain, then this txn is
// their version of the commitment transactions. If the local commit
// chain is being modified, the opposite is true.
txn *wire.MsgTx
// sig is a signature for the above commitment transaction.
sig []byte
// [our|their]Balance represents the settled balances at this point
// within the commitment chain. This balance is computed by properly
// evaluating all the add/remove/settle log entries before the listed
// indexes.
//
// NOTE: This is the balance *after* subtracting any commitment fee,
// AND anchor output values.
ourBalance lnwire.MilliSatoshi
theirBalance lnwire.MilliSatoshi
// fee is the amount that will be paid as fees for this commitment
// transaction. The fee is recorded here so that it can be added back
// and recalculated for each new update to the channel state.
fee btcutil.Amount
// feePerKw is the fee per kw used to calculate this commitment
// transaction's fee.
feePerKw chainfee.SatPerKWeight
// dustLimit is the limit on the commitment transaction such that no
// output values should be below this amount.
dustLimit btcutil.Amount
// outgoingHTLCs is a slice of all the outgoing HTLC's (from our PoV)
// on this commitment transaction.
outgoingHTLCs []paymentDescriptor
// incomingHTLCs is a slice of all the incoming HTLC's (from our PoV)
// on this commitment transaction.
incomingHTLCs []paymentDescriptor
// customBlob stores opaque bytes that may be used by custom channels
// to store extra data for a given commitment state.
customBlob fn.Option[tlv.Blob]
// [outgoing|incoming]HTLCIndex is an index that maps an output index
// on the commitment transaction to the payment descriptor that
// represents the HTLC output.
//
// NOTE: that these fields are only populated if this commitment state
// belongs to the local node. These maps are used when validating any
// HTLC signatures which are part of the local commitment state. We use
// this map in order to locate the details needed to validate an HTLC
// signature while iterating of the outputs in the local commitment
// view.
outgoingHTLCIndex map[int32]*paymentDescriptor
incomingHTLCIndex map[int32]*paymentDescriptor
}
// locateOutputIndex is a small helper function to locate the output index of a
// particular HTLC within the current commitment transaction. The duplicate map
// passed in is to be retained for each output within the commitment
// transition. This ensures that we don't assign multiple HTLCs to the same
// index within the commitment transaction.
func locateOutputIndex(p *paymentDescriptor, tx *wire.MsgTx,
whoseCommit lntypes.ChannelParty, dups map[PaymentHash][]int32,
cltvs []uint32) (int32, error) {
// If this is their commitment transaction, we'll be trying to locate
// their pkScripts, otherwise we'll be looking for ours. This is
// required as the commitment states are asymmetric in order to ascribe
// blame in the case of a contract breach.
pkScript := p.theirPkScript
if whoseCommit.IsLocal() {
pkScript = p.ourPkScript
}
for i, txOut := range tx.TxOut {
cltv := cltvs[i]
if bytes.Equal(txOut.PkScript, pkScript) &&
txOut.Value == int64(p.Amount.ToSatoshis()) &&
cltv == p.Timeout {
// If this payment hash and index has already been
// found, then we'll continue in order to avoid any
// duplicate indexes.
if fn.Elem(int32(i), dups[p.RHash]) {
continue
}
idx := int32(i)
dups[p.RHash] = append(dups[p.RHash], idx)
return idx, nil
}
}
return 0, fmt.Errorf("unable to find htlc: script=%x, value=%v, "+
"cltv=%v", pkScript, p.Amount, p.Timeout)
}
// populateHtlcIndexes modifies the set of HTLCs locked-into the target view
// to have full indexing information populated. This information is required as
// we need to keep track of the indexes of each HTLC in order to properly write
// the current state to disk, and also to locate the paymentDescriptor
// corresponding to HTLC outputs in the commitment transaction.
func (c *commitment) populateHtlcIndexes(chanType channeldb.ChannelType,
cltvs []uint32) error {
// First, we'll set up some state to allow us to locate the output
// index of the all the HTLCs within the commitment transaction. We
// must keep this index so we can validate the HTLC signatures sent to
// us.
dups := make(map[PaymentHash][]int32)
c.outgoingHTLCIndex = make(map[int32]*paymentDescriptor)
c.incomingHTLCIndex = make(map[int32]*paymentDescriptor)
// populateIndex is a helper function that populates the necessary
// indexes within the commitment view for a particular HTLC.
populateIndex := func(htlc *paymentDescriptor, incoming bool) error {
isDust := HtlcIsDust(
chanType, incoming, c.whoseCommit, c.feePerKw,
htlc.Amount.ToSatoshis(), c.dustLimit,
)
var err error
switch {
// If this is our commitment transaction, and this is a dust
// output then we mark it as such using a -1 index.
case c.whoseCommit.IsLocal() && isDust:
htlc.localOutputIndex = -1
// If this is the commitment transaction of the remote party,
// and this is a dust output then we mark it as such using a -1
// index.
case c.whoseCommit.IsRemote() && isDust:
htlc.remoteOutputIndex = -1
// If this is our commitment transaction, then we'll need to
// locate the output and the index so we can verify an HTLC
// signatures.
case c.whoseCommit.IsLocal():
htlc.localOutputIndex, err = locateOutputIndex(
htlc, c.txn, c.whoseCommit, dups, cltvs,
)
if err != nil {
return err
}
// As this is our commitment transactions, we need to
// keep track of the locations of each output on the
// transaction so we can verify any HTLC signatures
// sent to us after we construct the HTLC view.
if incoming {
c.incomingHTLCIndex[htlc.localOutputIndex] = htlc
} else {
c.outgoingHTLCIndex[htlc.localOutputIndex] = htlc
}
// Otherwise, this is there remote party's commitment
// transaction and we only need to populate the remote output
// index within the HTLC index.
case c.whoseCommit.IsRemote():
htlc.remoteOutputIndex, err = locateOutputIndex(
htlc, c.txn, c.whoseCommit, dups, cltvs,
)
if err != nil {
return err
}
default:
return fmt.Errorf("invalid commitment configuration")
}
return nil
}
// Finally, we'll need to locate the index within the commitment
// transaction of all the HTLC outputs. This index will be required
// later when we write the commitment state to disk, and also when
// generating signatures for each of the HTLC transactions.
for i := 0; i < len(c.outgoingHTLCs); i++ {
htlc := &c.outgoingHTLCs[i]
if err := populateIndex(htlc, false); err != nil {
return err
}
}
for i := 0; i < len(c.incomingHTLCs); i++ {
htlc := &c.incomingHTLCs[i]
if err := populateIndex(htlc, true); err != nil {
return err
}
}
return nil
}
// toDiskCommit converts the target commitment into a format suitable to be
// written to disk after an accepted state transition.
func (c *commitment) toDiskCommit(
whoseCommit lntypes.ChannelParty) *channeldb.ChannelCommitment {
numHtlcs := len(c.outgoingHTLCs) + len(c.incomingHTLCs)
commit := &channeldb.ChannelCommitment{
CommitHeight: c.height,
LocalLogIndex: c.messageIndices.Local,
LocalHtlcIndex: c.ourHtlcIndex,
RemoteLogIndex: c.messageIndices.Remote,
RemoteHtlcIndex: c.theirHtlcIndex,
LocalBalance: c.ourBalance,
RemoteBalance: c.theirBalance,
CommitFee: c.fee,
FeePerKw: btcutil.Amount(c.feePerKw),
CommitTx: c.txn,
CommitSig: c.sig,
Htlcs: make([]channeldb.HTLC, 0, numHtlcs),
CustomBlob: c.customBlob,
}
for _, htlc := range c.outgoingHTLCs {
outputIndex := htlc.localOutputIndex
if whoseCommit.IsRemote() {
outputIndex = htlc.remoteOutputIndex
}
h := channeldb.HTLC{
RHash: htlc.RHash,
Amt: htlc.Amount,
RefundTimeout: htlc.Timeout,
OutputIndex: outputIndex,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
Incoming: false,
OnionBlob: htlc.OnionBlob,
BlindingPoint: htlc.BlindingPoint,
CustomRecords: htlc.CustomRecords.Copy(),
}
if whoseCommit.IsLocal() && htlc.sig != nil {
h.Signature = htlc.sig.Serialize()
}
commit.Htlcs = append(commit.Htlcs, h)
}
for _, htlc := range c.incomingHTLCs {
outputIndex := htlc.localOutputIndex
if whoseCommit.IsRemote() {
outputIndex = htlc.remoteOutputIndex
}
h := channeldb.HTLC{
RHash: htlc.RHash,
Amt: htlc.Amount,
RefundTimeout: htlc.Timeout,
OutputIndex: outputIndex,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
Incoming: true,
OnionBlob: htlc.OnionBlob,
BlindingPoint: htlc.BlindingPoint,
CustomRecords: htlc.CustomRecords.Copy(),
}
if whoseCommit.IsLocal() && htlc.sig != nil {
h.Signature = htlc.sig.Serialize()
}
commit.Htlcs = append(commit.Htlcs, h)
}
return commit
}
// diskHtlcToPayDesc converts an HTLC previously written to disk within a
// commitment state to the form required to manipulate in memory within the
// commitment struct and updateLog. This function is used when we need to
// restore commitment state written to disk back into memory once we need to
// restart a channel session.
func (lc *LightningChannel) diskHtlcToPayDesc(feeRate chainfee.SatPerKWeight,
htlc *channeldb.HTLC, commitKeys lntypes.Dual[*CommitmentKeyRing],
whoseCommit lntypes.ChannelParty,
auxLeaf input.AuxTapLeaf) (paymentDescriptor, error) {
// The proper pkScripts for this paymentDescriptor must be
// generated so we can easily locate them within the commitment
// transaction in the future.
var (
ourP2WSH, theirP2WSH []byte
ourWitnessScript, theirWitnessScript []byte
pd paymentDescriptor
chanType = lc.channelState.ChanType
)
// If the either output is dust from the local or remote node's
// perspective, then we don't need to generate the scripts as we only
// generate them in order to locate the outputs within the commitment
// transaction. As we'll mark dust with a special output index in the
// on-disk state snapshot.
isDustLocal := HtlcIsDust(
chanType, htlc.Incoming, lntypes.Local, feeRate,
htlc.Amt.ToSatoshis(), lc.channelState.LocalChanCfg.DustLimit,
)
localCommitKeys := commitKeys.GetForParty(lntypes.Local)
if !isDustLocal && localCommitKeys != nil {
scriptInfo, err := genHtlcScript(
chanType, htlc.Incoming, lntypes.Local,
htlc.RefundTimeout, htlc.RHash, localCommitKeys,
auxLeaf,
)
if err != nil {
return pd, err
}
ourP2WSH = scriptInfo.PkScript()
ourWitnessScript = scriptInfo.WitnessScriptToSign()
}
isDustRemote := HtlcIsDust(
chanType, htlc.Incoming, lntypes.Remote, feeRate,
htlc.Amt.ToSatoshis(), lc.channelState.RemoteChanCfg.DustLimit,
)
remoteCommitKeys := commitKeys.GetForParty(lntypes.Remote)
if !isDustRemote && remoteCommitKeys != nil {
scriptInfo, err := genHtlcScript(
chanType, htlc.Incoming, lntypes.Remote,
htlc.RefundTimeout, htlc.RHash, remoteCommitKeys,
auxLeaf,
)
if err != nil {
return pd, err
}
theirP2WSH = scriptInfo.PkScript()
theirWitnessScript = scriptInfo.WitnessScriptToSign()
}
// Reconstruct the proper local/remote output indexes from the HTLC's
// persisted output index depending on whose commitment we are
// generating.
var (
localOutputIndex int32
remoteOutputIndex int32
)
if whoseCommit.IsLocal() {
localOutputIndex = htlc.OutputIndex
} else {
remoteOutputIndex = htlc.OutputIndex
}
// With the scripts reconstructed (depending on if this is our commit
// vs theirs or a pending commit for the remote party), we can now
// re-create the original payment descriptor.
return paymentDescriptor{
ChanID: lc.ChannelID(),
RHash: htlc.RHash,
Timeout: htlc.RefundTimeout,
Amount: htlc.Amt,
EntryType: Add,
HtlcIndex: htlc.HtlcIndex,
LogIndex: htlc.LogIndex,
OnionBlob: htlc.OnionBlob,
localOutputIndex: localOutputIndex,
remoteOutputIndex: remoteOutputIndex,
ourPkScript: ourP2WSH,
ourWitnessScript: ourWitnessScript,
theirPkScript: theirP2WSH,
theirWitnessScript: theirWitnessScript,
BlindingPoint: htlc.BlindingPoint,
CustomRecords: htlc.CustomRecords.Copy(),
}, nil
}
// extractPayDescs will convert all HTLC's present within a disk commit state
// to a set of incoming and outgoing payment descriptors. Once reconstructed,
// these payment descriptors can be re-inserted into the in-memory updateLog
// for each side.
func (lc *LightningChannel) extractPayDescs(feeRate chainfee.SatPerKWeight,
htlcs []channeldb.HTLC, commitKeys lntypes.Dual[*CommitmentKeyRing],
whoseCommit lntypes.ChannelParty,
auxLeaves fn.Option[CommitAuxLeaves]) ([]paymentDescriptor,
[]paymentDescriptor, error) {
var (
incomingHtlcs []paymentDescriptor
outgoingHtlcs []paymentDescriptor
)
// For each included HTLC within this commitment state, we'll convert
// the disk format into our in memory paymentDescriptor format,
// partitioning based on if we offered or received the HTLC.
for _, htlc := range htlcs {
// TODO(roasbeef): set isForwarded to false for all? need to
// persist state w.r.t to if forwarded or not, or can
// inadvertently trigger replays
htlc := htlc
auxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.OutgoingHtlcLeaves
if htlc.Incoming {
leaves = l.IncomingHtlcLeaves
}
return leaves[htlc.HtlcIndex].AuxTapLeaf
},
)(auxLeaves)
payDesc, err := lc.diskHtlcToPayDesc(
feeRate, &htlc, commitKeys, whoseCommit, auxLeaf,
)
if err != nil {
return incomingHtlcs, outgoingHtlcs, err
}
if htlc.Incoming {
incomingHtlcs = append(incomingHtlcs, payDesc)
} else {
outgoingHtlcs = append(outgoingHtlcs, payDesc)
}
}
return incomingHtlcs, outgoingHtlcs, nil
}
// diskCommitToMemCommit converts the on-disk commitment format to our
// in-memory commitment format which is needed in order to properly resume
// channel operations after a restart.
func (lc *LightningChannel) diskCommitToMemCommit(
whoseCommit lntypes.ChannelParty,
diskCommit *channeldb.ChannelCommitment, localCommitPoint,
remoteCommitPoint *btcec.PublicKey) (*commitment, error) {
// First, we'll need to re-derive the commitment key ring for each
// party used within this particular state. If this is a pending commit
// (we extended but weren't able to complete the commitment dance
// before shutdown), then the localCommitPoint won't be set as we
// haven't yet received a responding commitment from the remote party.
var commitKeys lntypes.Dual[*CommitmentKeyRing]
if localCommitPoint != nil {
commitKeys.SetForParty(lntypes.Local, DeriveCommitmentKeys(
localCommitPoint, lntypes.Local,
lc.channelState.ChanType,
&lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
))
}
if remoteCommitPoint != nil {
commitKeys.SetForParty(lntypes.Remote, DeriveCommitmentKeys(
remoteCommitPoint, lntypes.Remote,
lc.channelState.ChanType,
&lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
))
}
auxResult, err := fn.MapOptionZ(
lc.leafStore,
func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(lc.channelState), *diskCommit,
*commitKeys.GetForParty(whoseCommit),
whoseCommit,
)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("unable to fetch aux leaves: %w", err)
}
// With the key rings re-created, we'll now convert all the on-disk
// HTLC"s into paymentDescriptor's so we can re-insert them into our
// update log.
incomingHtlcs, outgoingHtlcs, err := lc.extractPayDescs(
chainfee.SatPerKWeight(diskCommit.FeePerKw),
diskCommit.Htlcs, commitKeys, whoseCommit, auxResult.AuxLeaves,
)
if err != nil {
return nil, err
}
messageIndices := lntypes.Dual[uint64]{
Local: diskCommit.LocalLogIndex,
Remote: diskCommit.RemoteLogIndex,
}
// With the necessary items generated, we'll now re-construct the
// commitment state as it was originally present in memory.
commit := &commitment{
height: diskCommit.CommitHeight,
whoseCommit: whoseCommit,
ourBalance: diskCommit.LocalBalance,
theirBalance: diskCommit.RemoteBalance,
messageIndices: messageIndices,
ourHtlcIndex: diskCommit.LocalHtlcIndex,
theirHtlcIndex: diskCommit.RemoteHtlcIndex,
txn: diskCommit.CommitTx,
sig: diskCommit.CommitSig,
fee: diskCommit.CommitFee,
feePerKw: chainfee.SatPerKWeight(diskCommit.FeePerKw),
incomingHTLCs: incomingHtlcs,
outgoingHTLCs: outgoingHtlcs,
customBlob: diskCommit.CustomBlob,
}
if whoseCommit.IsLocal() {
commit.dustLimit = lc.channelState.LocalChanCfg.DustLimit
} else {
commit.dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
return commit, nil
}
// LightningChannel implements the state machine which corresponds to the
// current commitment protocol wire spec. The state machine implemented allows
// for asynchronous fully desynchronized, batched+pipelined updates to
// commitment transactions allowing for a high degree of non-blocking
// bi-directional payment throughput.
//
// In order to allow updates to be fully non-blocking, either side is able to
// create multiple new commitment states up to a pre-determined window size.
// This window size is encoded within InitialRevocationWindow. Before the start
// of a session, both side should send out revocation messages with nil
// preimages in order to populate their revocation window for the remote party.
//
// The state machine has for main methods:
// - .SignNextCommitment()
// - Called once when one wishes to sign the next commitment, either
// initiating a new state update, or responding to a received commitment.
// - .ReceiveNewCommitment()
// - Called upon receipt of a new commitment from the remote party. If the
// new commitment is valid, then a revocation should immediately be
// generated and sent.
// - .RevokeCurrentCommitment()
// - Revokes the current commitment. Should be called directly after
// receiving a new commitment.
// - .ReceiveRevocation()
// - Processes a revocation from the remote party. If successful creates a
// new defacto broadcastable state.
//
// See the individual comments within the above methods for further details.
type LightningChannel struct {
// Signer is the main signer instances that will be responsible for
// signing any HTLC and commitment transaction generated by the state
// machine.
Signer input.Signer
// leafStore is used to retrieve extra tapscript leaves for special
// custom channel types.
leafStore fn.Option[AuxLeafStore]
// signDesc is the primary sign descriptor that is capable of signing
// the commitment transaction that spends the multi-sig output.
signDesc *input.SignDescriptor
isClosed bool
// sigPool is a pool of workers that are capable of signing and
// validating signatures in parallel. This is utilized as an
// optimization to void serially signing or validating the HTLC
// signatures, of which there may be hundreds.
sigPool *SigPool
// auxSigner is a special signer used to obtain opaque signatures for
// custom channel variants.
auxSigner fn.Option[AuxSigner]
// auxResolver is an optional component that can be used to modify the
// way contracts are resolved.
auxResolver fn.Option[AuxContractResolver]
// Capacity is the total capacity of this channel.
Capacity btcutil.Amount
// currentHeight is the current height of our local commitment chain.
// This is also the same as the number of updates to the channel we've
// accepted.
currentHeight uint64
// commitChains is a Dual of the local and remote node's commitment
// chains. Any new commitments we initiate are added to Remote chain's
// tip. The Local portion of this field is our local commitment chain.
// Any new commitments received are added to the tip of this chain.
// The tail (or lowest height) in this chain is our current accepted
// state, which we are able to broadcast safely.
commitChains lntypes.Dual[*commitmentChain]
channelState *channeldb.OpenChannel
commitBuilder *CommitmentBuilder
// [local|remote]Log is a (mostly) append-only log storing all the HTLC
// updates to this channel. The log is walked backwards as HTLC updates
// are applied in order to re-construct a commitment transaction from a
// commitment. The log is compacted once a revocation is received.
updateLogs lntypes.Dual[*updateLog]
// log is a channel-specific logging instance.
log btclog.Logger
// taprootNonceProducer is used to generate a shachain tree for the
// purpose of generating verification nonces for taproot channels.
taprootNonceProducer shachain.Producer
// musigSessions holds the current musig2 pair session for the channel.
musigSessions *MusigPairSession
// pendingVerificationNonce is the initial verification nonce generated
// for musig2 channels when the state machine is intiated. Once we know
// the verification nonce of the remote party, then we can start to use
// the channel as normal.
pendingVerificationNonce *musig2.Nonces
// fundingOutput is the funding output (script+value).
fundingOutput wire.TxOut
// opts is the set of options that channel was initialized with.
opts *channelOpts
sync.RWMutex
}
// ChannelOpt is a functional option that lets callers modify how a new channel
// is created.
type ChannelOpt func(*channelOpts)
// channelOpts is the set of options used to create a new channel.
type channelOpts struct {
localNonce *musig2.Nonces
remoteNonce *musig2.Nonces
leafStore fn.Option[AuxLeafStore]
auxSigner fn.Option[AuxSigner]
auxResolver fn.Option[AuxContractResolver]
skipNonceInit bool
}
// WithLocalMusigNonces is used to bind an existing verification/local nonce to
// a new channel.
func WithLocalMusigNonces(nonce *musig2.Nonces) ChannelOpt {
return func(o *channelOpts) {
o.localNonce = nonce
}
}
// WithRemoteMusigNonces is used to bind the remote party's local/verification
// nonce to a new channel.
func WithRemoteMusigNonces(nonces *musig2.Nonces) ChannelOpt {
return func(o *channelOpts) {
o.remoteNonce = nonces
}
}
// WithSkipNonceInit is used to modify the way nonces are handled during
// channel initialization for taproot channels. If this option is specified,
// then when we receive the chan reest message from the remote party, we won't
// modify our nonce state. This is needed if we create a channel, get a channel
// ready message, then also get the chan reest message after that.
func WithSkipNonceInit() ChannelOpt {
return func(o *channelOpts) {
o.skipNonceInit = true
}
}
// WithLeafStore is used to specify a custom leaf store for the channel.
func WithLeafStore(store AuxLeafStore) ChannelOpt {
return func(o *channelOpts) {
o.leafStore = fn.Some[AuxLeafStore](store)
}
}
// WithAuxSigner is used to specify a custom aux signer for the channel.
func WithAuxSigner(signer AuxSigner) ChannelOpt {
return func(o *channelOpts) {
o.auxSigner = fn.Some[AuxSigner](signer)
}
}
// WithAuxResolver is used to specify a custom aux contract resolver for the
// channel.
func WithAuxResolver(resolver AuxContractResolver) ChannelOpt {
return func(o *channelOpts) {
o.auxResolver = fn.Some[AuxContractResolver](resolver)
}
}
// defaultChannelOpts returns the set of default options for a new channel.
func defaultChannelOpts() *channelOpts {
return &channelOpts{}
}
// NewLightningChannel creates a new, active payment channel given an
// implementation of the chain notifier, channel database, and the current
// settled channel state. Throughout state transitions, then channel will
// automatically persist pertinent state to the database in an efficient
// manner.
func NewLightningChannel(signer input.Signer,
state *channeldb.OpenChannel,
sigPool *SigPool, chanOpts ...ChannelOpt) (*LightningChannel, error) {
opts := defaultChannelOpts()
for _, optFunc := range chanOpts {
optFunc(opts)
}
localCommit := state.LocalCommitment
remoteCommit := state.RemoteCommitment
// First, initialize the update logs with their current counter values
// from the local and remote commitments.
localUpdateLog := newUpdateLog(
remoteCommit.LocalLogIndex, remoteCommit.LocalHtlcIndex,
)
remoteUpdateLog := newUpdateLog(
localCommit.RemoteLogIndex, localCommit.RemoteHtlcIndex,
)
updateLogs := lntypes.Dual[*updateLog]{
Local: localUpdateLog,
Remote: remoteUpdateLog,
}
logPrefix := fmt.Sprintf("ChannelPoint(%v):", state.FundingOutpoint)
taprootNonceProducer, err := channeldb.DeriveMusig2Shachain(
state.RevocationProducer,
)
if err != nil {
return nil, fmt.Errorf("unable to derive shachain: %w", err)
}
commitChains := lntypes.Dual[*commitmentChain]{
Local: newCommitmentChain(),
Remote: newCommitmentChain(),
}
lc := &LightningChannel{
Signer: signer,
leafStore: opts.leafStore,
auxSigner: opts.auxSigner,
auxResolver: opts.auxResolver,
sigPool: sigPool,
currentHeight: localCommit.CommitHeight,
commitChains: commitChains,
channelState: state,
commitBuilder: NewCommitmentBuilder(
state, opts.leafStore,
),
updateLogs: updateLogs,
Capacity: state.Capacity,
taprootNonceProducer: taprootNonceProducer,
log: walletLog.WithPrefix(logPrefix),
opts: opts,
}
switch {
// At this point, we may already have nonces that were passed in, so
// we'll check that now as this lets us skip some steps later.
case state.ChanType.IsTaproot() && opts.localNonce != nil:
lc.pendingVerificationNonce = opts.localNonce
// Otherwise, we'll generate the nonces here ourselves. This ensures
// we'll be ablve to process the chan syncmessag efrom the remote
// party.
case state.ChanType.IsTaproot() && opts.localNonce == nil:
_, err := lc.GenMusigNonces()
if err != nil {
return nil, err
}
}
if lc.pendingVerificationNonce != nil && opts.remoteNonce != nil {
err := lc.InitRemoteMusigNonces(opts.remoteNonce)
if err != nil {
return nil, err
}
}
// With the main channel struct reconstructed, we'll now restore the
// commitment state in memory and also the update logs themselves.
err = lc.restoreCommitState(&localCommit, &remoteCommit)
if err != nil {
return nil, err
}
// Create the sign descriptor which we'll be using very frequently to
// request a signature for the 2-of-2 multi-sig from the signer in
// order to complete channel state transitions.
if err := lc.createSignDesc(); err != nil {
return nil, err
}
return lc, nil
}
// createSignDesc derives the SignDescriptor for commitment transactions from
// other fields on the LightningChannel.
func (lc *LightningChannel) createSignDesc() error {
var (
fundingPkScript, multiSigScript []byte
err error
)
chanState := lc.channelState
localKey := chanState.LocalChanCfg.MultiSigKey.PubKey
remoteKey := chanState.RemoteChanCfg.MultiSigKey.PubKey
if chanState.ChanType.IsTaproot() {
fundingPkScript, _, err = input.GenTaprootFundingScript(
localKey, remoteKey, int64(lc.channelState.Capacity),
chanState.TapscriptRoot,
)
if err != nil {
return err
}
} else {
multiSigScript, err = input.GenMultiSigScript(
localKey.SerializeCompressed(),
remoteKey.SerializeCompressed(),
)
if err != nil {
return err
}
fundingPkScript, err = input.WitnessScriptHash(multiSigScript)
if err != nil {
return err
}
}
lc.fundingOutput = wire.TxOut{
PkScript: fundingPkScript,
Value: int64(lc.channelState.Capacity),
}
lc.signDesc = &input.SignDescriptor{
KeyDesc: lc.channelState.LocalChanCfg.MultiSigKey,
WitnessScript: multiSigScript,
Output: &lc.fundingOutput,
HashType: txscript.SigHashAll,
InputIndex: 0,
}
return nil
}
// ResetState resets the state of the channel back to the default state. This
// ensures that any active goroutines which need to act based on on-chain
// events do so properly.
func (lc *LightningChannel) ResetState() {
lc.Lock()
lc.isClosed = false
lc.Unlock()
}
// logUpdateToPayDesc converts a LogUpdate into a matching paymentDescriptor
// entry that can be re-inserted into the update log. This method is used when
// we extended a state to the remote party, but the connection was obstructed
// before we could finish the commitment dance. In this case, we need to
// re-insert the original entries back into the update log so we can resume as
// if nothing happened.
func (lc *LightningChannel) logUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
remoteUpdateLog *updateLog, commitHeight uint64,
feeRate chainfee.SatPerKWeight, remoteCommitKeys *CommitmentKeyRing,
remoteDustLimit btcutil.Amount,
auxLeaves fn.Option[CommitAuxLeaves]) (*paymentDescriptor, error) {
// Depending on the type of update message we'll map that to a distinct
// paymentDescriptor instance.
var pd *paymentDescriptor
switch wireMsg := logUpdate.UpdateMsg.(type) {
// For offered HTLC's, we'll map that to a paymentDescriptor with the
// type Add, ensuring we restore the necessary fields. From the PoV of
// the commitment chain, this HTLC was included in the remote chain,
// but not the local chain.
case *lnwire.UpdateAddHTLC:
// First, we'll map all the relevant fields in the
// UpdateAddHTLC message to their corresponding fields in the
// paymentDescriptor struct. We also set addCommitHeightRemote
// as we've included this HTLC in our local commitment chain
// for the remote party.
pd = &paymentDescriptor{
ChanID: wireMsg.ChanID,
RHash: wireMsg.PaymentHash,
Timeout: wireMsg.Expiry,
Amount: wireMsg.Amount,
EntryType: Add,
HtlcIndex: wireMsg.ID,
LogIndex: logUpdate.LogIndex,
OnionBlob: wireMsg.OnionBlob,
BlindingPoint: wireMsg.BlindingPoint,
CustomRecords: wireMsg.CustomRecords.Copy(),
addCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}
isDustRemote := HtlcIsDust(
lc.channelState.ChanType, false, lntypes.Remote,
feeRate, wireMsg.Amount.ToSatoshis(), remoteDustLimit,
)
if !isDustRemote {
auxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.OutgoingHtlcLeaves
return leaves[pd.HtlcIndex].AuxTapLeaf
},
)(auxLeaves)
scriptInfo, err := genHtlcScript(
lc.channelState.ChanType, false, lntypes.Remote,
wireMsg.Expiry, wireMsg.PaymentHash,
remoteCommitKeys, auxLeaf,
)
if err != nil {
return nil, err
}
pd.theirPkScript = scriptInfo.PkScript()
pd.theirWitnessScript = scriptInfo.WitnessScriptToSign()
}
// For HTLC's we're offered we'll fetch the original offered HTLC
// from the remote party's update log so we can retrieve the same
// paymentDescriptor that SettleHTLC would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
pd = &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}
// If we sent a failure for a prior incoming HTLC, then we'll consult
// the update log of the remote party so we can retrieve the
// information of the original HTLC we're failing. We also set the
// removal height for the remote commitment.
case *lnwire.UpdateFailHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
pd = &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}
// HTLC fails due to malformed onion blobs are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
// TODO(roasbeef): err if nil?
pd = &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}
// For fee updates we'll create a FeeUpdate type to add to the log. We
// reuse the amount field to hold the fee rate. Since the amount field
// is denominated in msat we won't lose precision when storing the
// sat/kw denominated feerate. Note that we set both the add and remove
// height to the same value, as we consider the fee update locked in by
// adding and removing it at the same height.
case *lnwire.UpdateFee:
pd = &paymentDescriptor{
ChanID: wireMsg.ChanID,
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}
}
return pd, nil
}
// localLogUpdateToPayDesc converts a LogUpdate into a matching
// paymentDescriptor entry that can be re-inserted into the local update log.
// This method is used when we sent an update+sig, receive a revocation, but
// drop right before the counterparty can sign for the update we just sent. In
// this case, we need to re-insert the original entries back into the update
// log so we'll be expecting the peer to sign them. The height of the remote
// commitment is expected to be provided and we restore all log update entries
// with this height, even though the real height may be lower. In the way these
// fields are used elsewhere, this doesn't change anything.
func (lc *LightningChannel) localLogUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
remoteUpdateLog *updateLog, commitHeight uint64) (*paymentDescriptor,
error) {
// Since Add updates aren't saved to disk under this key, the update will
// never be an Add.
switch wireMsg := logUpdate.UpdateMsg.(type) {
// For HTLCs that we settled, we'll fetch the original offered HTLC from
// the remote update log so we can retrieve the same paymentDescriptor
// that ReceiveHTLCSettle would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}, nil
// If we sent a failure for a prior incoming HTLC, then we'll consult the
// remote update log so we can retrieve the information of the original
// HTLC we're failing.
case *lnwire.UpdateFailHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}, nil
// HTLC fails due to malformed onion blocks are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := remoteUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}, nil
case *lnwire.UpdateFee:
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
removeCommitHeights: lntypes.Dual[uint64]{
Remote: commitHeight,
},
}, nil
default:
return nil, fmt.Errorf("unknown message type: %T", wireMsg)
}
}
// remoteLogUpdateToPayDesc converts a LogUpdate into a matching
// paymentDescriptor entry that can be re-inserted into the update log. This
// method is used when we revoked a local commitment, but the connection was
// obstructed before we could sign a remote commitment that contains these
// updates. In this case, we need to re-insert the original entries back into
// the update log so we can resume as if nothing happened. The height of the
// latest local commitment is also expected to be provided. We are restoring all
// log update entries with this height, even though the real commitment height
// may be lower. In the way these fields are used elsewhere, this doesn't change
// anything.
func (lc *LightningChannel) remoteLogUpdateToPayDesc(logUpdate *channeldb.LogUpdate,
localUpdateLog *updateLog, commitHeight uint64) (*paymentDescriptor,
error) {
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateAddHTLC:
pd := &paymentDescriptor{
ChanID: wireMsg.ChanID,
RHash: wireMsg.PaymentHash,
Timeout: wireMsg.Expiry,
Amount: wireMsg.Amount,
EntryType: Add,
HtlcIndex: wireMsg.ID,
LogIndex: logUpdate.LogIndex,
OnionBlob: wireMsg.OnionBlob,
BlindingPoint: wireMsg.BlindingPoint,
CustomRecords: wireMsg.CustomRecords.Copy(),
addCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
}
// We don't need to generate an htlc script yet. This will be
// done once we sign our remote commitment.
return pd, nil
// For HTLCs that the remote party settled, we'll fetch the original
// offered HTLC from the local update log so we can retrieve the same
// paymentDescriptor that ReceiveHTLCSettle would produce.
case *lnwire.UpdateFulfillHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
RPreimage: wireMsg.PaymentPreimage,
LogIndex: logUpdate.LogIndex,
ParentIndex: ogHTLC.HtlcIndex,
EntryType: Settle,
removeCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
}, nil
// If we received a failure for a prior outgoing HTLC, then we'll
// consult the local update log so we can retrieve the information of
// the original HTLC we're failing.
case *lnwire.UpdateFailHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: Fail,
FailReason: wireMsg.Reason[:],
removeCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
}, nil
// HTLC fails due to malformed onion blobs are treated the exact same
// way as regular HTLC fails.
case *lnwire.UpdateFailMalformedHTLC:
ogHTLC := localUpdateLog.lookupHtlc(wireMsg.ID)
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
Amount: ogHTLC.Amount,
RHash: ogHTLC.RHash,
ParentIndex: ogHTLC.HtlcIndex,
LogIndex: logUpdate.LogIndex,
EntryType: MalformedFail,
FailCode: wireMsg.FailureCode,
ShaOnionBlob: wireMsg.ShaOnionBlob,
removeCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
}, nil
// For fee updates we'll create a FeeUpdate type to add to the log. We
// reuse the amount field to hold the fee rate. Since the amount field
// is denominated in msat we won't lose precision when storing the
// sat/kw denominated feerate. Note that we set both the add and remove
// height to the same value, as we consider the fee update locked in by
// adding and removing it at the same height.
case *lnwire.UpdateFee:
return &paymentDescriptor{
ChanID: wireMsg.ChanID,
LogIndex: logUpdate.LogIndex,
Amount: lnwire.NewMSatFromSatoshis(
btcutil.Amount(wireMsg.FeePerKw),
),
EntryType: FeeUpdate,
addCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
removeCommitHeights: lntypes.Dual[uint64]{
Local: commitHeight,
},
}, nil
default:
return nil, errors.New("unknown message type")
}
}
// restoreCommitState will restore the local commitment chain and updateLog
// state to a consistent in-memory representation of the passed disk commitment.
// This method is to be used upon reconnection to our channel counter party.
// Once the connection has been established, we'll prepare our in memory state
// to re-sync states with the remote party, and also verify/extend new proposed
// commitment states.
func (lc *LightningChannel) restoreCommitState(
localCommitState, remoteCommitState *channeldb.ChannelCommitment) error {
// In order to reconstruct the pkScripts on each of the pending HTLC
// outputs (if any) we'll need to regenerate the current revocation for
// this current un-revoked state as well as retrieve the current
// revocation for the remote party.
ourRevPreImage, err := lc.channelState.RevocationProducer.AtIndex(
lc.currentHeight,
)
if err != nil {
return err
}
localCommitPoint := input.ComputeCommitmentPoint(ourRevPreImage[:])
remoteCommitPoint := lc.channelState.RemoteCurrentRevocation
// With the revocation state reconstructed, we can now convert the disk
// commitment into our in-memory commitment format, inserting it into
// the local commitment chain.
localCommit, err := lc.diskCommitToMemCommit(
lntypes.Local, localCommitState, localCommitPoint,
remoteCommitPoint,
)
if err != nil {
return err
}
lc.commitChains.Local.addCommitment(localCommit)
lc.log.Tracef("starting local commitment: %v",
lnutils.SpewLogClosure(lc.commitChains.Local.tail()))
// We'll also do the same for the remote commitment chain.
remoteCommit, err := lc.diskCommitToMemCommit(
lntypes.Remote, remoteCommitState, localCommitPoint,
remoteCommitPoint,
)
if err != nil {
return err
}
lc.commitChains.Remote.addCommitment(remoteCommit)
lc.log.Tracef("starting remote commitment: %v",
lnutils.SpewLogClosure(lc.commitChains.Remote.tail()))
var (
pendingRemoteCommit *commitment
pendingRemoteCommitDiff *channeldb.CommitDiff
pendingRemoteKeyChain *CommitmentKeyRing
)
// Next, we'll check to see if we have an un-acked commitment state we
// extended to the remote party but which was never ACK'd.
pendingRemoteCommitDiff, err = lc.channelState.RemoteCommitChainTip()
if err != nil && err != channeldb.ErrNoPendingCommit {
return err
}
if pendingRemoteCommitDiff != nil {
// If we have a pending remote commitment, then we'll also
// reconstruct the original commitment for that state,
// inserting it into the remote party's commitment chain. We
// don't pass our commit point as we don't have the
// corresponding state for the local commitment chain.
pendingCommitPoint := lc.channelState.RemoteNextRevocation
pendingRemoteCommit, err = lc.diskCommitToMemCommit(
lntypes.Remote, &pendingRemoteCommitDiff.Commitment,
nil, pendingCommitPoint,
)
if err != nil {
return err
}
lc.commitChains.Remote.addCommitment(pendingRemoteCommit)
lc.log.Debugf("pending remote commitment: %v",
lnutils.SpewLogClosure(lc.commitChains.Remote.tip()))
// We'll also re-create the set of commitment keys needed to
// fully re-derive the state.
pendingRemoteKeyChain = DeriveCommitmentKeys(
pendingCommitPoint, lntypes.Remote,
lc.channelState.ChanType,
&lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
}
// Fetch remote updates that we have acked but not yet signed for.
unsignedAckedUpdates, err := lc.channelState.UnsignedAckedUpdates()
if err != nil {
return err
}
// Fetch the local updates the peer still needs to sign for.
remoteUnsignedLocalUpdates, err := lc.channelState.RemoteUnsignedLocalUpdates()
if err != nil {
return err
}
// Finally, with the commitment states restored, we'll now restore the
// state logs based on the current local+remote commit, and any pending
// remote commit that exists.
err = lc.restoreStateLogs(
localCommit, remoteCommit, pendingRemoteCommit,
pendingRemoteCommitDiff, pendingRemoteKeyChain,
unsignedAckedUpdates, remoteUnsignedLocalUpdates,
)
if err != nil {
return err
}
return nil
}
// restoreStateLogs runs through the current locked-in HTLCs from the point of
// view of the channel and insert corresponding log entries (both local and
// remote) for each HTLC read from disk. This method is required to sync the
// in-memory state of the state machine with that read from persistent storage.
func (lc *LightningChannel) restoreStateLogs(
localCommitment, remoteCommitment, pendingRemoteCommit *commitment,
pendingRemoteCommitDiff *channeldb.CommitDiff,
pendingRemoteKeys *CommitmentKeyRing,
unsignedAckedUpdates,
remoteUnsignedLocalUpdates []channeldb.LogUpdate) error {
// We make a map of incoming HTLCs to the height of the remote
// commitment they were first added, and outgoing HTLCs to the height
// of the local commit they were first added. This will be used when we
// restore the update logs below.
incomingRemoteAddHeights := make(map[uint64]uint64)
outgoingLocalAddHeights := make(map[uint64]uint64)
// We start by setting the height of the incoming HTLCs on the pending
// remote commitment. We set these heights first since if there are
// duplicates, these will be overwritten by the lower height of the
// remoteCommitment below.
if pendingRemoteCommit != nil {
for _, r := range pendingRemoteCommit.incomingHTLCs {
incomingRemoteAddHeights[r.HtlcIndex] =
pendingRemoteCommit.height
}
}
// Now set the remote commit height of all incoming HTLCs found on the
// remote commitment.
for _, r := range remoteCommitment.incomingHTLCs {
incomingRemoteAddHeights[r.HtlcIndex] = remoteCommitment.height
}
// And finally we can do the same for the outgoing HTLCs.
for _, l := range localCommitment.outgoingHTLCs {
outgoingLocalAddHeights[l.HtlcIndex] = localCommitment.height
}
// If we have any unsigned acked updates to sign for, then the add is no
// longer on our local commitment, but is still on the remote's commitment.
// <---fail---
// <---sig----
// ----rev--->
// To ensure proper channel operation, we restore the add's addCommitHeightLocal
// field to the height of our local commitment.
for _, logUpdate := range unsignedAckedUpdates {
var htlcIdx uint64
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateFulfillHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailMalformedHTLC:
htlcIdx = wireMsg.ID
default:
continue
}
// The htlcIdx is stored in the map with the local commitment
// height so the related add's addCommitHeightLocal field can be
// restored.
outgoingLocalAddHeights[htlcIdx] = localCommitment.height
}
// If there are local updates that the peer needs to sign for, then the
// corresponding add is no longer on the remote commitment, but is still on
// our local commitment.
// ----fail--->
// ----sig---->
// <---rev-----
// To ensure proper channel operation, we restore the add's addCommitHeightRemote
// field to the height of the remote commitment.
for _, logUpdate := range remoteUnsignedLocalUpdates {
var htlcIdx uint64
switch wireMsg := logUpdate.UpdateMsg.(type) {
case *lnwire.UpdateFulfillHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailHTLC:
htlcIdx = wireMsg.ID
case *lnwire.UpdateFailMalformedHTLC:
htlcIdx = wireMsg.ID
default:
continue
}
// The htlcIdx is stored in the map with the remote commitment
// height so the related add's addCommitHeightRemote field can be
// restored.
incomingRemoteAddHeights[htlcIdx] = remoteCommitment.height
}
// For each incoming HTLC within the local commitment, we add it to the
// remote update log. Since HTLCs are added first to the receiver's
// commitment, we don't have to restore outgoing HTLCs, as they will be
// restored from the remote commitment below.
for i := range localCommitment.incomingHTLCs {
htlc := localCommitment.incomingHTLCs[i]
// We'll need to set the add height of the HTLC. Since it is on
// this local commit, we can use its height as local add
// height. As remote add height we consult the incoming HTLC
// map we created earlier. Note that if this HTLC is not in
// incomingRemoteAddHeights, the remote add height will be set
// to zero, which indicates that it is not added yet.
htlc.addCommitHeights.Local = localCommitment.height
htlc.addCommitHeights.Remote =
incomingRemoteAddHeights[htlc.HtlcIndex]
// Restore the htlc back to the remote log.
lc.updateLogs.Remote.restoreHtlc(&htlc)
}
// Similarly, we'll do the same for the outgoing HTLCs within the
// remote commitment, adding them to the local update log.
for i := range remoteCommitment.outgoingHTLCs {
htlc := remoteCommitment.outgoingHTLCs[i]
// As for the incoming HTLCs, we'll use the current remote
// commit height as remote add height, and consult the map
// created above for the local add height.
htlc.addCommitHeights.Remote = remoteCommitment.height
htlc.addCommitHeights.Local =
outgoingLocalAddHeights[htlc.HtlcIndex]
// Restore the htlc back to the local log.
lc.updateLogs.Local.restoreHtlc(&htlc)
}
// If we have a dangling (un-acked) commit for the remote party, then we
// restore the updates leading up to this commit.
if pendingRemoteCommit != nil {
err := lc.restorePendingLocalUpdates(
pendingRemoteCommitDiff, pendingRemoteKeys,
)
if err != nil {
return err
}
}
// Restore unsigned acked remote log updates so that we can include them
// in our next signature.
err := lc.restorePendingRemoteUpdates(
unsignedAckedUpdates, localCommitment.height,
pendingRemoteCommit,
)
if err != nil {
return err
}
// Restore unsigned acked local log updates so we expect the peer to
// sign for them.
return lc.restorePeerLocalUpdates(
remoteUnsignedLocalUpdates, remoteCommitment.height,
)
}
// restorePendingRemoteUpdates restores the acked remote log updates that we
// haven't yet signed for.
func (lc *LightningChannel) restorePendingRemoteUpdates(
unsignedAckedUpdates []channeldb.LogUpdate,
localCommitmentHeight uint64,
pendingRemoteCommit *commitment) error {
lc.log.Debugf("Restoring %v dangling remote updates",
len(unsignedAckedUpdates))
for _, logUpdate := range unsignedAckedUpdates {
logUpdate := logUpdate
payDesc, err := lc.remoteLogUpdateToPayDesc(
&logUpdate, lc.updateLogs.Local, localCommitmentHeight,
)
if err != nil {
return err
}
logIdx := payDesc.LogIndex
// Sanity check that we are not restoring a remote log update
// that we haven't received a sig for.
if logIdx >= lc.updateLogs.Remote.logIndex {
return fmt.Errorf("attempted to restore an "+
"unsigned remote update: log_index=%v",
logIdx)
}
// We previously restored Adds along with all the other updates,
// but this Add restoration was a no-op as every single one of
// these Adds was already restored since they're all incoming
// htlcs on the local commitment.
if payDesc.EntryType == Add {
continue
}
var (
height uint64
heightSet bool
)
// If we have a pending commitment for them, and this update
// is included in that commit, then we'll use this commitment
// height as this commitment will include these updates for
// their new remote commitment.
if pendingRemoteCommit != nil {
if logIdx < pendingRemoteCommit.messageIndices.Remote {
height = pendingRemoteCommit.height
heightSet = true
}
}
// Insert the update into the log. The log update index doesn't
// need to be incremented (hence the restore calls), because its
// final value was properly persisted with the last local
// commitment update.
switch payDesc.EntryType {
case FeeUpdate:
if heightSet {
payDesc.addCommitHeights.Remote = height
payDesc.removeCommitHeights.Remote = height
}
lc.updateLogs.Remote.restoreUpdate(payDesc)
default:
if heightSet {
payDesc.removeCommitHeights.Remote = height
}
lc.updateLogs.Remote.restoreUpdate(payDesc)
lc.updateLogs.Local.markHtlcModified(
payDesc.ParentIndex,
)
}
}
return nil
}
// restorePeerLocalUpdates restores the acked local log updates the peer still
// needs to sign for.
func (lc *LightningChannel) restorePeerLocalUpdates(updates []channeldb.LogUpdate,
remoteCommitmentHeight uint64) error {
lc.log.Debugf("Restoring %v local updates that the peer should sign",
len(updates))
for _, logUpdate := range updates {
logUpdate := logUpdate
payDesc, err := lc.localLogUpdateToPayDesc(
&logUpdate, lc.updateLogs.Remote,
remoteCommitmentHeight,
)
if err != nil {
return err
}
lc.updateLogs.Local.restoreUpdate(payDesc)
// Since Add updates are not stored and FeeUpdates don't have a
// corresponding entry in the remote update log, we only need to
// mark the htlc as modified if the update was Settle, Fail, or
// MalformedFail.
if payDesc.EntryType != FeeUpdate {
lc.updateLogs.Remote.markHtlcModified(
payDesc.ParentIndex,
)
}
}
return nil
}
// restorePendingLocalUpdates restores the local log updates leading up to the
// given pending remote commitment.
func (lc *LightningChannel) restorePendingLocalUpdates(
pendingRemoteCommitDiff *channeldb.CommitDiff,
pendingRemoteKeys *CommitmentKeyRing) error {
pendingCommit := pendingRemoteCommitDiff.Commitment
pendingHeight := pendingCommit.CommitHeight
auxResult, err := fn.MapOptionZ(
lc.leafStore,
func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(lc.channelState), pendingCommit,
*pendingRemoteKeys, lntypes.Remote,
)
},
).Unpack()
if err != nil {
return fmt.Errorf("unable to fetch aux leaves: %w", err)
}
// If we did have a dangling commit, then we'll examine which updates
// we included in that state and re-insert them into our update log.
for _, logUpdate := range pendingRemoteCommitDiff.LogUpdates {
logUpdate := logUpdate
payDesc, err := lc.logUpdateToPayDesc(
&logUpdate, lc.updateLogs.Remote, pendingHeight,
chainfee.SatPerKWeight(pendingCommit.FeePerKw),
pendingRemoteKeys,
lc.channelState.RemoteChanCfg.DustLimit,
auxResult.AuxLeaves,
)
if err != nil {
return err
}
// Earlier versions did not write the log index to disk for fee
// updates, so they will be unset. To account for this we set
// them to to current update log index.
if payDesc.EntryType == FeeUpdate && payDesc.LogIndex == 0 &&
lc.updateLogs.Local.logIndex > 0 {
payDesc.LogIndex = lc.updateLogs.Local.logIndex
lc.log.Debugf("Found FeeUpdate on "+
"pendingRemoteCommitDiff without logIndex, "+
"using %v", payDesc.LogIndex)
}
// At this point the restored update's logIndex must be equal
// to the update log, otherwise something is horribly wrong.
if payDesc.LogIndex != lc.updateLogs.Local.logIndex {
panic(fmt.Sprintf("log index mismatch: "+
"%v vs %v", payDesc.LogIndex,
lc.updateLogs.Local.logIndex))
}
switch payDesc.EntryType {
case Add:
// The HtlcIndex of the added HTLC _must_ be equal to
// the log's htlcCounter at this point. If it is not we
// panic to catch this.
// TODO(halseth): remove when cause of htlc entry bug
// is found.
if payDesc.HtlcIndex !=
lc.updateLogs.Local.htlcCounter {
panic(fmt.Sprintf("htlc index mismatch: "+
"%v vs %v", payDesc.HtlcIndex,
lc.updateLogs.Local.htlcCounter))
}
lc.updateLogs.Local.appendHtlc(payDesc)
case FeeUpdate:
lc.updateLogs.Local.appendUpdate(payDesc)
default:
lc.updateLogs.Local.appendUpdate(payDesc)
lc.updateLogs.Remote.markHtlcModified(
payDesc.ParentIndex,
)
}
}
return nil
}
// HtlcRetribution contains all the items necessary to seep a revoked HTLC
// transaction from a revoked commitment transaction broadcast by the remote
// party.
type HtlcRetribution struct {
// SignDesc is a design descriptor capable of generating the necessary
// signatures to satisfy the revocation clause of the HTLC's public key
// script.
SignDesc input.SignDescriptor
// OutPoint is the target outpoint of this HTLC pointing to the
// breached commitment transaction.
OutPoint wire.OutPoint
// SecondLevelWitnessScript is the witness script that will be created
// if the second level HTLC transaction for this output is
// broadcast/confirmed. We provide this as if the remote party attempts
// to go to the second level to claim the HTLC then we'll need to
// update the SignDesc above accordingly to sweep properly.
SecondLevelWitnessScript []byte
// SecondLevelTapTweak is the tap tweak value needed to spend the
// second level output in case the breaching party attempts to publish
// it.
SecondLevelTapTweak [32]byte
// IsIncoming is a boolean flag that indicates whether or not this
// HTLC was accepted from the counterparty. A false value indicates that
// this HTLC was offered by us. This flag is used determine the exact
// witness type should be used to sweep the output.
IsIncoming bool
// ResolutionBlob is a blob used for aux channels that permits a
// spender of this output to claim all funds.
ResolutionBlob fn.Option[tlv.Blob]
}
// BreachRetribution contains all the data necessary to bring a channel
// counterparty to justice claiming ALL lingering funds within the channel in
// the scenario that they broadcast a revoked commitment transaction. A
// BreachRetribution is created by the closeObserver if it detects an
// uncooperative close of the channel which uses a revoked commitment
// transaction. The BreachRetribution is then sent over the ContractBreach
// channel in order to allow the subscriber of the channel to dispatch justice.
type BreachRetribution struct {
// BreachTxHash is the transaction hash which breached the channel
// contract by spending from the funding multi-sig with a revoked
// commitment transaction.
BreachTxHash chainhash.Hash
// BreachHeight records the block height confirming the breach
// transaction, used as a height hint when registering for
// confirmations.
BreachHeight uint32
// ChainHash is the chain that the contract beach was identified
// within. This is also the resident chain of the contract (the chain
// the contract was created on).
ChainHash chainhash.Hash
// RevokedStateNum is the revoked state number which was broadcast.
RevokedStateNum uint64
// LocalOutputSignDesc is a SignDescriptor which is capable of
// generating the signature necessary to sweep the output within the
// breach transaction that pays directly us.
//
// NOTE: A nil value indicates that the local output is considered dust
// according to the remote party's dust limit.
LocalOutputSignDesc *input.SignDescriptor
// LocalOutpoint is the outpoint of the output paying to us (the local
// party) within the breach transaction.
LocalOutpoint wire.OutPoint
// LocalDelay is the CSV delay for the to_remote script on the breached
// commitment.
LocalDelay uint32
// RemoteOutputSignDesc is a SignDescriptor which is capable of
// generating the signature required to claim the funds as described
// within the revocation clause of the remote party's commitment
// output.
//
// NOTE: A nil value indicates that the local output is considered dust
// according to the remote party's dust limit.
RemoteOutputSignDesc *input.SignDescriptor
// RemoteOutpoint is the outpoint of the output paying to the remote
// party within the breach transaction.
RemoteOutpoint wire.OutPoint
// RemoteDelay specifies the CSV delay applied to to-local scripts on
// the breaching commitment transaction.
RemoteDelay uint32
// HtlcRetributions is a slice of HTLC retributions for each output
// active HTLC output within the breached commitment transaction.
HtlcRetributions []HtlcRetribution
// KeyRing contains the derived public keys used to construct the
// breaching commitment transaction. This allows downstream clients to
// have access to the public keys used in the scripts.
KeyRing *CommitmentKeyRing
// LocalResolutionBlob is a blob used for aux channels that permits an
// honest party to sweep the local commitment output.
LocalResolutionBlob fn.Option[tlv.Blob]
// RemoteResolutionBlob is a blob used for aux channels that permits an
// honest party to sweep the remote commitment output.
RemoteResolutionBlob fn.Option[tlv.Blob]
}
// NewBreachRetribution creates a new fully populated BreachRetribution for the
// passed channel, at a particular revoked state number. If the spend
// transaction that the breach retribution should target is known, then it can
// be provided via the spendTx parameter. Otherwise, if the spendTx parameter is
// nil, then the revocation log will be checked to see if it contains the info
// required to construct the BreachRetribution. If the revocation log is missing
// the required fields then ErrRevLogDataMissing will be returned.
func NewBreachRetribution(chanState *channeldb.OpenChannel, stateNum uint64,
breachHeight uint32, spendTx *wire.MsgTx,
leafStore fn.Option[AuxLeafStore],
auxResolver fn.Option[AuxContractResolver]) (*BreachRetribution,
error) {
// Query the on-disk revocation log for the snapshot which was recorded
// at this particular state num. Based on whether a legacy revocation
// log is returned or not, we will process them differently.
revokedLog, revokedLogLegacy, err := chanState.FindPreviousState(
stateNum,
)
if err != nil {
return nil, err
}
// Sanity check that at least one of the logs is returned.
if revokedLog == nil && revokedLogLegacy == nil {
return nil, ErrNoRevocationLogFound
}
// With the state number broadcast known, we can now derive/restore the
// proper revocation preimage necessary to sweep the remote party's
// output.
revocationPreimage, err := chanState.RevocationStore.LookUp(stateNum)
if err != nil {
return nil, err
}
commitmentSecret, commitmentPoint := btcec.PrivKeyFromBytes(
revocationPreimage[:],
)
// With the commitment point generated, we can now generate the four
// keys we'll need to reconstruct the commitment state,
keyRing := DeriveCommitmentKeys(
commitmentPoint, lntypes.Remote, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
// Next, reconstruct the scripts as they were present at this state
// number so we can have the proper witness script to sign and include
// within the final witness.
var leaseExpiry uint32
if chanState.ChanType.HasLeaseExpiration() {
leaseExpiry = chanState.ThawHeight
}
auxResult, err := fn.MapOptionZ(
leafStore, func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromRevocation(revokedLog)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("unable to fetch aux leaves: %w", err)
}
// Since it is the remote breach we are reconstructing, the output
// going to us will be a to-remote script with our local params.
remoteAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.RemoteAuxLeaf
},
)(auxResult.AuxLeaves)
isRemoteInitiator := !chanState.IsInitiator
ourScript, ourDelay, err := CommitScriptToRemote(
chanState.ChanType, isRemoteInitiator, keyRing.ToRemoteKey,
leaseExpiry, remoteAuxLeaf,
)
if err != nil {
return nil, err
}
localAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.LocalAuxLeaf
},
)(auxResult.AuxLeaves)
theirDelay := uint32(chanState.RemoteChanCfg.CsvDelay)
theirScript, err := CommitScriptToSelf(
chanState.ChanType, isRemoteInitiator, keyRing.ToLocalKey,
keyRing.RevocationKey, theirDelay, leaseExpiry, localAuxLeaf,
)
if err != nil {
return nil, err
}
// Define an empty breach retribution that will be overwritten based on
// different version of the revocation log found.
var br *BreachRetribution
// Define our and their amounts, that will be overwritten below.
var ourAmt, theirAmt int64
// If the returned *RevocationLog is non-nil, use it to derive the info
// we need.
if revokedLog != nil {
br, ourAmt, theirAmt, err = createBreachRetribution(
revokedLog, spendTx, chanState, keyRing,
commitmentSecret, leaseExpiry, auxResult.AuxLeaves,
)
if err != nil {
return nil, err
}
} else {
// The returned revocation log is in legacy format, which is a
// *ChannelCommitment.
//
// NOTE: this branch is kept for compatibility such that for
// old nodes which refuse to migrate the legacy revocation log
// data can still function. This branch can be deleted once we
// are confident that no legacy format is in use.
br, ourAmt, theirAmt, err = createBreachRetributionLegacy(
revokedLogLegacy, chanState, keyRing, commitmentSecret,
ourScript, theirScript, leaseExpiry,
)
if err != nil {
return nil, err
}
}
// Conditionally instantiate a sign descriptor for each of the
// commitment outputs. If either is considered dust using the remote
// party's dust limit, the respective sign descriptor will be nil.
//
// If our balance exceeds the remote party's dust limit, instantiate
// the sign descriptor for our output.
if ourAmt >= int64(chanState.RemoteChanCfg.DustLimit) {
// As we're about to sweep our own output w/o a delay, we'll
// obtain the witness script for the success/delay path.
witnessScript, err := ourScript.WitnessScriptForPath(
input.ScriptPathDelay,
)
if err != nil {
return nil, err
}
br.LocalOutputSignDesc = &input.SignDescriptor{
SingleTweak: keyRing.LocalCommitKeyTweak,
KeyDesc: chanState.LocalChanCfg.PaymentBasePoint,
WitnessScript: witnessScript,
Output: &wire.TxOut{
PkScript: ourScript.PkScript(),
Value: ourAmt,
},
HashType: sweepSigHash(chanState.ChanType),
}
// For taproot channels, we'll make sure to set the script path
// spend (as our output on their revoked tx still needs the
// delay), and set the control block.
if scriptTree, ok := ourScript.(input.TapscriptDescriptor); ok {
//nolint:ll
br.LocalOutputSignDesc.SignMethod = input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
input.ScriptPathDelay,
)
if err != nil {
return nil, err
}
//nolint:ll
br.LocalOutputSignDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
// At this point, we'll check to see if we need any extra
// resolution data for this output.
resolveReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanState.ChanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
FundingBlob: chanState.CustomBlob,
Type: input.TaprootRemoteCommitSpend,
CloseType: Breach,
CommitTx: spendTx,
SignDesc: *br.LocalOutputSignDesc,
KeyRing: keyRing,
CsvDelay: ourDelay,
BreachCsvDelay: fn.Some(theirDelay),
CommitFee: chanState.RemoteCommitment.CommitFee,
}
if revokedLog != nil {
resolveReq.CommitBlob = revokedLog.CustomBlob.ValOpt()
}
resolveBlob := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
return a.ResolveContract(resolveReq)
},
)
if err := resolveBlob.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
br.LocalResolutionBlob = resolveBlob.Option()
}
// Similarly, if their balance exceeds the remote party's dust limit,
// assemble the sign descriptor for their output, which we can sweep.
if theirAmt >= int64(chanState.RemoteChanCfg.DustLimit) {
// As we're trying to defend the channel against a breach
// attempt from the remote party, we want to obain the
// revocation witness script here.
witnessScript, err := theirScript.WitnessScriptForPath(
input.ScriptPathRevocation,
)
if err != nil {
return nil, err
}
br.RemoteOutputSignDesc = &input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.
RevocationBasePoint,
DoubleTweak: commitmentSecret,
WitnessScript: witnessScript,
Output: &wire.TxOut{
PkScript: theirScript.PkScript(),
Value: theirAmt,
},
HashType: sweepSigHash(chanState.ChanType),
}
// For taproot channels, the remote output (the revoked output)
// is spent with a script path to ensure all information 3rd
// parties need to sweep anchors is revealed on chain.
scriptTree, ok := theirScript.(input.TapscriptDescriptor)
if ok {
//nolint:ll
br.RemoteOutputSignDesc.SignMethod = input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
input.ScriptPathRevocation,
)
if err != nil {
return nil, err
}
//nolint:ll
br.RemoteOutputSignDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
// At this point, we'll check to see if we need any extra
// resolution data for this output.
resolveReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanState.ChanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
FundingBlob: chanState.CustomBlob,
Type: input.TaprootCommitmentRevoke,
CloseType: Breach,
CommitTx: spendTx,
SignDesc: *br.RemoteOutputSignDesc,
KeyRing: keyRing,
CsvDelay: theirDelay,
BreachCsvDelay: fn.Some(theirDelay),
CommitFee: chanState.RemoteCommitment.CommitFee,
}
if revokedLog != nil {
resolveReq.CommitBlob = revokedLog.CustomBlob.ValOpt()
}
resolveBlob := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
return a.ResolveContract(resolveReq)
},
)
if err := resolveBlob.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
br.RemoteResolutionBlob = resolveBlob.Option()
}
// Finally, with all the necessary data constructed, we can pad the
// BreachRetribution struct which houses all the data necessary to
// swiftly bring justice to the cheating remote party.
br.BreachHeight = breachHeight
br.RevokedStateNum = stateNum
br.LocalDelay = ourDelay
br.RemoteDelay = theirDelay
return br, nil
}
// createHtlcRetribution is a helper function to construct an HtlcRetribution
// based on the passed params.
func createHtlcRetribution(chanState *channeldb.OpenChannel,
keyRing *CommitmentKeyRing, commitHash chainhash.Hash,
commitmentSecret *btcec.PrivateKey, leaseExpiry uint32,
htlc *channeldb.HTLCEntry,
auxLeaves fn.Option[CommitAuxLeaves]) (HtlcRetribution, error) {
var emptyRetribution HtlcRetribution
theirDelay := uint32(chanState.RemoteChanCfg.CsvDelay)
isRemoteInitiator := !chanState.IsInitiator
// We'll generate the original second level witness script now, as
// we'll need it if we're revoking an HTLC output on the remote
// commitment transaction, and *they* go to the second level.
secondLevelAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) fn.Option[input.AuxTapLeaf] {
return fn.MapOption(func(val uint16) input.AuxTapLeaf {
idx := input.HtlcIndex(val)
if htlc.Incoming.Val {
leaves := l.IncomingHtlcLeaves[idx]
return leaves.SecondLevelLeaf
}
return l.OutgoingHtlcLeaves[idx].SecondLevelLeaf
})(htlc.HtlcIndex.ValOpt())
},
)(auxLeaves)
secondLevelScript, err := SecondLevelHtlcScript(
chanState.ChanType, isRemoteInitiator,
keyRing.RevocationKey, keyRing.ToLocalKey, theirDelay,
leaseExpiry, fn.FlattenOption(secondLevelAuxLeaf),
)
if err != nil {
return emptyRetribution, err
}
// If this is an incoming HTLC, then this means that they were the
// sender of the HTLC (relative to us). So we'll re-generate the sender
// HTLC script. Otherwise, is this was an outgoing HTLC that we sent,
// then from the PoV of the remote commitment state, they're the
// receiver of this HTLC.
htlcLeaf := fn.ChainOption(
func(l CommitAuxLeaves) fn.Option[input.AuxTapLeaf] {
return fn.MapOption(func(val uint16) input.AuxTapLeaf {
idx := input.HtlcIndex(val)
if htlc.Incoming.Val {
leaves := l.IncomingHtlcLeaves[idx]
return leaves.AuxTapLeaf
}
return l.OutgoingHtlcLeaves[idx].AuxTapLeaf
})(htlc.HtlcIndex.ValOpt())
},
)(auxLeaves)
scriptInfo, err := genHtlcScript(
chanState.ChanType, htlc.Incoming.Val, lntypes.Remote,
htlc.RefundTimeout.Val, htlc.RHash.Val, keyRing,
fn.FlattenOption(htlcLeaf),
)
if err != nil {
return emptyRetribution, err
}
signDesc := input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.
RevocationBasePoint,
DoubleTweak: commitmentSecret,
WitnessScript: scriptInfo.WitnessScriptToSign(),
Output: &wire.TxOut{
PkScript: scriptInfo.PkScript(),
Value: int64(htlc.Amt.Val.Int()),
},
HashType: sweepSigHash(chanState.ChanType),
}
// For taproot HTLC outputs, we need to set the sign method to key
// spend, and also set the tap tweak root needed to derive the proper
// private key.
if scriptTree, ok := scriptInfo.(input.TapscriptDescriptor); ok {
signDesc.SignMethod = input.TaprootKeySpendSignMethod
signDesc.TapTweak = scriptTree.TapTweak()
}
// The second level script we sign will always be the success path.
secondLevelWitnessScript, err := secondLevelScript.WitnessScriptForPath(
input.ScriptPathSuccess,
)
if err != nil {
return emptyRetribution, err
}
// If this is a taproot output, we'll also need to obtain the second
// level tap tweak as well.
var secondLevelTapTweak [32]byte
if scriptTree, ok := secondLevelScript.(input.TapscriptDescriptor); ok {
copy(secondLevelTapTweak[:], scriptTree.TapTweak())
}
return HtlcRetribution{
SignDesc: signDesc,
OutPoint: wire.OutPoint{
Hash: commitHash,
Index: uint32(htlc.OutputIndex.Val),
},
SecondLevelWitnessScript: secondLevelWitnessScript,
IsIncoming: htlc.Incoming.Val,
SecondLevelTapTweak: secondLevelTapTweak,
}, nil
}
// createBreachRetribution creates a partially initiated BreachRetribution
// using a RevocationLog. Returns the constructed retribution, our amount,
// their amount, and a possible non-nil error. If the spendTx parameter is
// non-nil, then it will be used to glean the breach transaction's to-local and
// to-remote output amounts. Otherwise, the RevocationLog will be checked to
// see if these fields are present there. If they are not, then
// ErrRevLogDataMissing is returned.
func createBreachRetribution(revokedLog *channeldb.RevocationLog,
spendTx *wire.MsgTx, chanState *channeldb.OpenChannel,
keyRing *CommitmentKeyRing, commitmentSecret *btcec.PrivateKey,
leaseExpiry uint32,
auxLeaves fn.Option[CommitAuxLeaves]) (*BreachRetribution, int64, int64,
error) {
commitHash := revokedLog.CommitTxHash
// Create the htlc retributions.
htlcRetributions := make([]HtlcRetribution, len(revokedLog.HTLCEntries))
for i, htlc := range revokedLog.HTLCEntries {
hr, err := createHtlcRetribution(
chanState, keyRing, commitHash.Val,
commitmentSecret, leaseExpiry, htlc, auxLeaves,
)
if err != nil {
return nil, 0, 0, err
}
htlcRetributions[i] = hr
}
var ourAmt, theirAmt int64
// Construct the our outpoint.
ourOutpoint := wire.OutPoint{
Hash: commitHash.Val,
}
if revokedLog.OurOutputIndex.Val != channeldb.OutputIndexEmpty {
ourOutpoint.Index = uint32(revokedLog.OurOutputIndex.Val)
// If the spend transaction is provided, then we use it to get
// the value of our output.
if spendTx != nil {
// Sanity check that OurOutputIndex is within range.
if int(ourOutpoint.Index) >= len(spendTx.TxOut) {
return nil, 0, 0, fmt.Errorf("%w: ours=%v, "+
"len(TxOut)=%v",
ErrOutputIndexOutOfRange,
ourOutpoint.Index, len(spendTx.TxOut),
)
}
// Read the amounts from the breach transaction.
//
// NOTE: ourAmt here includes commit fee and anchor
// amount (if enabled).
ourAmt = spendTx.TxOut[ourOutpoint.Index].Value
} else {
// Otherwise, we check to see if the revocation log
// contains our output amount. Due to a previous
// migration, this field may be empty in which case an
// error will be returned.
b, err := revokedLog.OurBalance.ValOpt().UnwrapOrErr(
ErrRevLogDataMissing,
)
if err != nil {
return nil, 0, 0, err
}
ourAmt = int64(b.Int().ToSatoshis())
}
}
// Construct the their outpoint.
theirOutpoint := wire.OutPoint{
Hash: commitHash.Val,
}
if revokedLog.TheirOutputIndex.Val != channeldb.OutputIndexEmpty {
theirOutpoint.Index = uint32(revokedLog.TheirOutputIndex.Val)
// If the spend transaction is provided, then we use it to get
// the value of the remote parties' output.
if spendTx != nil {
// Sanity check that TheirOutputIndex is within range.
if int(revokedLog.TheirOutputIndex.Val) >=
len(spendTx.TxOut) {
return nil, 0, 0, fmt.Errorf("%w: theirs=%v, "+
"len(TxOut)=%v",
ErrOutputIndexOutOfRange,
revokedLog.TheirOutputIndex,
len(spendTx.TxOut),
)
}
// Read the amounts from the breach transaction.
theirAmt = spendTx.TxOut[theirOutpoint.Index].Value
} else {
// Otherwise, we check to see if the revocation log
// contains remote parties' output amount. Due to a
// previous migration, this field may be empty in which
// case an error will be returned.
b, err := revokedLog.TheirBalance.ValOpt().UnwrapOrErr(
ErrRevLogDataMissing,
)
if err != nil {
return nil, 0, 0, err
}
theirAmt = int64(b.Int().ToSatoshis())
}
}
return &BreachRetribution{
BreachTxHash: commitHash.Val,
ChainHash: chanState.ChainHash,
LocalOutpoint: ourOutpoint,
RemoteOutpoint: theirOutpoint,
HtlcRetributions: htlcRetributions,
KeyRing: keyRing,
}, ourAmt, theirAmt, nil
}
// createBreachRetributionLegacy creates a partially initiated
// BreachRetribution using a ChannelCommitment. Returns the constructed
// retribution, our amount, their amount, and a possible non-nil error.
func createBreachRetributionLegacy(revokedLog *channeldb.ChannelCommitment,
chanState *channeldb.OpenChannel, keyRing *CommitmentKeyRing,
commitmentSecret *btcec.PrivateKey,
ourScript, theirScript input.ScriptDescriptor,
leaseExpiry uint32) (*BreachRetribution, int64, int64, error) {
commitHash := revokedLog.CommitTx.TxHash()
ourOutpoint := wire.OutPoint{
Hash: commitHash,
}
theirOutpoint := wire.OutPoint{
Hash: commitHash,
}
// In order to fully populate the breach retribution struct, we'll need
// to find the exact index of the commitment outputs.
for i, txOut := range revokedLog.CommitTx.TxOut {
switch {
case bytes.Equal(txOut.PkScript, ourScript.PkScript()):
ourOutpoint.Index = uint32(i)
case bytes.Equal(txOut.PkScript, theirScript.PkScript()):
theirOutpoint.Index = uint32(i)
}
}
// With the commitment outputs located, we'll now generate all the
// retribution structs for each of the HTLC transactions active on the
// remote commitment transaction.
htlcRetributions := make([]HtlcRetribution, len(revokedLog.Htlcs))
for i, htlc := range revokedLog.Htlcs {
// If the HTLC is dust, then we'll skip it as it doesn't have
// an output on the commitment transaction.
if HtlcIsDust(
chanState.ChanType, htlc.Incoming, lntypes.Remote,
chainfee.SatPerKWeight(revokedLog.FeePerKw),
htlc.Amt.ToSatoshis(),
chanState.RemoteChanCfg.DustLimit,
) {
continue
}
entry, err := channeldb.NewHTLCEntryFromHTLC(htlc)
if err != nil {
return nil, 0, 0, err
}
hr, err := createHtlcRetribution(
chanState, keyRing, commitHash,
commitmentSecret, leaseExpiry, entry,
fn.None[CommitAuxLeaves](),
)
if err != nil {
return nil, 0, 0, err
}
htlcRetributions[i] = hr
}
// Compute the balances in satoshis.
ourAmt := int64(revokedLog.LocalBalance.ToSatoshis())
theirAmt := int64(revokedLog.RemoteBalance.ToSatoshis())
return &BreachRetribution{
BreachTxHash: commitHash,
ChainHash: chanState.ChainHash,
LocalOutpoint: ourOutpoint,
RemoteOutpoint: theirOutpoint,
HtlcRetributions: htlcRetributions,
KeyRing: keyRing,
}, ourAmt, theirAmt, nil
}
// HtlcIsDust determines if an HTLC output is dust or not depending on two
// bits: if the HTLC is incoming and if the HTLC will be placed on our
// commitment transaction, or theirs. These two pieces of information are
// required as we currently used second-level HTLC transactions as off-chain
// covenants. Depending on the two bits, we'll either be using a timeout or
// success transaction which have different weights.
func HtlcIsDust(chanType channeldb.ChannelType,
incoming bool, whoseCommit lntypes.ChannelParty,
feePerKw chainfee.SatPerKWeight, htlcAmt, dustLimit btcutil.Amount,
) bool {
// First we'll determine the fee required for this HTLC based on if this is
// an incoming HTLC or not, and also on whose commitment transaction it
// will be placed on.
var htlcFee btcutil.Amount
switch {
// If this is an incoming HTLC on our commitment transaction, then the
// second-level transaction will be a success transaction.
case incoming && whoseCommit.IsLocal():
htlcFee = HtlcSuccessFee(chanType, feePerKw)
// If this is an incoming HTLC on their commitment transaction, then
// we'll be using a second-level timeout transaction as they've added
// this HTLC.
case incoming && whoseCommit.IsRemote():
htlcFee = HtlcTimeoutFee(chanType, feePerKw)
// If this is an outgoing HTLC on our commitment transaction, then
// we'll be using a timeout transaction as we're the sender of the
// HTLC.
case !incoming && whoseCommit.IsLocal():
htlcFee = HtlcTimeoutFee(chanType, feePerKw)
// If this is an outgoing HTLC on their commitment transaction, then
// we'll be using an HTLC success transaction as they're the receiver
// of this HTLC.
case !incoming && whoseCommit.IsRemote():
htlcFee = HtlcSuccessFee(chanType, feePerKw)
}
return (htlcAmt - htlcFee) < dustLimit
}
// HtlcView represents the "active" HTLCs at a particular point within the
// history of the HTLC update log.
type HtlcView struct {
// NextHeight is the height of the commitment transaction that will be
// created using this view.
NextHeight uint64
// Updates is a Dual of the Local and Remote HTLCs.
Updates lntypes.Dual[[]*paymentDescriptor]
// FeePerKw is the fee rate in sat/kw of the commitment transaction.
FeePerKw chainfee.SatPerKWeight
}
// AuxOurUpdates returns the outgoing HTLCs as a read-only copy of
// AuxHtlcDescriptors.
func (v *HtlcView) AuxOurUpdates() []AuxHtlcDescriptor {
return fn.Map(newAuxHtlcDescriptor, v.Updates.Local)
}
// AuxTheirUpdates returns the incoming HTLCs as a read-only copy of
// AuxHtlcDescriptors.
func (v *HtlcView) AuxTheirUpdates() []AuxHtlcDescriptor {
return fn.Map(newAuxHtlcDescriptor, v.Updates.Remote)
}
// fetchHTLCView returns all the candidate HTLC updates which should be
// considered for inclusion within a commitment based on the passed HTLC log
// indexes.
func (lc *LightningChannel) fetchHTLCView(theirLogIndex,
ourLogIndex uint64) *HtlcView {
var ourHTLCs []*paymentDescriptor
for e := lc.updateLogs.Local.Front(); e != nil; e = e.Next() {
htlc := e.Value
// This HTLC is active from this point-of-view iff the log
// index of the state update is below the specified index in
// our update log.
if htlc.LogIndex < ourLogIndex {
ourHTLCs = append(ourHTLCs, htlc)
}
}
var theirHTLCs []*paymentDescriptor
for e := lc.updateLogs.Remote.Front(); e != nil; e = e.Next() {
htlc := e.Value
// If this is an incoming HTLC, then it is only active from
// this point-of-view if the index of the HTLC addition in
// their log is below the specified view index.
if htlc.LogIndex < theirLogIndex {
theirHTLCs = append(theirHTLCs, htlc)
}
}
return &HtlcView{
Updates: lntypes.Dual[[]*paymentDescriptor]{
Local: ourHTLCs,
Remote: theirHTLCs,
},
}
}
// fetchCommitmentView returns a populated commitment which expresses the state
// of the channel from the point of view of a local or remote chain, evaluating
// the HTLC log up to the passed indexes. This function is used to construct
// both local and remote commitment transactions in order to sign or verify new
// commitment updates. A fully populated commitment is returned which reflects
// the proper balances for both sides at this point in the commitment chain.
func (lc *LightningChannel) fetchCommitmentView(
whoseCommitChain lntypes.ChannelParty,
ourLogIndex, ourHtlcIndex, theirLogIndex, theirHtlcIndex uint64,
keyRing *CommitmentKeyRing) (*commitment, error) {
commitChain := lc.commitChains.Local
dustLimit := lc.channelState.LocalChanCfg.DustLimit
if whoseCommitChain.IsRemote() {
commitChain = lc.commitChains.Remote
dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
nextHeight := commitChain.tip().height + 1
// Run through all the HTLCs that will be covered by this transaction
// in order to update their commitment addition height, and to adjust
// the balances on the commitment transaction accordingly. Note that
// these balances will be *before* taking a commitment fee from the
// initiator.
htlcView := lc.fetchHTLCView(theirLogIndex, ourLogIndex)
ourBalance, theirBalance, _, filteredHTLCView, err := lc.computeView(
htlcView, whoseCommitChain, true,
fn.None[chainfee.SatPerKWeight](),
)
if err != nil {
return nil, err
}
feePerKw := filteredHTLCView.FeePerKw
htlcView.NextHeight = nextHeight
filteredHTLCView.NextHeight = nextHeight
// Actually generate unsigned commitment transaction for this view.
commitTx, err := lc.commitBuilder.createUnsignedCommitmentTx(
ourBalance, theirBalance, whoseCommitChain, feePerKw,
nextHeight, htlcView, filteredHTLCView, keyRing,
commitChain.tip(),
)
if err != nil {
return nil, err
}
// We'll assert that there hasn't been a mistake during fee calculation
// leading to a fee too low.
var totalOut btcutil.Amount
for _, txOut := range commitTx.txn.TxOut {
totalOut += btcutil.Amount(txOut.Value)
}
fee := lc.channelState.Capacity - totalOut
var witnessWeight int64
if lc.channelState.ChanType.IsTaproot() {
witnessWeight = input.TaprootKeyPathWitnessSize
} else {
witnessWeight = input.WitnessCommitmentTxWeight
}
// Since the transaction is not signed yet, we use the witness weight
// used for weight calculation.
uTx := btcutil.NewTx(commitTx.txn)
weight := blockchain.GetTransactionWeight(uTx) + witnessWeight
effFeeRate := chainfee.SatPerKWeight(fee) * 1000 /
chainfee.SatPerKWeight(weight)
if effFeeRate < chainfee.AbsoluteFeePerKwFloor {
return nil, fmt.Errorf("height=%v, for ChannelPoint(%v) "+
"attempts to create commitment with feerate %v: %v",
nextHeight, lc.channelState.FundingOutpoint,
effFeeRate, spew.Sdump(commitTx))
}
// Given the custom blob of the past state, and this new HTLC view,
// we'll generate a new blob for the latest commitment.
newCommitBlob, err := fn.MapOptionZ(
lc.leafStore,
func(s AuxLeafStore) fn.Result[fn.Option[tlv.Blob]] {
return updateAuxBlob(
s, lc.channelState,
commitChain.tip().customBlob, htlcView,
whoseCommitChain, ourBalance, theirBalance,
*keyRing,
)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("unable to fetch aux leaves: %w", err)
}
messageIndices := lntypes.Dual[uint64]{
Local: ourLogIndex,
Remote: theirLogIndex,
}
// With the commitment view created, store the resulting balances and
// transaction with the other parameters for this height.
c := &commitment{
ourBalance: commitTx.ourBalance,
theirBalance: commitTx.theirBalance,
txn: commitTx.txn,
fee: commitTx.fee,
messageIndices: messageIndices,
ourHtlcIndex: ourHtlcIndex,
theirHtlcIndex: theirHtlcIndex,
height: nextHeight,
feePerKw: feePerKw,
dustLimit: dustLimit,
whoseCommit: whoseCommitChain,
customBlob: newCommitBlob,
}
// In order to ensure _none_ of the HTLC's associated with this new
// commitment are mutated, we'll manually copy over each HTLC to its
// respective slice.
c.outgoingHTLCs = make(
[]paymentDescriptor, len(filteredHTLCView.Updates.Local),
)
for i, htlc := range filteredHTLCView.Updates.Local {
c.outgoingHTLCs[i] = *htlc
}
c.incomingHTLCs = make(
[]paymentDescriptor, len(filteredHTLCView.Updates.Remote),
)
for i, htlc := range filteredHTLCView.Updates.Remote {
c.incomingHTLCs[i] = *htlc
}
// Finally, we'll populate all the HTLC indexes so we can track the
// locations of each HTLC in the commitment state. We pass in the sorted
// slice of CLTV deltas in order to properly locate HTLCs that otherwise
// have the same payment hash and amount.
err = c.populateHtlcIndexes(lc.channelState.ChanType, commitTx.cltvs)
if err != nil {
return nil, err
}
return c, nil
}
// fundingTxIn returns the funding output as a transaction input. The input
// returned by this function uses a max sequence number, so it isn't able to be
// used with RBF by default.
func fundingTxIn(chanState *channeldb.OpenChannel) wire.TxIn {
return *wire.NewTxIn(&chanState.FundingOutpoint, nil, nil)
}
// evaluateHTLCView processes all update entries in both HTLC update logs,
// producing a final view which is the result of properly applying all adds,
// settles, timeouts and fee updates found in both logs. The resulting view
// returned reflects the current state of HTLCs within the remote or local
// commitment chain, and the current commitment fee rate.
//
// The return values of this function are as follows:
// 1. The new htlcView reflecting the current channel state.
// 2. A Dual of the updates which have not yet been committed in
// 'whoseCommitChain's commitment chain.
func (lc *LightningChannel) evaluateHTLCView(view *HtlcView,
whoseCommitChain lntypes.ChannelParty, nextHeight uint64) (*HtlcView,
lntypes.Dual[[]*paymentDescriptor], lntypes.Dual[int64], error) {
// We initialize the view's fee rate to the fee rate of the unfiltered
// view. If any fee updates are found when evaluating the view, it will
// be updated.
newView := &HtlcView{
FeePerKw: view.FeePerKw,
NextHeight: nextHeight,
}
noUncommitted := lntypes.Dual[[]*paymentDescriptor]{}
// The fee rate of our view is always the last UpdateFee message from
// the channel's OpeningParty.
openerUpdates := view.Updates.GetForParty(lc.channelState.Initiator())
feeUpdates := fn.Filter(func(u *paymentDescriptor) bool {
return u.EntryType == FeeUpdate
}, openerUpdates)
lastFeeUpdate := fn.Last(feeUpdates)
lastFeeUpdate.WhenSome(func(pd *paymentDescriptor) {
newView.FeePerKw = chainfee.SatPerKWeight(
pd.Amount.ToSatoshis(),
)
})
// We use two maps, one for the local log and one for the remote log to
// keep track of which entries we need to skip when creating the final
// htlc view. We skip an entry whenever we find a settle or a timeout
// modifying an entry.
skip := lntypes.Dual[fn.Set[uint64]]{
Local: fn.NewSet[uint64](),
Remote: fn.NewSet[uint64](),
}
balanceDeltas := lntypes.Dual[int64]{}
parties := [2]lntypes.ChannelParty{lntypes.Local, lntypes.Remote}
for _, party := range parties {
// First we run through non-add entries in both logs,
// populating the skip sets.
resolutions := fn.Filter(func(pd *paymentDescriptor) bool {
switch pd.EntryType {
case Settle, Fail, MalformedFail:
return true
default:
return false
}
}, view.Updates.GetForParty(party))
for _, entry := range resolutions {
addEntry, err := lc.fetchParent(
entry, whoseCommitChain, party.CounterParty(),
)
if err != nil {
noDeltas := lntypes.Dual[int64]{}
return nil, noUncommitted, noDeltas, err
}
skipSet := skip.GetForParty(party.CounterParty())
skipSet.Add(addEntry.HtlcIndex)
rmvHeight := entry.removeCommitHeights.GetForParty(
whoseCommitChain,
)
if rmvHeight == 0 {
switch {
// If an incoming HTLC is being settled, then
// this means that the preimage has been
// received by the settling party Therefore, we
// increase the settling party's balance by the
// HTLC amount.
case entry.EntryType == Settle:
delta := int64(entry.Amount)
balanceDeltas.ModifyForParty(
party,
func(acc int64) int64 {
return acc + delta
},
)
// Otherwise, this HTLC is being failed out,
// therefore the value of the HTLC should
// return to the failing party's counterparty.
case entry.EntryType != Settle:
delta := int64(entry.Amount)
balanceDeltas.ModifyForParty(
party.CounterParty(),
func(acc int64) int64 {
return acc + delta
},
)
}
}
}
}
// Next we take a second pass through all the log entries, skipping any
// settled HTLCs, and debiting the chain state balance due to any newly
// added HTLCs.
for _, party := range parties {
liveAdds := fn.Filter(func(pd *paymentDescriptor) bool {
return pd.EntryType == Add &&
!skip.GetForParty(party).Contains(pd.HtlcIndex)
}, view.Updates.GetForParty(party))
for _, entry := range liveAdds {
// Skip the entries that have already had their add
// commit height set for this commit chain.
addHeight := entry.addCommitHeights.GetForParty(
whoseCommitChain,
)
if addHeight == 0 {
// If this is a new incoming (un-committed)
// HTLC, then we need to update their balance
// accordingly by subtracting the amount of
// the HTLC that are funds pending.
// Similarly, we need to debit our balance if
// this is an out going HTLC to reflect the
// pending balance.
balanceDeltas.ModifyForParty(
party,
func(acc int64) int64 {
return acc - int64(entry.Amount)
},
)
}
}
newView.Updates.SetForParty(party, liveAdds)
}
// Create a function that is capable of identifying whether or not the
// paymentDescriptor has been committed in the commitment chain
// corresponding to whoseCommitmentChain.
isUncommitted := func(update *paymentDescriptor) bool {
switch update.EntryType {
case Add:
return update.addCommitHeights.GetForParty(
whoseCommitChain,
) == 0
case FeeUpdate:
return update.addCommitHeights.GetForParty(
whoseCommitChain,
) == 0
case Settle, Fail, MalformedFail:
return update.removeCommitHeights.GetForParty(
whoseCommitChain,
) == 0
default:
panic("invalid paymentDescriptor EntryType")
}
}
// Collect all of the updates that haven't had their commit heights set
// for the commitment chain corresponding to whoseCommitmentChain.
uncommittedUpdates := lntypes.MapDual(
view.Updates,
func(us []*paymentDescriptor) []*paymentDescriptor {
return fn.Filter(isUncommitted, us)
},
)
return newView, uncommittedUpdates, balanceDeltas, nil
}
// fetchParent is a helper that looks up update log parent entries in the
// appropriate log.
func (lc *LightningChannel) fetchParent(entry *paymentDescriptor,
whoseCommitChain, whoseUpdateLog lntypes.ChannelParty,
) (*paymentDescriptor, error) {
var (
updateLog *updateLog
logName string
)
if whoseUpdateLog.IsRemote() {
updateLog = lc.updateLogs.Remote
logName = "remote"
} else {
updateLog = lc.updateLogs.Local
logName = "local"
}
addEntry := updateLog.lookupHtlc(entry.ParentIndex)
switch {
// We check if the parent entry is not found at this point.
// This could happen for old versions of lnd, and we return an
// error to gracefully shut down the state machine if such an
// entry is still in the logs.
case addEntry == nil:
return nil, fmt.Errorf("unable to find parent entry "+
"%d in %v update log: %v\nUpdatelog: %v",
entry.ParentIndex, logName,
lnutils.SpewLogClosure(entry),
lnutils.SpewLogClosure(updateLog))
// The parent add height should never be zero at this point. If
// that's the case we probably forgot to send a new commitment.
case addEntry.addCommitHeights.GetForParty(whoseCommitChain) == 0:
return nil, fmt.Errorf("parent entry %d for update %d "+
"had zero %v add height", entry.ParentIndex,
entry.LogIndex, whoseCommitChain)
}
return addEntry, nil
}
// generateRemoteHtlcSigJobs generates a series of HTLC signature jobs for the
// sig pool, along with a channel that if closed, will cancel any jobs after
// they have been submitted to the sigPool. This method is to be used when
// generating a new commitment for the remote party. The jobs generated by the
// signature can be submitted to the sigPool to generate all the signatures
// asynchronously and in parallel.
func genRemoteHtlcSigJobs(keyRing *CommitmentKeyRing,
chanState *channeldb.OpenChannel, leaseExpiry uint32,
remoteCommitView *commitment,
leafStore fn.Option[AuxLeafStore]) ([]SignJob, []AuxSigJob,
chan struct{}, error) {
var (
isRemoteInitiator = !chanState.IsInitiator
localChanCfg = chanState.LocalChanCfg
remoteChanCfg = chanState.RemoteChanCfg
chanType = chanState.ChanType
)
txHash := remoteCommitView.txn.TxHash()
dustLimit := remoteChanCfg.DustLimit
feePerKw := remoteCommitView.feePerKw
sigHashType := HtlcSigHashType(chanType)
// With the keys generated, we'll make a slice with enough capacity to
// hold potentially all the HTLCs. The actual slice may be a bit
// smaller (than its total capacity) and some HTLCs may be dust.
numSigs := len(remoteCommitView.incomingHTLCs) +
len(remoteCommitView.outgoingHTLCs)
sigBatch := make([]SignJob, 0, numSigs)
auxSigBatch := make([]AuxSigJob, 0, numSigs)
var err error
cancelChan := make(chan struct{})
diskCommit := remoteCommitView.toDiskCommit(lntypes.Remote)
auxResult, err := fn.MapOptionZ(
leafStore, func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(chanState), *diskCommit,
*keyRing, lntypes.Remote,
)
},
).Unpack()
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to fetch aux leaves: "+
"%w", err)
}
// For each outgoing and incoming HTLC, if the HTLC isn't considered a
// dust output after taking into account second-level HTLC fees, then a
// sigJob will be generated and appended to the current batch.
for _, htlc := range remoteCommitView.incomingHTLCs {
if HtlcIsDust(
chanType, true, lntypes.Remote, feePerKw,
htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
// If the HTLC isn't dust, then we'll create an empty sign job
// to add to the batch momentarily.
var sigJob SignJob
sigJob.Cancel = cancelChan
sigJob.Resp = make(chan SignJobResp, 1)
// As this is an incoming HTLC and we're sinning the commitment
// transaction of the remote node, we'll need to generate an
// HTLC timeout transaction for them. The output of the timeout
// transaction needs to account for fees, so we'll compute the
// required fee and output now.
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
auxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.IncomingHtlcLeaves
return leaves[htlc.HtlcIndex].SecondLevelLeaf
},
)(auxResult.AuxLeaves)
// With the fee calculate, we can properly create the HTLC
// timeout transaction using the HTLC amount minus the fee.
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.remoteOutputIndex),
}
sigJob.Tx, err = CreateHtlcTimeoutTx(
chanType, isRemoteInitiator, op, outputAmt,
htlc.Timeout, uint32(remoteChanCfg.CsvDelay),
leaseExpiry, keyRing.RevocationKey, keyRing.ToLocalKey,
auxLeaf,
)
if err != nil {
return nil, nil, nil, err
}
// Construct a full hash cache as we may be signing a segwit v1
// sighash.
txOut := remoteCommitView.txn.TxOut[htlc.remoteOutputIndex]
prevFetcher := txscript.NewCannedPrevOutputFetcher(
txOut.PkScript, int64(htlc.Amount.ToSatoshis()),
)
hashCache := txscript.NewTxSigHashes(sigJob.Tx, prevFetcher)
// Finally, we'll generate a sign descriptor to generate a
// signature to give to the remote party for this commitment
// transaction. Note we use the raw HTLC amount.
sigJob.SignDesc = input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlc.theirWitnessScript,
Output: txOut,
PrevOutputFetcher: prevFetcher,
HashType: sigHashType,
SigHashes: hashCache,
InputIndex: 0,
}
sigJob.OutputIndex = htlc.remoteOutputIndex
// If this is a taproot channel, then we'll need to set the
// method type to ensure we generate a valid signature.
if chanType.IsTaproot() {
//nolint:ll
sigJob.SignDesc.SignMethod = input.TaprootScriptSpendSignMethod
}
sigBatch = append(sigBatch, sigJob)
auxSigBatch = append(auxSigBatch, NewAuxSigJob(
sigJob, *keyRing, true, newAuxHtlcDescriptor(&htlc),
remoteCommitView.customBlob, auxLeaf, cancelChan,
))
}
for _, htlc := range remoteCommitView.outgoingHTLCs {
if HtlcIsDust(
chanType, false, lntypes.Remote, feePerKw,
htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
sigJob := SignJob{}
sigJob.Cancel = cancelChan
sigJob.Resp = make(chan SignJobResp, 1)
// As this is an outgoing HTLC and we're signing the commitment
// transaction of the remote node, we'll need to generate an
// HTLC success transaction for them. The output of the timeout
// transaction needs to account for fees, so we'll compute the
// required fee and output now.
htlcFee := HtlcSuccessFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
auxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.OutgoingHtlcLeaves
return leaves[htlc.HtlcIndex].SecondLevelLeaf
},
)(auxResult.AuxLeaves)
// With the proper output amount calculated, we can now
// generate the success transaction using the remote party's
// CSV delay.
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.remoteOutputIndex),
}
sigJob.Tx, err = CreateHtlcSuccessTx(
chanType, isRemoteInitiator, op, outputAmt,
uint32(remoteChanCfg.CsvDelay), leaseExpiry,
keyRing.RevocationKey, keyRing.ToLocalKey,
auxLeaf,
)
if err != nil {
return nil, nil, nil, err
}
// Construct a full hash cache as we may be signing a segwit v1
// sighash.
txOut := remoteCommitView.txn.TxOut[htlc.remoteOutputIndex]
prevFetcher := txscript.NewCannedPrevOutputFetcher(
txOut.PkScript, int64(htlc.Amount.ToSatoshis()),
)
hashCache := txscript.NewTxSigHashes(sigJob.Tx, prevFetcher)
// Finally, we'll generate a sign descriptor to generate a
// signature to give to the remote party for this commitment
// transaction. Note we use the raw HTLC amount.
sigJob.SignDesc = input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlc.theirWitnessScript,
Output: txOut,
PrevOutputFetcher: prevFetcher,
HashType: sigHashType,
SigHashes: hashCache,
InputIndex: 0,
}
sigJob.OutputIndex = htlc.remoteOutputIndex
// If this is a taproot channel, then we'll need to set the
// method type to ensure we generate a valid signature.
if chanType.IsTaproot() {
//nolint:ll
sigJob.SignDesc.SignMethod = input.TaprootScriptSpendSignMethod
}
sigBatch = append(sigBatch, sigJob)
auxSigBatch = append(auxSigBatch, NewAuxSigJob(
sigJob, *keyRing, false, newAuxHtlcDescriptor(&htlc),
remoteCommitView.customBlob, auxLeaf, cancelChan,
))
}
return sigBatch, auxSigBatch, cancelChan, nil
}
// createCommitDiff will create a commit diff given a new pending commitment
// for the remote party and the necessary signatures for the remote party to
// validate this new state. This function is called right before sending the
// new commitment to the remote party. The commit diff returned contains all
// information necessary for retransmission.
func (lc *LightningChannel) createCommitDiff(newCommit *commitment,
commitSig lnwire.Sig, htlcSigs []lnwire.Sig,
auxSigs []fn.Option[tlv.Blob]) (*channeldb.CommitDiff, error) {
var (
logUpdates []channeldb.LogUpdate
ackAddRefs []channeldb.AddRef
settleFailRefs []channeldb.SettleFailRef
openCircuitKeys []models.CircuitKey
closedCircuitKeys []models.CircuitKey
)
// We'll now run through our local update log to locate the items which
// were only just committed within this pending state. This will be the
// set of items we need to retransmit if we reconnect and find that
// they didn't process this new state fully.
for e := lc.updateLogs.Local.Front(); e != nil; e = e.Next() {
pd := e.Value
// If this entry wasn't committed at the exact height of this
// remote commitment, then we'll skip it as it was already
// lingering in the log.
if pd.addCommitHeights.Remote != newCommit.height &&
pd.removeCommitHeights.Remote != newCommit.height {
continue
}
// We'll map the type of the paymentDescriptor to one of the
// four messages that it corresponds to. With this set of
// messages obtained, we can simply read from disk and re-send
// them in the case of a needed channel sync.
switch pd.EntryType {
case Add:
// Gather any references for circuits opened by this Add
// HTLC.
if pd.OpenCircuitKey != nil {
openCircuitKeys = append(
openCircuitKeys, *pd.OpenCircuitKey,
)
}
case Settle, Fail, MalformedFail:
// Gather the fwd pkg references from any settle or fail
// packets, if they exist.
if pd.SourceRef != nil {
ackAddRefs = append(ackAddRefs, *pd.SourceRef)
}
if pd.DestRef != nil {
settleFailRefs = append(
settleFailRefs, *pd.DestRef,
)
}
if pd.ClosedCircuitKey != nil {
closedCircuitKeys = append(
closedCircuitKeys, *pd.ClosedCircuitKey,
)
}
case FeeUpdate:
// Nothing special to do.
}
logUpdates = append(logUpdates, pd.toLogUpdate())
}
// With the set of log updates mapped into wire messages, we'll now
// convert the in-memory commit into a format suitable for writing to
// disk.
diskCommit := newCommit.toDiskCommit(lntypes.Remote)
// We prepare the commit sig message to be sent to the remote party.
commitSigMsg := &lnwire.CommitSig{
ChanID: lnwire.NewChanIDFromOutPoint(
lc.channelState.FundingOutpoint,
),
CommitSig: commitSig,
HtlcSigs: htlcSigs,
}
// Encode and check the size of the custom records now.
auxCustomRecords, err := fn.MapOptionZ(
lc.auxSigner,
func(s AuxSigner) fn.Result[lnwire.CustomRecords] {
blobOption, err := s.PackSigs(auxSigs).Unpack()
if err != nil {
return fn.Err[lnwire.CustomRecords](err)
}
// We now serialize the commit sig message without the
// custom records to make sure we have space for them.
var buf bytes.Buffer
err = commitSigMsg.Encode(&buf, 0)
if err != nil {
return fn.Err[lnwire.CustomRecords](err)
}
// The number of available bytes is the max message size
// minus the size of the message without the custom
// records. We also subtract 8 bytes for encoding
// overhead of the custom records (just some safety
// padding).
available := lnwire.MaxMsgBody - buf.Len() - 8
blob := blobOption.UnwrapOr(nil)
if len(blob) > available {
err = fmt.Errorf("aux sigs size %d exceeds "+
"max allowed size of %d", len(blob),
available)
return fn.Err[lnwire.CustomRecords](err)
}
records, err := lnwire.ParseCustomRecords(blob)
if err != nil {
return fn.Err[lnwire.CustomRecords](err)
}
return fn.Ok(records)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("error packing aux sigs: %w", err)
}
commitSigMsg.CustomRecords = auxCustomRecords
return &channeldb.CommitDiff{
Commitment: *diskCommit,
CommitSig: commitSigMsg,
LogUpdates: logUpdates,
OpenedCircuitKeys: openCircuitKeys,
ClosedCircuitKeys: closedCircuitKeys,
AddAcks: ackAddRefs,
SettleFailAcks: settleFailRefs,
}, nil
}
// getUnsignedAckedUpdates returns all remote log updates that we haven't
// signed for yet ourselves.
func (lc *LightningChannel) getUnsignedAckedUpdates() []channeldb.LogUpdate {
// Fetch the last remote update that we have signed for.
lastRemoteCommitted :=
lc.commitChains.Remote.tail().messageIndices.Remote
// Fetch the last remote update that we have acked.
lastLocalCommitted :=
lc.commitChains.Local.tail().messageIndices.Remote
// We'll now run through the remote update log to locate the items that
// we haven't signed for yet. This will be the set of items we need to
// restore if we reconnect in order to produce the signature that the
// remote party expects.
var logUpdates []channeldb.LogUpdate
for e := lc.updateLogs.Remote.Front(); e != nil; e = e.Next() {
pd := e.Value
// Skip all remote updates that we have already included in our
// commit chain.
if pd.LogIndex < lastRemoteCommitted {
continue
}
// Skip all remote updates that we haven't acked yet. At the
// moment this function is called, there shouldn't be any, but
// we check it anyway to make this function more generally
// usable.
if pd.LogIndex >= lastLocalCommitted {
continue
}
logUpdates = append(logUpdates, pd.toLogUpdate())
}
return logUpdates
}
// CalcFeeBuffer calculates a FeeBuffer in accordance with the recommended
// amount specified in BOLT 02. It accounts for two times the current fee rate
// plus an additional htlc at this higher fee rate which allows our peer to add
// an htlc even if our channel is drained locally.
// See: https://github.com/lightning/bolts/blob/master/02-peer-protocol.md
func CalcFeeBuffer(feePerKw chainfee.SatPerKWeight,
commitWeight lntypes.WeightUnit) lnwire.MilliSatoshi {
// Account for a 100% in fee rate increase.
bufferFeePerKw := 2 * feePerKw
feeBuffer := lnwire.NewMSatFromSatoshis(
// Account for an additional htlc at the higher fee level.
bufferFeePerKw.FeeForWeight(commitWeight + input.HTLCWeight),
)
return feeBuffer
}
// BufferType is used to determine what kind of additional buffer should be left
// when evaluating the usable balance of a channel.
type BufferType uint8
const (
// NoBuffer means no additional buffer is accounted for. This is
// important when verifying an already locked-in commitment state.
NoBuffer BufferType = iota
// FeeBuffer accounts for several edge cases. One of them is where
// a locally drained channel might become unusable due to the non-opener
// of the channel not being able to add a non-dust htlc to the channel
// state because we as a channel opener cannot pay the additional fees
// an htlc would require on the commitment tx.
// See: https://github.com/lightningnetwork/lightning-rfc/issues/728
//
// Moreover it mitigates the situation where htlcs are added
// simultaneously to the commitment transaction. This cannot be avoided
// until the feature __option_simplified_update__ is available in the
// protocol and deployed widely in the network.
// More information about the issue and the simplified commitment flow
// can be found here:
// https://github.com/lightningnetwork/lnd/issues/7657
// https://github.com/lightning/bolts/pull/867
//
// The last advantage is that we can react to fee spikes (up or down)
// by accounting for at least twice the size of the current fee rate
// (BOLT02). It also accounts for decreases in the fee rate because
// former dust htlcs might now become normal outputs so the overall
// fee might increase although the fee rate decreases (this is only true
// for non-anchor channels because htlcs have to account for their
// fee of the second-level covenant transactions).
FeeBuffer
// AdditionalHtlc just accounts for an additional htlc which is helpful
// when deciding about a fee update of the commitment transaction.
// Leaving always room for an additional htlc makes sure that even
// though we are the opener of a channel a new fee update will always
// allow an htlc from our peer to be added to the commitment tx.
AdditionalHtlc
)
// String returns a human readable name for the buffer type.
func (b BufferType) String() string {
switch b {
case NoBuffer:
return "nobuffer"
case FeeBuffer:
return "feebuffer"
case AdditionalHtlc:
return "additionalhtlc"
default:
return "unknown"
}
}
// applyCommitFee applies the commitFee including a buffer to the balance amount
// and verifies that it does not become negative. This function returns the new
// balance, the exact buffer amount (excluding the commitment fee) and the
// commitment fee.
func (lc *LightningChannel) applyCommitFee(
balance lnwire.MilliSatoshi, commitWeight lntypes.WeightUnit,
feePerKw chainfee.SatPerKWeight,
buffer BufferType) (lnwire.MilliSatoshi, lnwire.MilliSatoshi,
lnwire.MilliSatoshi, error) {
commitFee := feePerKw.FeeForWeight(commitWeight)
commitFeeMsat := lnwire.NewMSatFromSatoshis(commitFee)
var bufferAmt lnwire.MilliSatoshi
switch buffer {
// The FeeBuffer is subtracted from the balance. It is of predefined
// size add keeps room for an up to 2x increase in fees of the
// commitment tx and an additional htlc at this fee level reserved for
// the peer.
case FeeBuffer:
// Make sure that we are the initiator of the channel before we
// apply the FeeBuffer.
if !lc.channelState.IsInitiator {
return 0, 0, 0, ErrFeeBufferNotInitiator
}
// The FeeBuffer already includes the commitFee.
bufferAmt = CalcFeeBuffer(feePerKw, commitWeight)
if bufferAmt < balance {
newBalance := balance - bufferAmt
return newBalance, bufferAmt - commitFeeMsat,
commitFeeMsat, nil
}
// The AdditionalHtlc buffer type does NOT keep a FeeBuffer but solely
// keeps space for an additional htlc on the commitment tx which our
// peer can add.
case AdditionalHtlc:
additionalHtlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(input.HTLCWeight),
)
bufferAmt = commitFeeMsat + additionalHtlcFee
newBalance := balance - bufferAmt
if bufferAmt < balance {
return newBalance, additionalHtlcFee, commitFeeMsat, nil
}
// The default case does not account for any buffer on the local balance
// but just subtracts the commit fee.
default:
if commitFeeMsat < balance {
newBalance := balance - commitFeeMsat
return newBalance, 0, commitFeeMsat, nil
}
}
// We still return the amount and bufferAmt here to log them at a later
// stage.
return balance, bufferAmt, commitFeeMsat, ErrBelowChanReserve
}
// validateCommitmentSanity is used to validate the current state of the
// commitment transaction in terms of the ChannelConstraints that we and our
// remote peer agreed upon during the funding workflow. The
// predict[Our|Their]Add should parameters should be set to a valid
// paymentDescriptor if we are validating in the state when adding a new HTLC,
// or nil otherwise.
func (lc *LightningChannel) validateCommitmentSanity(theirLogCounter,
ourLogCounter uint64, whoseCommitChain lntypes.ChannelParty,
buffer BufferType, predictOurAdd, predictTheirAdd *paymentDescriptor,
) error {
// First fetch the initial balance before applying any updates.
commitChain := lc.commitChains.Local
if whoseCommitChain.IsRemote() {
commitChain = lc.commitChains.Remote
}
ourInitialBalance := commitChain.tip().ourBalance
theirInitialBalance := commitChain.tip().theirBalance
// Fetch all updates not committed.
view := lc.fetchHTLCView(theirLogCounter, ourLogCounter)
// If we are checking if we can add a new HTLC, we add this to the
// appropriate update log, in order to validate the sanity of the
// commitment resulting from _actually adding_ this HTLC to the state.
if predictOurAdd != nil {
view.Updates.Local = append(view.Updates.Local, predictOurAdd)
}
if predictTheirAdd != nil {
view.Updates.Remote = append(
view.Updates.Remote, predictTheirAdd,
)
}
ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView(
view, whoseCommitChain, false,
fn.None[chainfee.SatPerKWeight](),
)
if err != nil {
return err
}
feePerKw := filteredView.FeePerKw
// Ensure that the fee being applied is enough to be relayed across the
// network in a reasonable time frame.
if feePerKw < chainfee.FeePerKwFloor {
return fmt.Errorf("commitment fee per kw %v below fee floor %v",
feePerKw, chainfee.FeePerKwFloor)
}
// The channel opener has to account for the commitment fee. This
// includes also a buffer type. Depending on whether we are the opener
// of the channel we either want to enforce a buffer on the local
// amount.
var (
bufferAmt lnwire.MilliSatoshi
commitFee lnwire.MilliSatoshi
)
if lc.channelState.IsInitiator {
ourBalance, bufferAmt, commitFee, err = lc.applyCommitFee(
ourBalance, commitWeight, feePerKw, buffer,
)
if err != nil {
lc.log.Errorf("Cannot pay for the CommitmentFee of "+
"the ChannelState: ourBalance is negative "+
"after applying the fee: ourBalance=%v, "+
"commitFee=%v, feeBuffer=%v (type=%v) "+
"local_chan_initiator", ourBalance,
commitFee, bufferAmt, buffer)
return err
}
} else {
// No FeeBuffer is enforced when we are not the initiator of
// the channel. We cannot do this, because if our peer does not
// enforce the FeeBuffer (older LND software) the peer might
// bring his balance below the FeeBuffer making the channel
// stuck because locally we will never put another outgoing HTLC
// on the channel state. The FeeBuffer should ONLY be enforced
// if we locally pay for the commitment transaction.
theirBalance, bufferAmt, commitFee, err = lc.applyCommitFee(
theirBalance, commitWeight, feePerKw, NoBuffer,
)
if err != nil {
lc.log.Errorf("Cannot pay for the CommitmentFee "+
"of the ChannelState: theirBalance is "+
"negative after applying the fee: "+
"theirBalance=%v, commitFee=%v, feeBuffer=%v "+
"(type=%v) remote_chan_initiator",
theirBalance, commitFee, bufferAmt, buffer)
return err
}
}
// The commitment fee was accounted for successfully now make sure we
// still do have enough left to account for the channel reserve.
// If the added HTLCs will decrease the balance, make sure they won't
// dip the local and remote balances below the channel reserves.
ourReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.ChanReserve,
)
theirReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.ChanReserve,
)
switch {
// TODO(ziggie): Allow the peer dip us below the channel reserve when
// our local balance would increase during this commitment dance or
// allow us to dip the peer below its reserve then their balance would
// increase during this commitment dance. This is needed for splicing
// when e.g. a new channel (bigger capacity) has a higher required
// reserve and the peer would need to add an additional htlc to push the
// missing amount to our side and viceversa.
// See: https://github.com/lightningnetwork/lnd/issues/8249
case ourBalance < ourInitialBalance && ourBalance < ourReserve:
lc.log.Debugf("Funds below chan reserve: ourBalance=%v, "+
"ourReserve=%v, commitFee=%v, feeBuffer=%v "+
"chan_initiator=%v", ourBalance, ourReserve,
commitFee, bufferAmt, lc.channelState.IsInitiator)
return fmt.Errorf("%w: our balance below chan reserve",
ErrBelowChanReserve)
case theirBalance < theirInitialBalance && theirBalance < theirReserve:
lc.log.Debugf("Funds below chan reserve: theirBalance=%v, "+
"theirReserve=%v", theirBalance, theirReserve)
return fmt.Errorf("%w: their balance below chan reserve",
ErrBelowChanReserve)
}
// validateUpdates take a set of updates, and validates them against
// the passed channel constraints.
validateUpdates := func(updates []*paymentDescriptor,
constraints *channeldb.ChannelConfig) error {
// We keep track of the number of HTLCs in flight for the
// commitment, and the amount in flight.
var numInFlight uint16
var amtInFlight lnwire.MilliSatoshi
// Go through all updates, checking that they don't violate the
// channel constraints.
for _, entry := range updates {
if entry.EntryType == Add {
// An HTLC is being added, this will add to the
// number and amount in flight.
amtInFlight += entry.Amount
numInFlight++
// Check that the HTLC amount is positive.
if entry.Amount == 0 {
return ErrInvalidHTLCAmt
}
// Check that the value of the HTLC they added
// is above our minimum.
if entry.Amount < constraints.MinHTLC {
return ErrBelowMinHTLC
}
}
}
// Now that we know the total value of added HTLCs, we check
// that this satisfy the MaxPendingAmont constraint.
if amtInFlight > constraints.MaxPendingAmount {
return ErrMaxPendingAmount
}
// In this step, we verify that the total number of active
// HTLCs does not exceed the constraint of the maximum number
// of HTLCs in flight.
if numInFlight > constraints.MaxAcceptedHtlcs {
return ErrMaxHTLCNumber
}
return nil
}
// First check that the remote updates won't violate it's channel
// constraints.
err = validateUpdates(
filteredView.Updates.Remote, &lc.channelState.RemoteChanCfg,
)
if err != nil {
return err
}
// Secondly check that our updates won't violate our channel
// constraints.
err = validateUpdates(
filteredView.Updates.Local, &lc.channelState.LocalChanCfg,
)
if err != nil {
return err
}
return nil
}
// CommitSigs holds the set of related signatures for a new commitment
// transaction state.
type CommitSigs struct {
// CommitSig is the normal commitment signature. This will only be a
// non-zero commitment signature for non-taproot channels.
CommitSig lnwire.Sig
// HtlcSigs is the set of signatures for all HTLCs in the commitment
// transaction. Depending on the channel type, these will either be
// ECDSA or Schnorr signatures.
HtlcSigs []lnwire.Sig
// PartialSig is the musig2 partial signature for taproot commitment
// transactions.
PartialSig lnwire.OptPartialSigWithNonceTLV
// AuxSigBlob is the blob containing all the auxiliary signatures for
// this new commitment state.
AuxSigBlob tlv.Blob
}
// NewCommitState wraps the various signatures needed to properly
// propose/accept a new commitment state. This includes the signer's nonce for
// musig2 channels.
type NewCommitState struct {
*CommitSigs
// PendingHTLCs is the set of new/pending HTLCs produced by this
// commitment state.
PendingHTLCs []channeldb.HTLC
}
// SignNextCommitment signs a new commitment which includes any previous
// unsettled HTLCs, any new HTLCs, and any modifications to prior HTLCs
// committed in previous commitment updates. Signing a new commitment
// decrements the available revocation window by 1. After a successful method
// call, the remote party's commitment chain is extended by a new commitment
// which includes all updates to the HTLC log prior to this method invocation.
// The first return parameter is the signature for the commitment transaction
// itself, while the second parameter is a slice of all HTLC signatures (if
// any). The HTLC signatures are sorted according to the BIP 69 order of the
// HTLC's on the commitment transaction. Finally, the new set of pending HTLCs
// for the remote party's commitment are also returned.
//
//nolint:funlen
func (lc *LightningChannel) SignNextCommitment(
ctx context.Context) (*NewCommitState, error) {
lc.Lock()
defer lc.Unlock()
// Check for empty commit sig. This should never happen, but we don't
// dare to fail hard here. We assume peers can deal with the empty sig
// and continue channel operation. We log an error so that the bug
// causing this can be tracked down.
if !lc.oweCommitment(lntypes.Local) {
lc.log.Errorf("sending empty commit sig")
}
var (
sig lnwire.Sig
partialSig *lnwire.PartialSigWithNonce
htlcSigs []lnwire.Sig
)
// If we're awaiting for an ACK to a commitment signature, or if we
// don't yet have the initial next revocation point of the remote
// party, then we're unable to create new states. Each time we create a
// new state, we consume a prior revocation point.
commitPoint := lc.channelState.RemoteNextRevocation
unacked := lc.commitChains.Remote.hasUnackedCommitment()
if unacked || commitPoint == nil {
lc.log.Tracef("waiting for remote ack=%v, nil "+
"RemoteNextRevocation: %v", unacked, commitPoint == nil)
return nil, ErrNoWindow
}
// Determine the last update on the remote log that has been locked in.
remoteACKedIndex := lc.commitChains.Local.tail().messageIndices.Remote
remoteHtlcIndex := lc.commitChains.Local.tail().theirHtlcIndex
// Before we extend this new commitment to the remote commitment chain,
// ensure that we aren't violating any of the constraints the remote
// party set up when we initially set up the channel. If we are, then
// we'll abort this state transition.
// We do not enforce the FeeBuffer here because when we reach this
// point all updates will have to get locked-in so we enforce the
// minimum requirement.
err := lc.validateCommitmentSanity(
remoteACKedIndex, lc.updateLogs.Local.logIndex, lntypes.Remote,
NoBuffer, nil, nil,
)
if err != nil {
return nil, err
}
// Grab the next commitment point for the remote party. This will be
// used within fetchCommitmentView to derive all the keys necessary to
// construct the commitment state.
keyRing := DeriveCommitmentKeys(
commitPoint, lntypes.Remote, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
// Create a new commitment view which will calculate the evaluated
// state of the remote node's new commitment including our latest added
// HTLCs. The view includes the latest balances for both sides on the
// remote node's chain, and also update the addition height of any new
// HTLC log entries. When we creating a new remote view, we include
// _all_ of our changes (pending or committed) but only the remote
// node's changes up to the last change we've ACK'd.
newCommitView, err := lc.fetchCommitmentView(
lntypes.Remote, lc.updateLogs.Local.logIndex,
lc.updateLogs.Local.htlcCounter, remoteACKedIndex,
remoteHtlcIndex, keyRing,
)
if err != nil {
return nil, err
}
lc.log.Tracef("extending remote chain to height %v, "+
"local_log=%v, remote_log=%v",
newCommitView.height,
lc.updateLogs.Local.logIndex, remoteACKedIndex)
lc.log.Tracef("remote chain: our_balance=%v, "+
"their_balance=%v, commit_tx: %v",
newCommitView.ourBalance,
newCommitView.theirBalance,
lnutils.SpewLogClosure(newCommitView.txn))
// With the commitment view constructed, if there are any HTLC's, we'll
// need to generate signatures of each of them for the remote party's
// commitment state. We do so in two phases: first we generate and
// submit the set of signature jobs to the worker pool.
var leaseExpiry uint32
if lc.channelState.ChanType.HasLeaseExpiration() {
leaseExpiry = lc.channelState.ThawHeight
}
sigBatch, auxSigBatch, cancelChan, err := genRemoteHtlcSigJobs(
keyRing, lc.channelState, leaseExpiry, newCommitView,
lc.leafStore,
)
if err != nil {
return nil, err
}
// We'll need to send over the signatures to the remote party in the
// order as they appear on the commitment transaction after BIP 69
// sorting.
slices.SortFunc(sigBatch, func(i, j SignJob) int {
return cmp.Compare(i.OutputIndex, j.OutputIndex)
})
slices.SortFunc(auxSigBatch, func(i, j AuxSigJob) int {
return cmp.Compare(i.OutputIndex, j.OutputIndex)
})
lc.sigPool.SubmitSignBatch(sigBatch)
err = fn.MapOptionZ(lc.auxSigner, func(a AuxSigner) error {
return a.SubmitSecondLevelSigBatch(
NewAuxChanState(lc.channelState), newCommitView.txn,
auxSigBatch,
)
})
if err != nil {
return nil, fmt.Errorf("error submitting second level sig "+
"batch: %w", err)
}
// While the jobs are being carried out, we'll Sign their version of
// the new commitment transaction while we're waiting for the rest of
// the HTLC signatures to be processed.
//
// TODO(roasbeef): abstract into CommitSigner interface?
if lc.channelState.ChanType.IsTaproot() {
// In this case, we'll send out a partial signature as this is
// a musig2 channel. The encoded normal ECDSA signature will be
// just blank.
remoteSession := lc.musigSessions.RemoteSession
musig, err := remoteSession.SignCommit(
newCommitView.txn,
)
if err != nil {
close(cancelChan)
return nil, err
}
partialSig = musig.ToWireSig()
} else {
lc.signDesc.SigHashes = input.NewTxSigHashesV0Only(
newCommitView.txn,
)
rawSig, err := lc.Signer.SignOutputRaw(
newCommitView.txn, lc.signDesc,
)
if err != nil {
close(cancelChan)
return nil, err
}
sig, err = lnwire.NewSigFromSignature(rawSig)
if err != nil {
close(cancelChan)
return nil, err
}
}
// Iterate through all the responses to gather each of the signatures
// in the order they were submitted.
htlcSigs = make([]lnwire.Sig, 0, len(sigBatch))
auxSigs := make([]fn.Option[tlv.Blob], 0, len(auxSigBatch))
for i := range sigBatch {
htlcSigJob := sigBatch[i]
var jobResp SignJobResp
select {
case jobResp = <-htlcSigJob.Resp:
case <-ctx.Done():
return nil, errQuit
}
// If an error occurred, then we'll cancel any other active
// jobs.
if jobResp.Err != nil {
close(cancelChan)
return nil, jobResp.Err
}
htlcSigs = append(htlcSigs, jobResp.Sig)
if lc.auxSigner.IsNone() {
continue
}
auxHtlcSigJob := auxSigBatch[i]
var auxJobResp AuxSigJobResp
select {
case auxJobResp = <-auxHtlcSigJob.Resp:
case <-ctx.Done():
return nil, errQuit
}
// If an error occurred, then we'll cancel any other active
// jobs.
if auxJobResp.Err != nil {
close(cancelChan)
return nil, auxJobResp.Err
}
auxSigs = append(auxSigs, auxJobResp.SigBlob)
}
// As we're about to proposer a new commitment state for the remote
// party, we'll write this pending state to disk before we exit, so we
// can retransmit it if necessary.
commitDiff, err := lc.createCommitDiff(
newCommitView, sig, htlcSigs, auxSigs,
)
if err != nil {
return nil, err
}
err = lc.channelState.AppendRemoteCommitChain(commitDiff)
if err != nil {
return nil, err
}
// TODO(roasbeef): check that one eclair bug
// * need to retransmit on first state still?
// * after initial reconnect
// Extend the remote commitment chain by one with the addition of our
// latest commitment update.
lc.commitChains.Remote.addCommitment(newCommitView)
auxSigBlob, err := commitDiff.CommitSig.CustomRecords.Serialize()
if err != nil {
return nil, fmt.Errorf("unable to serialize aux sig blob: %w",
err)
}
return &NewCommitState{
CommitSigs: &CommitSigs{
CommitSig: sig,
HtlcSigs: htlcSigs,
PartialSig: lnwire.MaybePartialSigWithNonce(partialSig),
AuxSigBlob: auxSigBlob,
},
PendingHTLCs: commitDiff.Commitment.Htlcs,
}, nil
}
// resignMusigCommit is used to resign a commitment transaction for taproot
// channels when we need to retransmit a signature after a channel reestablish
// message. Taproot channels use musig2, which means we must use fresh nonces
// each time. After we receive the channel reestablish message, we learn the
// nonce we need to use for the remote party. As a result, we need to generate
// the partial signature again with the new nonce.
func (lc *LightningChannel) resignMusigCommit(
commitTx *wire.MsgTx) (lnwire.OptPartialSigWithNonceTLV, error) {
remoteSession := lc.musigSessions.RemoteSession
musig, err := remoteSession.SignCommit(commitTx)
if err != nil {
var none lnwire.OptPartialSigWithNonceTLV
return none, err
}
partialSig := lnwire.MaybePartialSigWithNonce(musig.ToWireSig())
return partialSig, nil
}
// ProcessChanSyncMsg processes a ChannelReestablish message sent by the remote
// connection upon re establishment of our connection with them. This method
// will return a single message if we are currently out of sync, otherwise a
// nil lnwire.Message will be returned. If it is decided that our level of
// de-synchronization is irreconcilable, then an error indicating the issue
// will be returned. In this case that an error is returned, the channel should
// be force closed, as we cannot continue updates.
//
// One of two message sets will be returned:
//
// - CommitSig+Updates: if we have a pending remote commit which they claim to
// have not received
// - RevokeAndAck: if we sent a revocation message that they claim to have
// not received
//
// If we detect a scenario where we need to send a CommitSig+Updates, this
// method also returns two sets models.CircuitKeys identifying the circuits
// that were opened and closed, respectively, as a result of signing the
// previous commitment txn. This allows the link to clear its mailbox of those
// circuits in case they are still in memory, and ensure the switch's circuit
// map has been updated by deleting the closed circuits.
//
//nolint:funlen
func (lc *LightningChannel) ProcessChanSyncMsg(ctx context.Context,
msg *lnwire.ChannelReestablish) ([]lnwire.Message, []models.CircuitKey,
[]models.CircuitKey, error) {
// Now we'll examine the state we have, vs what was contained in the
// chain sync message. If we're de-synchronized, then we'll send a
// batch of messages which when applied will kick start the chain
// resync.
var (
updates []lnwire.Message
openedCircuits []models.CircuitKey
closedCircuits []models.CircuitKey
)
// If the remote party included the optional fields, then we'll verify
// their correctness first, as it will influence our decisions below.
hasRecoveryOptions := msg.LocalUnrevokedCommitPoint != nil
if hasRecoveryOptions && msg.RemoteCommitTailHeight != 0 {
// We'll check that they've really sent a valid commit
// secret from our shachain for our prior height, but only if
// this isn't the first state.
heightSecret, err := lc.channelState.RevocationProducer.AtIndex(
msg.RemoteCommitTailHeight - 1,
)
if err != nil {
return nil, nil, nil, err
}
commitSecretCorrect := bytes.Equal(
heightSecret[:], msg.LastRemoteCommitSecret[:],
)
// If the commit secret they sent is incorrect then we'll fail
// the channel as the remote node has an inconsistent state.
if !commitSecretCorrect {
// In this case, we'll return an error to indicate the
// remote node sent us the wrong values. This will let
// the caller act accordingly.
lc.log.Errorf("sync failed: remote provided invalid " +
"commit secret!")
return nil, nil, nil, ErrInvalidLastCommitSecret
}
}
// If this is a taproot channel, then we expect that the remote party
// has sent the next verification nonce. If they haven't, then we'll
// bail out, otherwise we'll init our local session then continue as
// normal.
switch {
case lc.channelState.ChanType.IsTaproot() && msg.LocalNonce.IsNone():
return nil, nil, nil, fmt.Errorf("remote verification nonce " +
"not sent")
case lc.channelState.ChanType.IsTaproot() && msg.LocalNonce.IsSome():
if lc.opts.skipNonceInit {
// Don't call InitRemoteMusigNonces if we have already
// done so.
break
}
nextNonce, err := msg.LocalNonce.UnwrapOrErrV(errNoNonce)
if err != nil {
return nil, nil, nil, err
}
err = lc.InitRemoteMusigNonces(&musig2.Nonces{
PubNonce: nextNonce,
})
if err != nil {
return nil, nil, nil, fmt.Errorf("unable to init "+
"remote nonce: %w", err)
}
}
// If we detect that this is is a restored channel, then we can skip a
// portion of the verification, as we already know that we're unable to
// proceed with any updates.
isRestoredChan := lc.channelState.HasChanStatus(
channeldb.ChanStatusRestored,
)
// Take note of our current commit chain heights before we begin adding
// more to them.
var (
localTailHeight = lc.commitChains.Local.tail().height
remoteTailHeight = lc.commitChains.Remote.tail().height
remoteTipHeight = lc.commitChains.Remote.tip().height
)
// We'll now check that their view of our local chain is up-to-date.
// This means checking that what their view of our local chain tail
// height is what they believe. Note that the tail and tip height will
// always be the same for the local chain at this stage, as we won't
// store any received commitment to disk before it is ACKed.
switch {
// If their reported height for our local chain tail is ahead of our
// view, then we're behind!
case msg.RemoteCommitTailHeight > localTailHeight || isRestoredChan:
lc.log.Errorf("sync failed with local data loss: remote "+
"believes our tail height is %v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
if isRestoredChan {
lc.log.Warnf("detected restored triggering DLP")
}
// We must check that we had recovery options to ensure the
// commitment secret matched up, and the remote is just not
// lying about its height.
if !hasRecoveryOptions {
// At this point we the remote is either lying about
// its height, or we are actually behind but the remote
// doesn't support data loss protection. In either case
// it is not safe for us to keep using the channel, so
// we mark it borked and fail the channel.
lc.log.Errorf("sync failed: local data loss, but no " +
"recovery option.")
return nil, nil, nil, ErrCannotSyncCommitChains
}
// In this case, we've likely lost data and shouldn't proceed
// with channel updates.
return nil, nil, nil, &ErrCommitSyncLocalDataLoss{
ChannelPoint: lc.channelState.FundingOutpoint,
CommitPoint: msg.LocalUnrevokedCommitPoint,
}
// If the height of our commitment chain reported by the remote party
// is behind our view of the chain, then they probably lost some state,
// and we'll force close the channel.
case msg.RemoteCommitTailHeight+1 < localTailHeight:
lc.log.Errorf("sync failed: remote believes our tail height is "+
"%v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
return nil, nil, nil, ErrCommitSyncRemoteDataLoss
// Their view of our commit chain is consistent with our view.
case msg.RemoteCommitTailHeight == localTailHeight:
// In sync, don't have to do anything.
// We owe them a revocation if the tail of our current commitment chain
// is one greater than what they _think_ our commitment tail is. In
// this case we'll re-send the last revocation message that we sent.
// This will be the revocation message for our prior chain tail.
case msg.RemoteCommitTailHeight+1 == localTailHeight:
lc.log.Debugf("sync: remote believes our tail height is %v, "+
"while we have %v, we owe them a revocation",
msg.RemoteCommitTailHeight, localTailHeight)
heightToRetransmit := localTailHeight - 1
revocationMsg, err := lc.generateRevocation(heightToRetransmit)
if err != nil {
return nil, nil, nil, err
}
updates = append(updates, revocationMsg)
// Next, as a precaution, we'll check a special edge case. If
// they initiated a state transition, we sent the revocation,
// but died before the signature was sent. We re-transmit our
// revocation, but also initiate a state transition to re-sync
// them.
if lc.OweCommitment() {
newCommit, err := lc.SignNextCommitment(ctx)
switch {
// If we signed this state, then we'll accumulate
// another update to send over.
case err == nil:
customRecords, err := lnwire.ParseCustomRecords(
newCommit.AuxSigBlob,
)
if err != nil {
sErr := fmt.Errorf("error parsing aux "+
"sigs: %w", err)
return nil, nil, nil, sErr
}
commitSig := &lnwire.CommitSig{
ChanID: lnwire.NewChanIDFromOutPoint(
lc.channelState.FundingOutpoint,
),
CommitSig: newCommit.CommitSig,
HtlcSigs: newCommit.HtlcSigs,
PartialSig: newCommit.PartialSig,
CustomRecords: customRecords,
}
updates = append(updates, commitSig)
// If we get a failure due to not knowing their next
// point, then this is fine as they'll either send
// ChannelReady, or revoke their next state to allow
// us to continue forwards.
case err == ErrNoWindow:
// Otherwise, this is an error and we'll treat it as
// such.
default:
return nil, nil, nil, err
}
}
// There should be no other possible states.
default:
lc.log.Errorf("sync failed: remote believes our tail height is "+
"%v, while we have %v!",
msg.RemoteCommitTailHeight, localTailHeight)
return nil, nil, nil, ErrCannotSyncCommitChains
}
// Now check if our view of the remote chain is consistent with what
// they tell us.
switch {
// The remote's view of what their next commit height is 2+ states
// ahead of us, we most likely lost data, or the remote is trying to
// trick us. Since we have no way of verifying whether they are lying
// or not, we will fail the channel, but should not force close it
// automatically.
case msg.NextLocalCommitHeight > remoteTipHeight+1:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight+1)
return nil, nil, nil, ErrCannotSyncCommitChains
// They are waiting for a state they have already ACKed.
case msg.NextLocalCommitHeight <= remoteTailHeight:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight+1)
// They previously ACKed our current tail, and now they are
// waiting for it. They probably lost state.
return nil, nil, nil, ErrCommitSyncRemoteDataLoss
// They have received our latest commitment, life is good.
case msg.NextLocalCommitHeight == remoteTipHeight+1:
// We owe them a commitment if the tip of their chain (from our Pov) is
// equal to what they think their next commit height should be. We'll
// re-send all the updates necessary to recreate this state, along
// with the commit sig.
case msg.NextLocalCommitHeight == remoteTipHeight:
lc.log.Debugf("sync: remote's next commit height is %v, while "+
"we believe it is %v, we owe them a commitment",
msg.NextLocalCommitHeight, remoteTipHeight+1)
// Grab the current remote chain tip from the database. This
// commit diff contains all the information required to re-sync
// our states.
commitDiff, err := lc.channelState.RemoteCommitChainTip()
if err != nil {
return nil, nil, nil, err
}
var commitUpdates []lnwire.Message
// Next, we'll need to send over any updates we sent as part of
// this new proposed commitment state.
for _, logUpdate := range commitDiff.LogUpdates {
commitUpdates = append(
commitUpdates, logUpdate.UpdateMsg,
)
}
// If this is a taproot channel, then we need to regenerate the
// musig2 signature for the remote party, using their fresh
// nonce.
if lc.channelState.ChanType.IsTaproot() {
partialSig, err := lc.resignMusigCommit(
commitDiff.Commitment.CommitTx,
)
if err != nil {
return nil, nil, nil, err
}
commitDiff.CommitSig.PartialSig = partialSig
}
// With the batch of updates accumulated, we'll now re-send the
// original CommitSig message required to re-sync their remote
// commitment chain with our local version of their chain.
commitUpdates = append(commitUpdates, commitDiff.CommitSig)
// NOTE: If a revocation is not owed, then updates is empty.
if lc.channelState.LastWasRevoke {
// If lastWasRevoke is set to true, a revocation was last and we
// need to reorder the updates so that the revocation stored in
// updates comes after the LogUpdates+CommitSig.
//
// ---logupdates--->
// ---commitsig---->
// ---revocation--->
updates = append(commitUpdates, updates...)
} else {
// Otherwise, the revocation should come before LogUpdates
// + CommitSig.
//
// ---revocation--->
// ---logupdates--->
// ---commitsig---->
updates = append(updates, commitUpdates...)
}
openedCircuits = commitDiff.OpenedCircuitKeys
closedCircuits = commitDiff.ClosedCircuitKeys
// There should be no other possible states as long as the commit chain
// can have at most two elements. If that's the case, something is
// wrong.
default:
lc.log.Errorf("sync failed: remote's next commit height is %v, "+
"while we believe it is %v!",
msg.NextLocalCommitHeight, remoteTipHeight)
return nil, nil, nil, ErrCannotSyncCommitChains
}
// If we didn't have recovery options, then the final check cannot be
// performed, and we'll return early.
if !hasRecoveryOptions {
return updates, openedCircuits, closedCircuits, nil
}
// At this point we have determined that either the commit heights are
// in sync, or that we are in a state we can recover from. As a final
// check, we ensure that the commitment point sent to us by the remote
// is valid.
var commitPoint *btcec.PublicKey
switch {
// If their height is one beyond what we know their current height to
// be, then we need to compare their current unrevoked commitment point
// as that's what they should send.
case msg.NextLocalCommitHeight == remoteTailHeight+1:
commitPoint = lc.channelState.RemoteCurrentRevocation
// Alternatively, if their height is two beyond what we know their best
// height to be, then they're holding onto two commitments, and the
// highest unrevoked point is their next revocation.
//
// TODO(roasbeef): verify this in the spec...
case msg.NextLocalCommitHeight == remoteTailHeight+2:
commitPoint = lc.channelState.RemoteNextRevocation
}
// Only if this is a tweakless channel will we attempt to verify the
// commitment point, as otherwise it has no validity requirements.
tweakless := lc.channelState.ChanType.IsTweakless()
if !tweakless && commitPoint != nil &&
!commitPoint.IsEqual(msg.LocalUnrevokedCommitPoint) {
lc.log.Errorf("sync failed: remote sent invalid commit point "+
"for height %v!",
msg.NextLocalCommitHeight)
return nil, nil, nil, ErrInvalidLocalUnrevokedCommitPoint
}
return updates, openedCircuits, closedCircuits, nil
}
// computeView takes the given HtlcView, and calculates the balances, filtered
// view (settling unsettled HTLCs), commitment weight and feePerKw, after
// applying the HTLCs to the latest commitment. The returned balances are the
// balances *before* subtracting the commitment fee from the initiator's
// balance. It accepts a "dry run" feerate argument to calculate a potential
// commitment transaction fee.
//
// If the updateState boolean is set true, the add and remove heights of the
// HTLCs will be set to the next commitment height.
func (lc *LightningChannel) computeView(view *HtlcView,
whoseCommitChain lntypes.ChannelParty, updateState bool,
dryRunFee fn.Option[chainfee.SatPerKWeight]) (lnwire.MilliSatoshi,
lnwire.MilliSatoshi, lntypes.WeightUnit, *HtlcView, error) {
commitChain := lc.commitChains.Local
dustLimit := lc.channelState.LocalChanCfg.DustLimit
if whoseCommitChain.IsRemote() {
commitChain = lc.commitChains.Remote
dustLimit = lc.channelState.RemoteChanCfg.DustLimit
}
// Since the fetched htlc view will include all updates added after the
// last committed state, we start with the balances reflecting that
// state.
ourBalance := commitChain.tip().ourBalance
theirBalance := commitChain.tip().theirBalance
// Add the fee from the previous commitment state back to the
// initiator's balance, so that the fee can be recalculated and
// re-applied in case fee estimation parameters have changed or the
// number of outstanding HTLCs has changed.
if lc.channelState.IsInitiator {
ourBalance += lnwire.NewMSatFromSatoshis(
commitChain.tip().fee)
} else if !lc.channelState.IsInitiator {
theirBalance += lnwire.NewMSatFromSatoshis(
commitChain.tip().fee)
}
nextHeight := commitChain.tip().height + 1
// Initiate feePerKw to the last committed fee for this chain as we'll
// need this to determine which HTLCs are dust, and also the final fee
// rate.
view.FeePerKw = commitChain.tip().feePerKw
view.NextHeight = nextHeight
// We evaluate the view at this stage, meaning settled and failed HTLCs
// will remove their corresponding added HTLCs. The resulting filtered
// view will only have Add entries left, making it easy to compare the
// channel constraints to the final commitment state. If any fee
// updates are found in the logs, the commitment fee rate should be
// changed, so we'll also set the feePerKw to this new value.
filteredHTLCView, uncommitted, deltas, err := lc.evaluateHTLCView(
view, whoseCommitChain, nextHeight,
)
if err != nil {
return 0, 0, 0, nil, err
}
// Add the balance deltas to the balances we got from the commitment
// state.
if deltas.Local >= 0 {
ourBalance += lnwire.MilliSatoshi(deltas.Local)
} else {
ourBalance -= lnwire.MilliSatoshi(-1 * deltas.Local)
}
if deltas.Remote >= 0 {
theirBalance += lnwire.MilliSatoshi(deltas.Remote)
} else {
theirBalance -= lnwire.MilliSatoshi(-1 * deltas.Remote)
}
if updateState {
for _, party := range lntypes.BothParties {
for _, u := range uncommitted.GetForParty(party) {
u.setCommitHeight(whoseCommitChain, nextHeight)
if whoseCommitChain == lntypes.Local &&
u.EntryType == Settle {
lc.recordSettlement(party, u.Amount)
}
}
}
}
feePerKw := filteredHTLCView.FeePerKw
// Here we override the view's fee-rate if a dry-run fee-rate was
// passed in.
if !updateState {
feePerKw = dryRunFee.UnwrapOr(feePerKw)
}
// We need to first check ourBalance and theirBalance to be negative
// because MilliSathoshi is a unsigned type and can underflow in the
// code above. This should never happen for views which do not
// include new updates (remote or local).
if int64(ourBalance) < 0 {
err := fmt.Errorf("%w: our balance", ErrBelowChanReserve)
return 0, 0, 0, nil, err
}
if int64(theirBalance) < 0 {
err := fmt.Errorf("%w: their balance", ErrBelowChanReserve)
return 0, 0, 0, nil, err
}
// Now go through all HTLCs at this stage, to calculate the total
// weight, needed to calculate the transaction fee.
var totalHtlcWeight lntypes.WeightUnit
for _, htlc := range filteredHTLCView.Updates.Local {
if HtlcIsDust(
lc.channelState.ChanType, false, whoseCommitChain,
feePerKw, htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
totalHtlcWeight += input.HTLCWeight
}
for _, htlc := range filteredHTLCView.Updates.Remote {
if HtlcIsDust(
lc.channelState.ChanType, true, whoseCommitChain,
feePerKw, htlc.Amount.ToSatoshis(), dustLimit,
) {
continue
}
totalHtlcWeight += input.HTLCWeight
}
totalCommitWeight := CommitWeight(lc.channelState.ChanType) +
totalHtlcWeight
return ourBalance, theirBalance, totalCommitWeight, filteredHTLCView, nil
}
// recordSettlement updates the lifetime payment flow values in persistent state
// of the LightningChannel, adding amt to the total received by the redeemer.
func (lc *LightningChannel) recordSettlement(
redeemer lntypes.ChannelParty, amt lnwire.MilliSatoshi) {
if redeemer == lntypes.Local {
lc.channelState.TotalMSatReceived += amt
} else {
lc.channelState.TotalMSatSent += amt
}
}
// genHtlcSigValidationJobs generates a series of signatures verification jobs
// meant to verify all the signatures for HTLC's attached to a newly created
// commitment state. The jobs generated are fully populated, and can be sent
// directly into the pool of workers.
//
//nolint:funlen
func genHtlcSigValidationJobs(chanState *channeldb.OpenChannel,
localCommitmentView *commitment, keyRing *CommitmentKeyRing,
htlcSigs []lnwire.Sig, leaseExpiry uint32,
leafStore fn.Option[AuxLeafStore], auxSigner fn.Option[AuxSigner],
sigBlob fn.Option[tlv.Blob]) ([]VerifyJob, []AuxVerifyJob, error) {
var (
isLocalInitiator = chanState.IsInitiator
localChanCfg = chanState.LocalChanCfg
chanType = chanState.ChanType
)
txHash := localCommitmentView.txn.TxHash()
feePerKw := localCommitmentView.feePerKw
sigHashType := HtlcSigHashType(chanType)
// With the required state generated, we'll create a slice with large
// enough capacity to hold verification jobs for all HTLC's in this
// view. In the case that we have some dust outputs, then the actual
// length will be smaller than the total capacity.
numHtlcs := len(localCommitmentView.incomingHTLCs) +
len(localCommitmentView.outgoingHTLCs)
verifyJobs := make([]VerifyJob, 0, numHtlcs)
auxVerifyJobs := make([]AuxVerifyJob, 0, numHtlcs)
diskCommit := localCommitmentView.toDiskCommit(lntypes.Local)
auxResult, err := fn.MapOptionZ(
leafStore, func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(chanState), *diskCommit,
*keyRing, lntypes.Local,
)
},
).Unpack()
if err != nil {
return nil, nil, fmt.Errorf("unable to fetch aux leaves: %w",
err)
}
// If we have a sig blob, then we'll attempt to map that to individual
// blobs for each HTLC we might need a signature for.
auxHtlcSigs, err := fn.MapOptionZ(
auxSigner, func(a AuxSigner) fn.Result[[]fn.Option[tlv.Blob]] {
return a.UnpackSigs(sigBlob)
},
).Unpack()
if err != nil {
return nil, nil, fmt.Errorf("error unpacking aux sigs: %w",
err)
}
// We'll iterate through each output in the commitment transaction,
// populating the sigHash closure function if it's detected to be an
// HLTC output. Given the sighash, and the signing key, we'll be able
// to validate each signature within the worker pool.
i := 0
for index := range localCommitmentView.txn.TxOut {
var (
htlcIndex uint64
sigHash func() ([]byte, error)
sig input.Signature
htlc *paymentDescriptor
incoming bool
auxLeaf input.AuxTapLeaf
err error
)
outputIndex := int32(index)
switch {
// If this output index is found within the incoming HTLC
// index, then this means that we need to generate an HTLC
// success transaction in order to validate the signature.
//nolint:ll
case localCommitmentView.incomingHTLCIndex[outputIndex] != nil:
htlc = localCommitmentView.incomingHTLCIndex[outputIndex]
htlcIndex = htlc.HtlcIndex
incoming = true
sigHash = func() ([]byte, error) {
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.localOutputIndex),
}
htlcFee := HtlcSuccessFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
auxLeaf := fn.ChainOption(func(
l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.IncomingHtlcLeaves
idx := htlc.HtlcIndex
return leaves[idx].SecondLevelLeaf
})(auxResult.AuxLeaves)
successTx, err := CreateHtlcSuccessTx(
chanType, isLocalInitiator, op,
outputAmt, uint32(localChanCfg.CsvDelay),
leaseExpiry, keyRing.RevocationKey,
keyRing.ToLocalKey, auxLeaf,
)
if err != nil {
return nil, err
}
htlcAmt := int64(htlc.Amount.ToSatoshis())
if chanType.IsTaproot() {
// TODO(roasbeef): add abstraction in
// front
prevFetcher := txscript.NewCannedPrevOutputFetcher( //nolint:ll
htlc.ourPkScript, htlcAmt,
)
hashCache := txscript.NewTxSigHashes(
successTx, prevFetcher,
)
tapLeaf := txscript.NewBaseTapLeaf(
htlc.ourWitnessScript,
)
return txscript.CalcTapscriptSignaturehash( //nolint:ll
hashCache, sigHashType,
successTx, 0, prevFetcher,
tapLeaf,
)
}
hashCache := input.NewTxSigHashesV0Only(successTx)
sigHash, err := txscript.CalcWitnessSigHash(
htlc.ourWitnessScript, hashCache,
sigHashType, successTx, 0,
htlcAmt,
)
if err != nil {
return nil, err
}
return sigHash, nil
}
// Make sure there are more signatures left.
if i >= len(htlcSigs) {
return nil, nil, fmt.Errorf("not enough HTLC " +
"signatures")
}
// If this is a taproot channel, then we'll convert it
// to a schnorr signature, so we can get correct type
// from ToSignature below.
if chanType.IsTaproot() {
htlcSigs[i].ForceSchnorr()
}
// With the sighash generated, we'll also store the
// signature so it can be written to disk if this state
// is valid.
sig, err = htlcSigs[i].ToSignature()
if err != nil {
return nil, nil, err
}
htlc.sig = sig
// Otherwise, if this is an outgoing HTLC, then we'll need to
// generate a timeout transaction so we can verify the
// signature presented.
//nolint:ll
case localCommitmentView.outgoingHTLCIndex[outputIndex] != nil:
htlc = localCommitmentView.outgoingHTLCIndex[outputIndex]
htlcIndex = htlc.HtlcIndex
sigHash = func() ([]byte, error) {
op := wire.OutPoint{
Hash: txHash,
Index: uint32(htlc.localOutputIndex),
}
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
outputAmt := htlc.Amount.ToSatoshis() - htlcFee
auxLeaf := fn.ChainOption(func(
l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.OutgoingHtlcLeaves
idx := htlc.HtlcIndex
return leaves[idx].SecondLevelLeaf
})(auxResult.AuxLeaves)
timeoutTx, err := CreateHtlcTimeoutTx(
chanType, isLocalInitiator, op,
outputAmt, htlc.Timeout,
uint32(localChanCfg.CsvDelay),
leaseExpiry, keyRing.RevocationKey,
keyRing.ToLocalKey, auxLeaf,
)
if err != nil {
return nil, err
}
htlcAmt := int64(htlc.Amount.ToSatoshis())
if chanType.IsTaproot() {
// TODO(roasbeef): add abstraction in
// front
prevFetcher := txscript.NewCannedPrevOutputFetcher( //nolint:ll
htlc.ourPkScript, htlcAmt,
)
hashCache := txscript.NewTxSigHashes(
timeoutTx, prevFetcher,
)
tapLeaf := txscript.NewBaseTapLeaf(
htlc.ourWitnessScript,
)
return txscript.CalcTapscriptSignaturehash( //nolint:ll
hashCache, sigHashType,
timeoutTx, 0, prevFetcher,
tapLeaf,
)
}
hashCache := input.NewTxSigHashesV0Only(
timeoutTx,
)
sigHash, err := txscript.CalcWitnessSigHash(
htlc.ourWitnessScript, hashCache,
sigHashType, timeoutTx, 0,
htlcAmt,
)
if err != nil {
return nil, err
}
return sigHash, nil
}
// Make sure there are more signatures left.
if i >= len(htlcSigs) {
return nil, nil, fmt.Errorf("not enough HTLC " +
"signatures")
}
// If this is a taproot channel, then we'll convert it
// to a schnorr signature, so we can get correct type
// from ToSignature below.
if chanType.IsTaproot() {
htlcSigs[i].ForceSchnorr()
}
// With the sighash generated, we'll also store the
// signature so it can be written to disk if this state
// is valid.
sig, err = htlcSigs[i].ToSignature()
if err != nil {
return nil, nil, err
}
htlc.sig = sig
default:
continue
}
verifyJobs = append(verifyJobs, VerifyJob{
HtlcIndex: htlcIndex,
PubKey: keyRing.RemoteHtlcKey,
Sig: sig,
SigHash: sigHash,
})
if len(auxHtlcSigs) > i {
auxSig := auxHtlcSigs[i]
auxVerifyJob := NewAuxVerifyJob(
auxSig, *keyRing, incoming,
newAuxHtlcDescriptor(htlc),
localCommitmentView.customBlob, auxLeaf,
)
if htlc.CustomRecords == nil {
htlc.CustomRecords = make(lnwire.CustomRecords)
}
// As this HTLC has a custom signature associated with
// it, store it in the custom records map so we can
// write to disk later.
sigType := htlcCustomSigType.TypeVal()
htlc.CustomRecords[uint64(sigType)] = auxSig.UnwrapOr(
nil,
)
auxVerifyJobs = append(auxVerifyJobs, auxVerifyJob)
}
i++
}
// If we received a number of HTLC signatures that doesn't match our
// commitment, we'll return an error now.
if len(htlcSigs) != i {
return nil, nil, fmt.Errorf("number of htlc sig mismatch. "+
"Expected %v sigs, got %v", i, len(htlcSigs))
}
return verifyJobs, auxVerifyJobs, nil
}
// InvalidCommitSigError is a struct that implements the error interface to
// report a failure to validate a commitment signature for a remote peer.
// We'll use the items in this struct to generate a rich error message for the
// remote peer when we receive an invalid signature from it. Doing so can
// greatly aide in debugging cross implementation issues.
type InvalidCommitSigError struct {
commitHeight uint64
commitSig []byte
sigHash []byte
commitTx []byte
}
// Error returns a detailed error string including the exact transaction that
// caused an invalid commitment signature.
func (i *InvalidCommitSigError) Error() string {
return fmt.Sprintf("rejected commitment: commit_height=%v, "+
"invalid_commit_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight,
i.commitSig[:], i.commitTx, i.sigHash[:])
}
// A compile time flag to ensure that InvalidCommitSigError implements the
// error interface.
var _ error = (*InvalidCommitSigError)(nil)
// InvalidPartialCommitSigError is used when we encounter an invalid musig2
// partial signature.
type InvalidPartialCommitSigError struct {
InvalidCommitSigError
*invalidPartialSigError
}
// Error returns a detailed error string including the exact transaction that
// caused an invalid partial commit sig signature.
func (i *InvalidPartialCommitSigError) Error() string {
return fmt.Sprintf("rejected commitment: commit_height=%v, "+
"commit_tx=%x -- %v", i.commitHeight, i.commitTx,
i.invalidPartialSigError)
}
// InvalidHtlcSigError is a struct that implements the error interface to
// report a failure to validate an htlc signature from a remote peer. We'll use
// the items in this struct to generate a rich error message for the remote
// peer when we receive an invalid signature from it. Doing so can greatly aide
// in debugging across implementation issues.
type InvalidHtlcSigError struct {
commitHeight uint64
htlcSig []byte
htlcIndex uint64
sigHash []byte
commitTx []byte
}
// Error returns a detailed error string including the exact transaction that
// caused an invalid htlc signature.
func (i *InvalidHtlcSigError) Error() string {
return fmt.Sprintf("rejected commitment: commit_height=%v, "+
"invalid_htlc_sig=%x, commit_tx=%x, sig_hash=%x", i.commitHeight,
i.htlcSig, i.commitTx, i.sigHash[:])
}
// A compile time flag to ensure that InvalidCommitSigError implements the
// error interface.
var _ error = (*InvalidCommitSigError)(nil)
// ReceiveNewCommitment process a signature for a new commitment state sent by
// the remote party. This method should be called in response to the
// remote party initiating a new change, or when the remote party sends a
// signature fully accepting a new state we've initiated. If we are able to
// successfully validate the signature, then the generated commitment is added
// to our local commitment chain. Once we send a revocation for our prior
// state, then this newly added commitment becomes our current accepted channel
// state.
//
//nolint:funlen
func (lc *LightningChannel) ReceiveNewCommitment(commitSigs *CommitSigs) error {
lc.Lock()
defer lc.Unlock()
// Check for empty commit sig. Because of a previously existing bug, it
// is possible that we receive an empty commit sig from nodes running an
// older version. This is a relaxation of the spec, but it is still
// possible to handle it. To not break any channels with those older
// nodes, we just log the event. This check is also not totally
// reliable, because it could be that we've sent out a new sig, but the
// remote hasn't received it yet. We could then falsely assume that they
// should add our updates to their remote commitment tx.
if !lc.oweCommitment(lntypes.Remote) {
lc.log.Warnf("empty commit sig message received")
}
// Determine the last update on the local log that has been locked in.
localACKedIndex := lc.commitChains.Remote.tail().messageIndices.Local
localHtlcIndex := lc.commitChains.Remote.tail().ourHtlcIndex
// Ensure that this new local update from the remote node respects all
// the constraints we specified during initial channel setup. If not,
// then we'll abort the channel as they've violated our constraints.
//
// We do not enforce the FeeBuffer here because when we reach this
// point all updates will have to get locked-in (we already received
// the UpdateAddHTLC msg from our peer prior to receiving the
// commit-sig).
err := lc.validateCommitmentSanity(
lc.updateLogs.Remote.logIndex, localACKedIndex, lntypes.Local,
NoBuffer, nil, nil,
)
if err != nil {
return err
}
// We're receiving a new commitment which attempts to extend our local
// commitment chain height by one, so fetch the proper commitment point
// as this will be needed to derive the keys required to construct the
// commitment.
nextHeight := lc.currentHeight + 1
commitSecret, err := lc.channelState.RevocationProducer.AtIndex(nextHeight)
if err != nil {
return err
}
commitPoint := input.ComputeCommitmentPoint(commitSecret[:])
keyRing := DeriveCommitmentKeys(
commitPoint, lntypes.Local, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
// With the current commitment point re-calculated, construct the new
// commitment view which includes all the entries (pending or committed)
// we know of in the remote node's HTLC log, but only our local changes
// up to the last change the remote node has ACK'd.
localCommitmentView, err := lc.fetchCommitmentView(
lntypes.Local, localACKedIndex, localHtlcIndex,
lc.updateLogs.Remote.logIndex, lc.updateLogs.Remote.htlcCounter,
keyRing,
)
if err != nil {
return err
}
lc.log.Tracef("extending local chain to height %v, "+
"local_log=%v, remote_log=%v",
localCommitmentView.height,
localACKedIndex, lc.updateLogs.Remote.logIndex)
lc.log.Tracef("local chain: our_balance=%v, "+
"their_balance=%v, commit_tx: %v",
localCommitmentView.ourBalance, localCommitmentView.theirBalance,
lnutils.SpewLogClosure(localCommitmentView.txn))
var auxSigBlob fn.Option[tlv.Blob]
if commitSigs.AuxSigBlob != nil {
auxSigBlob = fn.Some(commitSigs.AuxSigBlob)
}
// As an optimization, we'll generate a series of jobs for the worker
// pool to verify each of the HTLC signatures presented. Once
// generated, we'll submit these jobs to the worker pool.
var leaseExpiry uint32
if lc.channelState.ChanType.HasLeaseExpiration() {
leaseExpiry = lc.channelState.ThawHeight
}
verifyJobs, auxVerifyJobs, err := genHtlcSigValidationJobs(
lc.channelState, localCommitmentView, keyRing,
commitSigs.HtlcSigs, leaseExpiry, lc.leafStore, lc.auxSigner,
auxSigBlob,
)
if err != nil {
return err
}
cancelChan := make(chan struct{})
verifyResps := lc.sigPool.SubmitVerifyBatch(verifyJobs, cancelChan)
localCommitTx := localCommitmentView.txn
// While the HTLC verification jobs are proceeding asynchronously,
// we'll ensure that the newly constructed commitment state has a valid
// signature.
//
// To do that we'll, construct the sighash of the commitment
// transaction corresponding to this newly proposed state update. If
// this is a taproot channel, then in order to validate the sighash,
// we'll need to call into the relevant tapscript methods.
if lc.channelState.ChanType.IsTaproot() {
localSession := lc.musigSessions.LocalSession
partialSig, err := commitSigs.PartialSig.UnwrapOrErrV(
errNoPartialSig,
)
if err != nil {
return err
}
// As we want to ensure we never write nonces to disk, we'll
// use the shachain state to generate a nonce for our next
// local state. Similar to generateRevocation, we do height + 2
// (next height + 1) here, as this is for the _next_ local
// state, and we're about to accept height + 1.
localCtrNonce := WithLocalCounterNonce(
nextHeight+1, lc.taprootNonceProducer,
)
nextVerificationNonce, err := localSession.VerifyCommitSig(
localCommitTx, &partialSig, localCtrNonce,
)
if err != nil {
close(cancelChan)
var sigErr invalidPartialSigError
if errors.As(err, &sigErr) {
// If we fail to validate their commitment
// signature, we'll generate a special error to
// send over the protocol. We'll include the
// exact signature and commitment we failed to
// verify against in order to aide debugging.
var txBytes bytes.Buffer
_ = localCommitTx.Serialize(&txBytes)
return &InvalidPartialCommitSigError{
invalidPartialSigError: &sigErr,
InvalidCommitSigError: InvalidCommitSigError{ //nolint:ll
commitHeight: nextHeight,
commitTx: txBytes.Bytes(),
},
}
}
return err
}
// Now that we have the next verification nonce for our local
// session, we'll refresh it to yield a new session we'll use
// for the next incoming signature.
newLocalSession, err := lc.musigSessions.LocalSession.Refresh(
nextVerificationNonce,
)
if err != nil {
return err
}
lc.musigSessions.LocalSession = newLocalSession
} else {
multiSigScript := lc.signDesc.WitnessScript
prevFetcher := txscript.NewCannedPrevOutputFetcher(
multiSigScript, int64(lc.channelState.Capacity),
)
hashCache := txscript.NewTxSigHashes(localCommitTx, prevFetcher)
sigHash, err := txscript.CalcWitnessSigHash(
multiSigScript, hashCache, txscript.SigHashAll,
localCommitTx, 0, int64(lc.channelState.Capacity),
)
if err != nil {
// TODO(roasbeef): fetchview has already mutated the
// HTLCs... * need to either roll-back, or make pure
return err
}
verifyKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey
cSig, err := commitSigs.CommitSig.ToSignature()
if err != nil {
return err
}
if !cSig.Verify(sigHash, verifyKey) {
close(cancelChan)
// If we fail to validate their commitment signature,
// we'll generate a special error to send over the
// protocol. We'll include the exact signature and
// commitment we failed to verify against in order to
// aide debugging.
var txBytes bytes.Buffer
_ = localCommitTx.Serialize(&txBytes)
return &InvalidCommitSigError{
commitHeight: nextHeight,
commitSig: commitSigs.CommitSig.ToSignatureBytes(), //nolint:ll
sigHash: sigHash,
commitTx: txBytes.Bytes(),
}
}
}
// With the primary commitment transaction validated, we'll check each
// of the HTLC validation jobs.
for i := 0; i < len(verifyJobs); i++ {
// In the case that a single signature is invalid, we'll exit
// early and cancel all the outstanding verification jobs.
htlcErr := <-verifyResps
if htlcErr != nil {
close(cancelChan)
sig, err := lnwire.NewSigFromSignature(
htlcErr.Sig,
)
if err != nil {
return err
}
sigHash, err := htlcErr.SigHash()
if err != nil {
return err
}
var txBytes bytes.Buffer
err = localCommitTx.Serialize(&txBytes)
if err != nil {
return err
}
return &InvalidHtlcSigError{
commitHeight: nextHeight,
htlcSig: sig.ToSignatureBytes(),
htlcIndex: htlcErr.HtlcIndex,
sigHash: sigHash,
commitTx: txBytes.Bytes(),
}
}
}
// Now that we know all the normal sigs are valid, we'll also verify
// the aux jobs, if any exist.
err = fn.MapOptionZ(lc.auxSigner, func(a AuxSigner) error {
return a.VerifySecondLevelSigs(
NewAuxChanState(lc.channelState), localCommitTx,
auxVerifyJobs,
)
})
if err != nil {
return fmt.Errorf("unable to validate aux sigs: %w", err)
}
// The signature checks out, so we can now add the new commitment to
// our local commitment chain. For regular channels, we can just
// serialize the ECDSA sig. For taproot channels, we'll serialize the
// partial sig that includes the nonce that was used for signing.
if lc.channelState.ChanType.IsTaproot() {
partialSig, err := commitSigs.PartialSig.UnwrapOrErrV(
errNoPartialSig,
)
if err != nil {
return err
}
var sigBytes [lnwire.PartialSigWithNonceLen]byte
b := bytes.NewBuffer(sigBytes[0:0])
if err := partialSig.Encode(b); err != nil {
return err
}
localCommitmentView.sig = sigBytes[:]
} else {
localCommitmentView.sig = commitSigs.CommitSig.ToSignatureBytes() //nolint:ll
}
lc.commitChains.Local.addCommitment(localCommitmentView)
return nil
}
// IsChannelClean returns true if neither side has pending commitments, neither
// side has HTLC's, and all updates are locked in irrevocably. Internally, it
// utilizes the oweCommitment function by calling it for local and remote
// evaluation. We check if we have a pending commitment for our local state
// since this function may be called by sub-systems that are not the link (e.g.
// the rpcserver), and the ReceiveNewCommitment & RevokeCurrentCommitment calls
// are not atomic, even though link processing ensures no updates can happen in
// between.
func (lc *LightningChannel) IsChannelClean() bool {
lc.RLock()
defer lc.RUnlock()
// Check whether we have a pending commitment for our local state.
if lc.commitChains.Local.hasUnackedCommitment() {
return false
}
// Check whether our counterparty has a pending commitment for their
// state.
if lc.commitChains.Remote.hasUnackedCommitment() {
return false
}
// We call ActiveHtlcs to ensure there are no HTLCs on either
// commitment.
if len(lc.channelState.ActiveHtlcs()) != 0 {
return false
}
// Now check that both local and remote commitments are signing the
// same updates.
if lc.oweCommitment(lntypes.Local) {
return false
}
if lc.oweCommitment(lntypes.Remote) {
return false
}
// If we reached this point, the channel has no HTLCs and both
// commitments sign the same updates.
return true
}
// OweCommitment returns a boolean value reflecting whether we need to send
// out a commitment signature because there are outstanding local updates and/or
// updates in the local commit tx that aren't reflected in the remote commit tx
// yet.
func (lc *LightningChannel) OweCommitment() bool {
lc.RLock()
defer lc.RUnlock()
return lc.oweCommitment(lntypes.Local)
}
// NeedCommitment returns a boolean value reflecting whether we are waiting on
// a commitment signature because there are outstanding remote updates and/or
// updates in the remote commit tx that aren't reflected in the local commit tx
// yet.
func (lc *LightningChannel) NeedCommitment() bool {
lc.RLock()
defer lc.RUnlock()
return lc.oweCommitment(lntypes.Remote)
}
// oweCommitment is the internal version of OweCommitment. This function expects
// to be executed with a lock held.
func (lc *LightningChannel) oweCommitment(issuer lntypes.ChannelParty) bool {
var (
remoteUpdatesPending, localUpdatesPending bool
lastLocalCommit = lc.commitChains.Local.tip()
lastRemoteCommit = lc.commitChains.Remote.tip()
perspective string
)
if issuer.IsLocal() {
perspective = "local"
// There are local updates pending if our local update log is
// not in sync with our remote commitment tx.
localUpdatesPending = lc.updateLogs.Local.logIndex !=
lastRemoteCommit.messageIndices.Local
// There are remote updates pending if their remote commitment
// tx (our local commitment tx) contains updates that we don't
// have added to our remote commitment tx yet.
remoteUpdatesPending = lastLocalCommit.messageIndices.Remote !=
lastRemoteCommit.messageIndices.Remote
} else {
perspective = "remote"
// There are local updates pending (local updates from the
// perspective of the remote party) if the remote party has
// updates to their remote tx pending for which they haven't
// signed yet.
localUpdatesPending = lc.updateLogs.Remote.logIndex !=
lastLocalCommit.messageIndices.Remote
// There are remote updates pending (remote updates from the
// perspective of the remote party) if we have updates on our
// remote commitment tx that they haven't added to theirs yet.
remoteUpdatesPending = lastRemoteCommit.messageIndices.Local !=
lastLocalCommit.messageIndices.Local
}
// If any of the conditions above is true, we owe a commitment
// signature.
oweCommitment := localUpdatesPending || remoteUpdatesPending
lc.log.Tracef("%v owes commit: %v (local updates: %v, "+
"remote updates %v)", perspective, oweCommitment,
localUpdatesPending, remoteUpdatesPending)
return oweCommitment
}
// NumPendingUpdates returns the number of updates originated by whoseUpdates
// that have not been committed to the *tip* of whoseCommit's commitment chain.
func (lc *LightningChannel) NumPendingUpdates(whoseUpdates lntypes.ChannelParty,
whoseCommit lntypes.ChannelParty) uint64 {
lc.RLock()
defer lc.RUnlock()
lastCommit := lc.commitChains.GetForParty(whoseCommit).tip()
updateIndex := lc.updateLogs.GetForParty(whoseUpdates).logIndex
return updateIndex - lastCommit.messageIndices.GetForParty(whoseUpdates)
}
// RevokeCurrentCommitment revokes the next lowest unrevoked commitment
// transaction in the local commitment chain. As a result the edge of our
// revocation window is extended by one, and the tail of our local commitment
// chain is advanced by a single commitment. This now lowest unrevoked
// commitment becomes our currently accepted state within the channel. This
// method also returns the set of HTLC's currently active within the commitment
// transaction and the htlcs the were resolved. This return value allows callers
// to act once an HTLC has been locked into our commitment transaction.
func (lc *LightningChannel) RevokeCurrentCommitment() (*lnwire.RevokeAndAck,
[]channeldb.HTLC, map[uint64]bool, error) {
lc.Lock()
defer lc.Unlock()
revocationMsg, err := lc.generateRevocation(lc.currentHeight)
if err != nil {
return nil, nil, nil, err
}
lc.log.Tracef("revoking height=%v, now at height=%v",
lc.commitChains.Local.tail().height,
lc.currentHeight+1)
// Advance our tail, as we've revoked our previous state.
lc.commitChains.Local.advanceTail()
lc.currentHeight++
// Additionally, generate a channel delta for this state transition for
// persistent storage.
chainTail := lc.commitChains.Local.tail()
newCommitment := chainTail.toDiskCommit(lntypes.Local)
// Get the unsigned acked remotes updates that are currently in memory.
// We need them after a restart to sync our remote commitment with what
// is committed locally.
unsignedAckedUpdates := lc.getUnsignedAckedUpdates()
finalHtlcs, err := lc.channelState.UpdateCommitment(
newCommitment, unsignedAckedUpdates,
)
if err != nil {
return nil, nil, nil, err
}
lc.log.Tracef("state transition accepted: "+
"our_balance=%v, their_balance=%v, unsigned_acked_updates=%v",
chainTail.ourBalance,
chainTail.theirBalance,
len(unsignedAckedUpdates))
revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint(
lc.channelState.FundingOutpoint,
)
return revocationMsg, newCommitment.Htlcs, finalHtlcs, nil
}
// ReceiveRevocation processes a revocation sent by the remote party for the
// lowest unrevoked commitment within their commitment chain. We receive a
// revocation either during the initial session negotiation wherein revocation
// windows are extended, or in response to a state update that we initiate. If
// successful, then the remote commitment chain is advanced by a single
// commitment, and a log compaction is attempted.
//
// The returned values correspond to:
// 1. The forwarding package corresponding to the remote commitment height
// that was revoked.
// 2. The set of HTLCs present on the current valid commitment transaction
// for the remote party.
func (lc *LightningChannel) ReceiveRevocation(revMsg *lnwire.RevokeAndAck) (
*channeldb.FwdPkg, []channeldb.HTLC, error) {
lc.Lock()
defer lc.Unlock()
// Ensure that the new pre-image can be placed in preimage store.
store := lc.channelState.RevocationStore
revocation, err := chainhash.NewHash(revMsg.Revocation[:])
if err != nil {
return nil, nil, err
}
if err := store.AddNextEntry(revocation); err != nil {
return nil, nil, err
}
// Verify that if we use the commitment point computed based off of the
// revealed secret to derive a revocation key with our revocation base
// point, then it matches the current revocation of the remote party.
currentCommitPoint := lc.channelState.RemoteCurrentRevocation
derivedCommitPoint := input.ComputeCommitmentPoint(revMsg.Revocation[:])
if !derivedCommitPoint.IsEqual(currentCommitPoint) {
return nil, nil, fmt.Errorf("revocation key mismatch")
}
// Now that we've verified that the prior commitment has been properly
// revoked, we'll advance the revocation state we track for the remote
// party: the new current revocation is what was previously the next
// revocation, and the new next revocation is set to the key included
// in the message.
lc.channelState.RemoteCurrentRevocation = lc.channelState.RemoteNextRevocation
lc.channelState.RemoteNextRevocation = revMsg.NextRevocationKey
lc.log.Tracef("remote party accepted state transition, revoked height "+
"%v, now at %v",
lc.commitChains.Remote.tail().height,
lc.commitChains.Remote.tail().height+1)
// Add one to the remote tail since this will be height *after* we write
// the revocation to disk, the local height will remain unchanged.
remoteChainTail := lc.commitChains.Remote.tail().height + 1
localChainTail := lc.commitChains.Local.tail().height
source := lc.ShortChanID()
// Determine the set of htlcs that can be forwarded as a result of
// having received the revocation. We will simultaneously construct the
// log updates and payment descriptors, allowing us to persist the log
// updates to disk and optimistically buffer the forwarding package in
// memory.
var (
addUpdatesToForward []channeldb.LogUpdate
settleFailUpdatesToForward []channeldb.LogUpdate
)
var addIndex, settleFailIndex uint16
for e := lc.updateLogs.Remote.Front(); e != nil; e = e.Next() {
pd := e.Value
// Fee updates are local to this particular channel, and should
// never be forwarded.
if pd.EntryType == FeeUpdate {
continue
}
if pd.isForwarded {
continue
}
// For each type of HTLC, we will only consider forwarding it if
// both of the remote and local heights are non-zero. If either
// of these values is zero, it has yet to be committed in both
// the local and remote chains.
committedAdd := pd.addCommitHeights.Remote > 0 &&
pd.addCommitHeights.Local > 0
committedRmv := pd.removeCommitHeights.Remote > 0 &&
pd.removeCommitHeights.Local > 0
// Using the height of the remote and local commitments,
// preemptively compute whether or not to forward this HTLC for
// the case in which this in an Add HTLC, or if this is a
// Settle, Fail, or MalformedFail.
shouldFwdAdd := remoteChainTail == pd.addCommitHeights.Remote &&
localChainTail >= pd.addCommitHeights.Local
shouldFwdRmv := remoteChainTail ==
pd.removeCommitHeights.Remote &&
localChainTail >= pd.removeCommitHeights.Local
// We'll only forward any new HTLC additions iff, it's "freshly
// locked in". Meaning that the HTLC was only *just* considered
// locked-in at this new state. By doing this we ensure that we
// don't re-forward any already processed HTLC's after a
// restart.
switch {
case pd.EntryType == Add && committedAdd && shouldFwdAdd:
// Construct a reference specifying the location that
// this forwarded Add will be written in the forwarding
// package constructed at this remote height.
pd.SourceRef = &channeldb.AddRef{
Height: remoteChainTail,
Index: addIndex,
}
addIndex++
pd.isForwarded = true
// At this point we put the update into our list of
// updates that we will eventually put into the
// FwdPkg at this height.
addUpdatesToForward = append(
addUpdatesToForward, pd.toLogUpdate(),
)
case pd.EntryType != Add && committedRmv && shouldFwdRmv:
// Construct a reference specifying the location that
// this forwarded Settle/Fail will be written in the
// forwarding package constructed at this remote height.
pd.DestRef = &channeldb.SettleFailRef{
Source: source,
Height: remoteChainTail,
Index: settleFailIndex,
}
settleFailIndex++
pd.isForwarded = true
// At this point we put the update into our list of
// updates that we will eventually put into the
// FwdPkg at this height.
settleFailUpdatesToForward = append(
settleFailUpdatesToForward, pd.toLogUpdate(),
)
default:
// The update was not "freshly locked in" so we will
// ignore it as we construct the forwarding package.
continue
}
}
// We use the remote commitment chain's tip as it will soon become the tail
// once advanceTail is called.
remoteMessageIndex := lc.commitChains.Remote.tip().messageIndices.Local
localMessageIndex := lc.commitChains.Local.tail().messageIndices.Local
localPeerUpdates := lc.unsignedLocalUpdates(
remoteMessageIndex, localMessageIndex,
)
// Now that we have gathered the set of HTLCs to forward, separated by
// type, construct a forwarding package using the height that the remote
// commitment chain will be extended after persisting the revocation.
fwdPkg := channeldb.NewFwdPkg(
source, remoteChainTail, addUpdatesToForward,
settleFailUpdatesToForward,
)
// We will soon be saving the current remote commitment to revocation
// log bucket, which is `lc.channelState.RemoteCommitment`. After that,
// the `RemoteCommitment` will be replaced with a newer version found
// in `CommitDiff`. Thus we need to compute the output indexes here
// before the change since the indexes are meant for the current,
// revoked remote commitment.
ourOutputIndex, theirOutputIndex, err := findOutputIndexesFromRemote(
revocation, lc.channelState, lc.leafStore,
)
if err != nil {
return nil, nil, err
}
// Now that we have a new verification nonce from them, we can refresh
// our remote musig2 session which allows us to create another state.
if lc.channelState.ChanType.IsTaproot() {
localNonce, err := revMsg.LocalNonce.UnwrapOrErrV(errNoNonce)
if err != nil {
return nil, nil, err
}
session, err := lc.musigSessions.RemoteSession.Refresh(
&musig2.Nonces{
PubNonce: localNonce,
},
)
if err != nil {
return nil, nil, err
}
lc.musigSessions.RemoteSession = session
}
// At this point, the revocation has been accepted, and we've rotated
// the current revocation key+hash for the remote party. Therefore we
// sync now to ensure the revocation producer state is consistent with
// the current commitment height and also to advance the on-disk
// commitment chain.
err = lc.channelState.AdvanceCommitChainTail(
fwdPkg, localPeerUpdates,
ourOutputIndex, theirOutputIndex,
)
if err != nil {
return nil, nil, err
}
// Since they revoked the current lowest height in their commitment
// chain, we can advance their chain by a single commitment.
lc.commitChains.Remote.advanceTail()
// As we've just completed a new state transition, attempt to see if we
// can remove any entries from the update log which have been removed
// from the PoV of both commitment chains.
compactLogs(
lc.updateLogs.Local, lc.updateLogs.Remote, localChainTail,
remoteChainTail,
)
remoteHTLCs := lc.channelState.RemoteCommitment.Htlcs
return fwdPkg, remoteHTLCs, nil
}
// LoadFwdPkgs loads any pending log updates from disk and returns the payment
// descriptors to be processed by the link.
func (lc *LightningChannel) LoadFwdPkgs() ([]*channeldb.FwdPkg, error) {
return lc.channelState.LoadFwdPkgs()
}
// AckAddHtlcs sets a bit in the FwdFilter of a forwarding package belonging to
// this channel, that corresponds to the given AddRef. This method also succeeds
// if no forwarding package is found.
func (lc *LightningChannel) AckAddHtlcs(addRef channeldb.AddRef) error {
return lc.channelState.AckAddHtlcs(addRef)
}
// AckSettleFails sets a bit in the SettleFailFilter of a forwarding package
// belonging to this channel, that corresponds to the given SettleFailRef. This
// method also succeeds if no forwarding package is found.
func (lc *LightningChannel) AckSettleFails(
settleFailRefs ...channeldb.SettleFailRef) error {
return lc.channelState.AckSettleFails(settleFailRefs...)
}
// SetFwdFilter writes the forwarding decision for a given remote commitment
// height.
func (lc *LightningChannel) SetFwdFilter(height uint64,
fwdFilter *channeldb.PkgFilter) error {
return lc.channelState.SetFwdFilter(height, fwdFilter)
}
// RemoveFwdPkgs permanently deletes the forwarding package at the given heights.
func (lc *LightningChannel) RemoveFwdPkgs(heights ...uint64) error {
return lc.channelState.RemoveFwdPkgs(heights...)
}
// NextRevocationKey returns the commitment point for the _next_ commitment
// height. The pubkey returned by this function is required by the remote party
// along with their revocation base to extend our commitment chain with a
// new commitment.
func (lc *LightningChannel) NextRevocationKey() (*btcec.PublicKey, error) {
lc.RLock()
defer lc.RUnlock()
nextHeight := lc.currentHeight + 1
revocation, err := lc.channelState.RevocationProducer.AtIndex(nextHeight)
if err != nil {
return nil, err
}
return input.ComputeCommitmentPoint(revocation[:]), nil
}
// InitNextRevocation inserts the passed commitment point as the _next_
// revocation to be used when creating a new commitment state for the remote
// party. This function MUST be called before the channel can accept or propose
// any new states.
func (lc *LightningChannel) InitNextRevocation(revKey *btcec.PublicKey) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.InsertNextRevocation(revKey)
}
// AddHTLC is a wrapper of the `addHTLC` function which always enforces the
// FeeBuffer on the local balance if being the initiator of the channel. This
// method should be called when preparing to send an outgoing HTLC.
//
// The additional openKey argument corresponds to the incoming CircuitKey of the
// committed circuit for this HTLC. This value should never be nil.
//
// NOTE: It is okay for sourceRef to be nil when unit testing the wallet.
func (lc *LightningChannel) AddHTLC(htlc *lnwire.UpdateAddHTLC,
openKey *models.CircuitKey) (uint64, error) {
return lc.addHTLC(htlc, openKey, FeeBuffer)
}
// addHTLC adds an HTLC to the state machine's local update log. It provides
// the ability to enforce a buffer on the local balance when we are the
// initiator of the channel. This is useful when checking the edge cases of a
// channel state e.g. the BOLT 03 test vectors.
//
// The additional openKey argument corresponds to the incoming CircuitKey of the
// committed circuit for this HTLC. This value should never be nil.
//
// NOTE: It is okay for sourceRef to be nil when unit testing the wallet.
func (lc *LightningChannel) addHTLC(htlc *lnwire.UpdateAddHTLC,
openKey *models.CircuitKey, buffer BufferType) (uint64, error) {
lc.Lock()
defer lc.Unlock()
pd := lc.htlcAddDescriptor(htlc, openKey)
if err := lc.validateAddHtlc(pd, buffer); err != nil {
return 0, err
}
lc.updateLogs.Local.appendHtlc(pd)
return pd.HtlcIndex, nil
}
// GetDustSum takes in a boolean that determines which commitment to evaluate
// the dust sum on. The return value is the sum of dust on the desired
// commitment tx.
//
// NOTE: This over-estimates the dust exposure.
func (lc *LightningChannel) GetDustSum(whoseCommit lntypes.ChannelParty,
dryRunFee fn.Option[chainfee.SatPerKWeight]) lnwire.MilliSatoshi {
lc.RLock()
defer lc.RUnlock()
var dustSum lnwire.MilliSatoshi
dustLimit := lc.channelState.LocalChanCfg.DustLimit
commit := lc.channelState.LocalCommitment
if whoseCommit.IsRemote() {
// Calculate dust sum on the remote's commitment.
dustLimit = lc.channelState.RemoteChanCfg.DustLimit
commit = lc.channelState.RemoteCommitment
}
chanType := lc.channelState.ChanType
feeRate := chainfee.SatPerKWeight(commit.FeePerKw)
// Optionally use the dry-run fee-rate.
feeRate = dryRunFee.UnwrapOr(feeRate)
// Grab all of our HTLCs and evaluate against the dust limit.
for e := lc.updateLogs.Local.Front(); e != nil; e = e.Next() {
pd := e.Value
if pd.EntryType != Add {
continue
}
amt := pd.Amount.ToSatoshis()
// If the satoshi amount is under the dust limit, add the msat
// amount to the dust sum.
if HtlcIsDust(
chanType, false, whoseCommit, feeRate, amt, dustLimit,
) {
dustSum += pd.Amount
}
}
// Grab all of their HTLCs and evaluate against the dust limit.
for e := lc.updateLogs.Remote.Front(); e != nil; e = e.Next() {
pd := e.Value
if pd.EntryType != Add {
continue
}
amt := pd.Amount.ToSatoshis()
// If the satoshi amount is under the dust limit, add the msat
// amount to the dust sum.
if HtlcIsDust(
chanType, true, whoseCommit, feeRate,
amt, dustLimit,
) {
dustSum += pd.Amount
}
}
return dustSum
}
// MayAddOutgoingHtlc validates whether we can add an outgoing htlc to this
// channel. We don't have a circuit for this htlc, because we just want to test
// that we have slots for a potential htlc so we use a "mock" htlc to validate
// a potential commitment state with one more outgoing htlc. If a zero htlc
// amount is provided, we'll attempt to add the smallest possible htlc to the
// channel (either the minimum htlc, or 1 sat).
func (lc *LightningChannel) MayAddOutgoingHtlc(amt lnwire.MilliSatoshi) error {
lc.Lock()
defer lc.Unlock()
var mockHtlcAmt lnwire.MilliSatoshi
switch {
// If the caller specifically set an amount, we use it.
case amt != 0:
mockHtlcAmt = amt
// In absence of a specific amount, we want to use minimum htlc value
// for the channel. However certain implementations may set this value
// to zero, so we only use this value if it is non-zero.
case lc.channelState.LocalChanCfg.MinHTLC != 0:
mockHtlcAmt = lc.channelState.LocalChanCfg.MinHTLC
// As a last resort, we just add a non-zero amount.
default:
mockHtlcAmt++
}
// Create a "mock" outgoing htlc, using the smallest amount we can add
// to the commitment so that we validate commitment slots rather than
// available balance, since our actual htlc amount is unknown at this
// stage.
pd := lc.htlcAddDescriptor(
&lnwire.UpdateAddHTLC{
Amount: mockHtlcAmt,
},
&models.CircuitKey{},
)
// Enforce the FeeBuffer because we are evaluating whether we can add
// another htlc to the channel state.
if err := lc.validateAddHtlc(pd, FeeBuffer); err != nil {
lc.log.Debugf("May add outgoing htlc rejected: %v", err)
return err
}
return nil
}
// htlcAddDescriptor returns a payment descriptor for the htlc and open key
// provided to add to our local update log.
func (lc *LightningChannel) htlcAddDescriptor(htlc *lnwire.UpdateAddHTLC,
openKey *models.CircuitKey) *paymentDescriptor {
return &paymentDescriptor{
ChanID: htlc.ChanID,
EntryType: Add,
RHash: PaymentHash(htlc.PaymentHash),
Timeout: htlc.Expiry,
Amount: htlc.Amount,
LogIndex: lc.updateLogs.Local.logIndex,
HtlcIndex: lc.updateLogs.Local.htlcCounter,
OnionBlob: htlc.OnionBlob,
OpenCircuitKey: openKey,
BlindingPoint: htlc.BlindingPoint,
CustomRecords: htlc.CustomRecords.Copy(),
}
}
// validateAddHtlc validates the addition of an outgoing htlc to our local and
// remote commitments.
func (lc *LightningChannel) validateAddHtlc(pd *paymentDescriptor,
buffer BufferType) error {
// Make sure adding this HTLC won't violate any of the constraints we
// must keep on the commitment transactions.
remoteACKedIndex := lc.commitChains.Local.tail().messageIndices.Remote
// First we'll check whether this HTLC can be added to the remote
// commitment transaction without violation any of the constraints.
err := lc.validateCommitmentSanity(
remoteACKedIndex, lc.updateLogs.Local.logIndex, lntypes.Remote,
buffer, pd, nil,
)
if err != nil {
return err
}
// We must also check whether it can be added to our own commitment
// transaction, or the remote node will refuse to sign. This is not
// totally bullet proof, as the remote might be adding updates
// concurrently, but if we fail this check there is for sure not
// possible for us to add the HTLC.
err = lc.validateCommitmentSanity(
lc.updateLogs.Remote.logIndex, lc.updateLogs.Local.logIndex,
lntypes.Local, buffer, pd, nil,
)
if err != nil {
return err
}
return nil
}
// ReceiveHTLC adds an HTLC to the state machine's remote update log. This
// method should be called in response to receiving a new HTLC from the remote
// party.
func (lc *LightningChannel) ReceiveHTLC(htlc *lnwire.UpdateAddHTLC) (uint64,
error) {
lc.Lock()
defer lc.Unlock()
if htlc.ID != lc.updateLogs.Remote.htlcCounter {
return 0, fmt.Errorf("ID %d on HTLC add does not match "+
"expected next ID %d", htlc.ID,
lc.updateLogs.Remote.htlcCounter)
}
pd := &paymentDescriptor{
ChanID: htlc.ChanID,
EntryType: Add,
RHash: PaymentHash(htlc.PaymentHash),
Timeout: htlc.Expiry,
Amount: htlc.Amount,
LogIndex: lc.updateLogs.Remote.logIndex,
HtlcIndex: lc.updateLogs.Remote.htlcCounter,
OnionBlob: htlc.OnionBlob,
BlindingPoint: htlc.BlindingPoint,
CustomRecords: htlc.CustomRecords.Copy(),
}
localACKedIndex := lc.commitChains.Remote.tail().messageIndices.Local
// Clamp down on the number of HTLC's we can receive by checking the
// commitment sanity.
// We do not enforce the FeeBuffer here because one of the reasons it
// was introduced is to protect against asynchronous sending of htlcs so
// we use it here. The current lightning protocol does not allow to
// reject ADDs already sent by the peer.
err := lc.validateCommitmentSanity(
lc.updateLogs.Remote.logIndex, localACKedIndex, lntypes.Local,
NoBuffer, nil, pd,
)
if err != nil {
return 0, err
}
lc.updateLogs.Remote.appendHtlc(pd)
return pd.HtlcIndex, nil
}
// SettleHTLC attempts to settle an existing outstanding received HTLC. The
// remote log index of the HTLC settled is returned in order to facilitate
// creating the corresponding wire message. In the case the supplied preimage
// is invalid, an error is returned.
//
// The additional arguments correspond to:
//
// - sourceRef: specifies the location of the Add HTLC within a forwarding
// package that this HTLC is settling. Every Settle fails exactly one Add,
// so this should never be empty in practice.
//
// - destRef: specifies the location of the Settle HTLC within another
// channel's forwarding package. This value can be nil if the corresponding
// Add HTLC was never locked into an outgoing commitment txn, or this
// HTLC does not originate as a response from the peer on the outgoing
// link, e.g. on-chain resolutions.
//
// - closeKey: identifies the circuit that should be deleted after this Settle
// HTLC is included in a commitment txn. This value should only be nil if
// the HTLC was settled locally before committing a circuit to the circuit
// map.
//
// NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit
// testing the wallet.
func (lc *LightningChannel) SettleHTLC(preimage [32]byte,
htlcIndex uint64, sourceRef *channeldb.AddRef,
destRef *channeldb.SettleFailRef, closeKey *models.CircuitKey) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.updateLogs.Remote.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, before checking to see if the
// preimage matches, we'll ensure that we haven't already attempted to
// modify the HTLC.
if lc.updateLogs.Remote.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadySettled(htlcIndex)
}
if htlc.RHash != sha256.Sum256(preimage[:]) {
return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]}
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
Amount: htlc.Amount,
RPreimage: preimage,
LogIndex: lc.updateLogs.Local.logIndex,
ParentIndex: htlcIndex,
EntryType: Settle,
SourceRef: sourceRef,
DestRef: destRef,
ClosedCircuitKey: closeKey,
}
lc.updateLogs.Local.appendUpdate(pd)
// With the settle added to our local log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate settle.
lc.updateLogs.Remote.markHtlcModified(htlcIndex)
return nil
}
// ReceiveHTLCSettle attempts to settle an existing outgoing HTLC indexed by an
// index into the local log. If the specified index doesn't exist within the
// log, and error is returned. Similarly if the preimage is invalid w.r.t to
// the referenced of then a distinct error is returned.
func (lc *LightningChannel) ReceiveHTLCSettle(preimage [32]byte, htlcIndex uint64) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.updateLogs.Local.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, before checking to see if the
// preimage matches, we'll ensure that they haven't already attempted
// to modify the HTLC.
if lc.updateLogs.Local.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadySettled(htlcIndex)
}
if htlc.RHash != sha256.Sum256(preimage[:]) {
return ErrInvalidSettlePreimage{preimage[:], htlc.RHash[:]}
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
Amount: htlc.Amount,
RPreimage: preimage,
ParentIndex: htlc.HtlcIndex,
RHash: htlc.RHash,
LogIndex: lc.updateLogs.Remote.logIndex,
EntryType: Settle,
}
lc.updateLogs.Remote.appendUpdate(pd)
// With the settle added to the remote log, we'll now mark the HTLC as
// modified to prevent the remote party from accidentally attempting a
// duplicate settle.
lc.updateLogs.Local.markHtlcModified(htlcIndex)
return nil
}
// FailHTLC attempts to fail a targeted HTLC by its payment hash, inserting an
// entry which will remove the target log entry within the next commitment
// update. This method is intended to be called in order to cancel in
// _incoming_ HTLC.
//
// The additional arguments correspond to:
//
// - sourceRef: specifies the location of the Add HTLC within a forwarding
// package that this HTLC is failing. Every Fail fails exactly one Add, so
// this should never be empty in practice.
//
// - destRef: specifies the location of the Fail HTLC within another channel's
// forwarding package. This value can be nil if the corresponding Add HTLC
// was never locked into an outgoing commitment txn, or this HTLC does not
// originate as a response from the peer on the outgoing link, e.g.
// on-chain resolutions.
//
// - closeKey: identifies the circuit that should be deleted after this Fail
// HTLC is included in a commitment txn. This value should only be nil if
// the HTLC was failed locally before committing a circuit to the circuit
// map.
//
// NOTE: It is okay for sourceRef, destRef, and closeKey to be nil when unit
// testing the wallet.
func (lc *LightningChannel) FailHTLC(htlcIndex uint64, reason []byte,
sourceRef *channeldb.AddRef, destRef *channeldb.SettleFailRef,
closeKey *models.CircuitKey) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.updateLogs.Remote.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that we haven't
// already attempted to fail the HTLC.
if lc.updateLogs.Remote.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlcIndex,
LogIndex: lc.updateLogs.Local.logIndex,
EntryType: Fail,
FailReason: reason,
SourceRef: sourceRef,
DestRef: destRef,
ClosedCircuitKey: closeKey,
}
lc.updateLogs.Local.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.updateLogs.Remote.markHtlcModified(htlcIndex)
return nil
}
// MalformedFailHTLC attempts to fail a targeted HTLC by its payment hash,
// inserting an entry which will remove the target log entry within the next
// commitment update. This method is intended to be called in order to cancel
// in _incoming_ HTLC.
//
// The additional sourceRef specifies the location of the Add HTLC within a
// forwarding package that this HTLC is failing. This value should never be
// empty.
//
// NOTE: It is okay for sourceRef to be nil when unit testing the wallet.
func (lc *LightningChannel) MalformedFailHTLC(htlcIndex uint64,
failCode lnwire.FailCode, shaOnionBlob [sha256.Size]byte,
sourceRef *channeldb.AddRef) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.updateLogs.Remote.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that we haven't
// already attempted to fail the HTLC.
if lc.updateLogs.Remote.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlcIndex,
LogIndex: lc.updateLogs.Local.logIndex,
EntryType: MalformedFail,
FailCode: failCode,
ShaOnionBlob: shaOnionBlob,
SourceRef: sourceRef,
}
lc.updateLogs.Local.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.updateLogs.Remote.markHtlcModified(htlcIndex)
return nil
}
// ReceiveFailHTLC attempts to cancel a targeted HTLC by its log index,
// inserting an entry which will remove the target log entry within the next
// commitment update. This method should be called in response to the upstream
// party cancelling an outgoing HTLC.
func (lc *LightningChannel) ReceiveFailHTLC(htlcIndex uint64, reason []byte,
) error {
lc.Lock()
defer lc.Unlock()
htlc := lc.updateLogs.Local.lookupHtlc(htlcIndex)
if htlc == nil {
return ErrUnknownHtlcIndex{lc.ShortChanID(), htlcIndex}
}
// Now that we know the HTLC exists, we'll ensure that they haven't
// already attempted to fail the HTLC.
if lc.updateLogs.Local.htlcHasModification(htlcIndex) {
return ErrHtlcIndexAlreadyFailed(htlcIndex)
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
Amount: htlc.Amount,
RHash: htlc.RHash,
ParentIndex: htlc.HtlcIndex,
LogIndex: lc.updateLogs.Remote.logIndex,
EntryType: Fail,
FailReason: reason,
}
lc.updateLogs.Remote.appendUpdate(pd)
// With the fail added to the remote log, we'll now mark the HTLC as
// modified to prevent ourselves from accidentally attempting a
// duplicate fail.
lc.updateLogs.Local.markHtlcModified(htlcIndex)
return nil
}
// ChannelPoint returns the outpoint of the original funding transaction which
// created this active channel. This outpoint is used throughout various
// subsystems to uniquely identify an open channel.
func (lc *LightningChannel) ChannelPoint() wire.OutPoint {
return lc.channelState.FundingOutpoint
}
// ChannelID returns the ChannelID of this LightningChannel. This is the same
// ChannelID that is used in update messages for this channel.
func (lc *LightningChannel) ChannelID() lnwire.ChannelID {
return lnwire.NewChanIDFromOutPoint(lc.ChannelPoint())
}
// ShortChanID returns the short channel ID for the channel. The short channel
// ID encodes the exact location in the main chain that the original
// funding output can be found.
func (lc *LightningChannel) ShortChanID() lnwire.ShortChannelID {
return lc.channelState.ShortChanID()
}
// LocalUpfrontShutdownScript returns the local upfront shutdown script for the
// channel. If it was not set, an empty byte array is returned.
func (lc *LightningChannel) LocalUpfrontShutdownScript() lnwire.DeliveryAddress {
return lc.channelState.LocalShutdownScript
}
// RemoteUpfrontShutdownScript returns the remote upfront shutdown script for the
// channel. If it was not set, an empty byte array is returned.
func (lc *LightningChannel) RemoteUpfrontShutdownScript() lnwire.DeliveryAddress {
return lc.channelState.RemoteShutdownScript
}
// AbsoluteThawHeight determines a frozen channel's absolute thaw height. If
// the channel is not frozen, then 0 is returned.
//
// An error is returned if the channel is pending, or is an unconfirmed zero
// conf channel.
func (lc *LightningChannel) AbsoluteThawHeight() (uint32, error) {
return lc.channelState.AbsoluteThawHeight()
}
// SignedCommitTxInputs contains data needed to create a signed commit
// transaction using a signer. See GetSignedCommitTx.
type SignedCommitTxInputs struct {
// CommitTx is the latest version of the commitment state, broadcast
// able by us.
CommitTx *wire.MsgTx
// CommitSig is one half of the signature required to fully complete
// the script for the commitment transaction above. This is the
// signature signed by the remote party for our version of the
// commitment transactions.
CommitSig []byte
// OurKey is our key to be used within the 2-of-2 output script
// for the owner of this channel.
OurKey keychain.KeyDescriptor
// TheirKey is their key to be used within the 2-of-2 output script
// for the owner of this channel.
TheirKey keychain.KeyDescriptor
// SignDesc is the primary sign descriptor that is capable of signing
// the commitment transaction that spends the multi-sig output.
SignDesc *input.SignDescriptor
// Taproot holds fields needed in case of a taproot channel.
// Iff the channel is of taproot type, this field is filled.
Taproot fn.Option[TaprootSignedCommitTxInputs]
}
// TaprootSignedCommitTxInputs contains additional data needed to create a
// signed commit transaction using a signer, used in case of a taproot channel.
// See GetSignedCommitTx.
type TaprootSignedCommitTxInputs struct {
// CommitHeight is the update number that this channel state represents.
// It is the total number of commitment updates up to this point. This
// can be viewed as sort of a "commitment height" as this number is
// monotonically increasing. This number is used to make a signature
// for a taproot channel, since it is used by shachain nonce producer
// (TaprootNonceProducer).
CommitHeight uint64
// TaprootNonceProducer is used to generate a shachain tree for the
// purpose of generating verification nonces for taproot channels.
TaprootNonceProducer shachain.Producer
// TapscriptRoot is the root of the tapscript tree that will be used to
// create the funding output. This is an optional field that should
// only be set for taproot channels.
TapscriptRoot fn.Option[chainhash.Hash]
}
// GetSignedCommitTx creates the witness stack of a channel commitment
// transaction. It can handle all commitment types (taproot, legacy). It is
// exported to give outside tooling the possibility to recreate the witness.
// A key use case is generating the witness data for a commitment transaction
// from a Static Channel Backup (SCB).
func GetSignedCommitTx(inputs SignedCommitTxInputs,
signer input.Signer) (*wire.MsgTx, error) {
commitTx := inputs.CommitTx.Copy()
var witness wire.TxWitness
switch {
// If this is a taproot channel, then we'll need to re-derive the nonce
// we need to generate a new signature
case inputs.Taproot.IsSome():
// Extract Taproot from fn.Option. It is safe to call
// UnsafeFromSome because we just checked that it is some.
taproot := inputs.Taproot.UnsafeFromSome()
// First, we'll need to re-derive the local nonce we sent to
// the remote party to create this musig session. We pass in
// the same height here as we're generating the nonce needed
// for the _current_ state.
localNonce, err := channeldb.NewMusigVerificationNonce(
inputs.OurKey.PubKey, taproot.CommitHeight,
taproot.TaprootNonceProducer,
)
if err != nil {
return nil, fmt.Errorf("unable to re-derive "+
"verification nonce: %w", err)
}
tapscriptTweak := fn.MapOption(TapscriptRootToTweak)(
taproot.TapscriptRoot,
)
// Now that we have the local nonce, we'll re-create the musig
// session we had for this height.
musigSession := NewPartialMusigSession(
*localNonce, inputs.OurKey, inputs.TheirKey, signer,
inputs.SignDesc.Output, LocalMusigCommit,
tapscriptTweak,
)
var remoteSig lnwire.PartialSigWithNonce
err = remoteSig.Decode(
bytes.NewReader(inputs.CommitSig),
)
if err != nil {
return nil, fmt.Errorf("unable to decode remote "+
"partial sig: %w", err)
}
// Next, we'll manually finalize the session with the signing
// nonce we got from the remote party which is embedded in the
// signature we have.
err = musigSession.FinalizeSession(musig2.Nonces{
PubNonce: remoteSig.Nonce,
})
if err != nil {
return nil, fmt.Errorf("unable to finalize musig "+
"session: %w", err)
}
// Now that the session has been finalized, we can generate our
// half of the signature for the state. We don't capture the
// sig as it's stored within the session.
if _, err := musigSession.SignCommit(commitTx); err != nil {
return nil, fmt.Errorf("unable to sign musig2 "+
"commitment: %w", err)
}
// The final step is now to combine this signature we generated
// above, with the remote party's signature. We only need to
// pass the remote sig, as the local sig was already cached in
// the session.
var partialSig MusigPartialSig
partialSig.FromWireSig(&remoteSig)
finalSig, err := musigSession.CombineSigs(partialSig.sig)
if err != nil {
return nil, fmt.Errorf("unable to combine musig "+
"partial sigs: %w", err)
}
// The witness is the single keyspend schnorr sig.
witness = wire.TxWitness{
finalSig.Serialize(),
}
// Otherwise, the final witness we generate will be a normal p2wsh
// multi-sig spend.
default:
theirSig, err := ecdsa.ParseDERSignature(inputs.CommitSig)
if err != nil {
return nil, err
}
// With this, we then generate the full witness so the caller
// can broadcast a fully signed transaction.
inputs.SignDesc.SigHashes = input.NewTxSigHashesV0Only(commitTx)
ourSig, err := signer.SignOutputRaw(commitTx, inputs.SignDesc)
if err != nil {
return nil, err
}
// With the final signature generated, create the witness stack
// required to spend from the multi-sig output.
witness = input.SpendMultiSig(
inputs.SignDesc.WitnessScript,
inputs.OurKey.PubKey.SerializeCompressed(), ourSig,
inputs.TheirKey.PubKey.SerializeCompressed(), theirSig,
)
}
commitTx.TxIn[0].Witness = witness
return commitTx, nil
}
// getSignedCommitTx method takes the latest commitment transaction and
// populates it with witness data.
func (lc *LightningChannel) getSignedCommitTx() (*wire.MsgTx, error) {
// Fetch the current commitment transaction, along with their signature
// for the transaction.
localCommit := lc.channelState.LocalCommitment
inputs := SignedCommitTxInputs{
CommitTx: localCommit.CommitTx,
CommitSig: localCommit.CommitSig,
OurKey: lc.channelState.LocalChanCfg.MultiSigKey,
TheirKey: lc.channelState.RemoteChanCfg.MultiSigKey,
SignDesc: lc.signDesc,
}
if lc.channelState.ChanType.IsTaproot() {
inputs.Taproot = fn.Some(TaprootSignedCommitTxInputs{
CommitHeight: lc.currentHeight,
TaprootNonceProducer: lc.taprootNonceProducer,
TapscriptRoot: lc.channelState.TapscriptRoot,
})
}
return GetSignedCommitTx(inputs, lc.Signer)
}
// CommitOutputResolution carries the necessary information required to allow
// us to sweep our commitment output in the case that either party goes to
// chain.
type CommitOutputResolution struct {
// SelfOutPoint is the full outpoint that points to out pay-to-self
// output within the closing commitment transaction.
SelfOutPoint wire.OutPoint
// SelfOutputSignDesc is a fully populated sign descriptor capable of
// generating a valid signature to sweep the output paying to us.
SelfOutputSignDesc input.SignDescriptor
// MaturityDelay is the relative time-lock, in blocks for all outputs
// that pay to the local party within the broadcast commitment
// transaction.
MaturityDelay uint32
// ResolutionBlob is a blob used for aux channels that permits a
// spender of the output to properly resolve it in the case of a force
// close.
ResolutionBlob fn.Option[tlv.Blob]
}
// UnilateralCloseSummary describes the details of a detected unilateral
// channel closure. This includes the information about with which
// transactions, and block the channel was unilaterally closed, as well as
// summarization details concerning the _state_ of the channel at the point of
// channel closure. Additionally, if we had a commitment output above dust on
// the remote party's commitment transaction, the necessary a SignDescriptor
// with the material necessary to seep the output are returned. Finally, if we
// had any outgoing HTLC's within the commitment transaction, then an
// OutgoingHtlcResolution for each output will included.
type UnilateralCloseSummary struct {
// SpendDetail is a struct that describes how and when the funding
// output was spent.
*chainntnfs.SpendDetail
// ChannelCloseSummary is a struct describing the final state of the
// channel and in which state is was closed.
channeldb.ChannelCloseSummary
// CommitResolution contains all the data required to sweep the output
// to ourselves. If this is our commitment transaction, then we'll need
// to wait a time delay before we can sweep the output.
//
// NOTE: If our commitment delivery output is below the dust limit,
// then this will be nil.
CommitResolution *CommitOutputResolution
// HtlcResolutions contains a fully populated HtlcResolutions struct
// which contains all the data required to sweep any outgoing HTLC's,
// and also any incoming HTLC's that we know the pre-image to.
HtlcResolutions *HtlcResolutions
// RemoteCommit is the exact commitment state that the remote party
// broadcast.
RemoteCommit channeldb.ChannelCommitment
// AnchorResolution contains the data required to sweep our anchor
// output. If the channel type doesn't include anchors, the value of
// this field will be nil.
AnchorResolution *AnchorResolution
}
// NewUnilateralCloseSummary creates a new summary that provides the caller
// with all the information required to claim all funds on chain in the event
// that the remote party broadcasts their commitment. The commitPoint argument
// should be set to the per_commitment_point corresponding to the spending
// commitment.
//
// NOTE: The remoteCommit argument should be set to the stored commitment for
// this particular state. If we don't have the commitment stored (should only
// happen in case we have lost state) it should be set to an empty struct, in
// which case we will attempt to sweep the non-HTLC output using the passed
// commitPoint.
func NewUnilateralCloseSummary(chanState *channeldb.OpenChannel, //nolint:funlen
signer input.Signer, commitSpend *chainntnfs.SpendDetail,
remoteCommit channeldb.ChannelCommitment, commitPoint *btcec.PublicKey,
leafStore fn.Option[AuxLeafStore],
auxResolver fn.Option[AuxContractResolver]) (*UnilateralCloseSummary,
error) {
// First, we'll generate the commitment point and the revocation point
// so we can re-construct the HTLC state and also our payment key.
commitType := lntypes.Remote
keyRing := DeriveCommitmentKeys(
commitPoint, commitType, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
auxResult, err := fn.MapOptionZ(
leafStore, func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(chanState), remoteCommit,
*keyRing, lntypes.Remote,
)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("unable to fetch aux leaves: %w", err)
}
// Next, we'll obtain HTLC resolutions for all the outgoing HTLC's we
// had on their commitment transaction.
var (
leaseExpiry uint32
selfPoint *wire.OutPoint
localBalance int64
isRemoteInitiator = !chanState.IsInitiator
commitTxBroadcast = commitSpend.SpendingTx
)
if chanState.ChanType.HasLeaseExpiration() {
leaseExpiry = chanState.ThawHeight
}
htlcResolutions, err := extractHtlcResolutions(
chainfee.SatPerKWeight(remoteCommit.FeePerKw), commitType,
signer, remoteCommit.Htlcs, keyRing, &chanState.LocalChanCfg,
&chanState.RemoteChanCfg, commitSpend.SpendingTx,
chanState.ChanType, isRemoteInitiator, leaseExpiry, chanState,
auxResult.AuxLeaves, auxResolver,
)
if err != nil {
return nil, fmt.Errorf("unable to create htlc resolutions: %w",
err)
}
// Before we can generate the proper sign descriptor, we'll need to
// locate the output index of our non-delayed output on the commitment
// transaction.
remoteAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.RemoteAuxLeaf
},
)(auxResult.AuxLeaves)
selfScript, maturityDelay, err := CommitScriptToRemote(
chanState.ChanType, isRemoteInitiator, keyRing.ToRemoteKey,
leaseExpiry, remoteAuxLeaf,
)
if err != nil {
return nil, fmt.Errorf("unable to create self commit "+
"script: %w", err)
}
for outputIndex, txOut := range commitTxBroadcast.TxOut {
if bytes.Equal(txOut.PkScript, selfScript.PkScript()) {
selfPoint = &wire.OutPoint{
Hash: *commitSpend.SpenderTxHash,
Index: uint32(outputIndex),
}
localBalance = txOut.Value
break
}
}
// With the HTLC's taken care of, we'll generate the sign descriptor
// necessary to sweep our commitment output, but only if we had a
// non-trimmed balance.
var commitResolution *CommitOutputResolution
if selfPoint != nil {
localPayBase := chanState.LocalChanCfg.PaymentBasePoint
// As the remote party has force closed, we just need the
// success witness script.
witnessScript, err := selfScript.WitnessScriptForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
commitResolution = &CommitOutputResolution{
SelfOutPoint: *selfPoint,
SelfOutputSignDesc: input.SignDescriptor{
KeyDesc: localPayBase,
SingleTweak: keyRing.LocalCommitKeyTweak,
WitnessScript: witnessScript,
Output: &wire.TxOut{
Value: localBalance,
PkScript: selfScript.PkScript(),
},
HashType: sweepSigHash(chanState.ChanType),
},
MaturityDelay: maturityDelay,
}
// For taproot channels, we'll need to set some additional
// fields to ensure the output can be swept.
//
//nolint:ll
if scriptTree, ok := selfScript.(input.TapscriptDescriptor); ok {
commitResolution.SelfOutputSignDesc.SignMethod =
input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
//nolint:ll
commitResolution.SelfOutputSignDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
// At this point, we'll check to see if we need any extra
// resolution data for this output.
resolveReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanState.ChanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.RemoteCommitment.CustomBlob,
FundingBlob: chanState.CustomBlob,
Type: input.TaprootRemoteCommitSpend,
CloseType: RemoteForceClose,
CommitTx: commitTxBroadcast,
ContractPoint: *selfPoint,
SignDesc: commitResolution.SelfOutputSignDesc,
KeyRing: keyRing,
CsvDelay: maturityDelay,
CommitFee: chanState.RemoteCommitment.CommitFee,
}
resolveBlob := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
return a.ResolveContract(resolveReq)
},
)
if err := resolveBlob.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
commitResolution.ResolutionBlob = resolveBlob.Option()
}
closeSummary := channeldb.ChannelCloseSummary{
ChanPoint: chanState.FundingOutpoint,
ChainHash: chanState.ChainHash,
ClosingTXID: *commitSpend.SpenderTxHash,
CloseHeight: uint32(commitSpend.SpendingHeight),
RemotePub: chanState.IdentityPub,
Capacity: chanState.Capacity,
SettledBalance: btcutil.Amount(localBalance),
CloseType: channeldb.RemoteForceClose,
IsPending: true,
RemoteCurrentRevocation: chanState.RemoteCurrentRevocation,
RemoteNextRevocation: chanState.RemoteNextRevocation,
ShortChanID: chanState.ShortChanID(),
LocalChanConfig: chanState.LocalChanCfg,
}
// Attempt to add a channel sync message to the close summary.
chanSync, err := chanState.ChanSyncMsg()
if err != nil {
walletLog.Errorf("ChannelPoint(%v): unable to create channel sync "+
"message: %v", chanState.FundingOutpoint, err)
} else {
closeSummary.LastChanSyncMsg = chanSync
}
anchorResolution, err := NewAnchorResolution(
chanState, commitTxBroadcast, keyRing, lntypes.Remote,
)
if err != nil {
return nil, err
}
return &UnilateralCloseSummary{
SpendDetail: commitSpend,
ChannelCloseSummary: closeSummary,
CommitResolution: commitResolution,
HtlcResolutions: htlcResolutions,
RemoteCommit: remoteCommit,
AnchorResolution: anchorResolution,
}, nil
}
// IncomingHtlcResolution houses the information required to sweep any incoming
// HTLC's that we know the preimage to. We'll need to sweep an HTLC manually
// using this struct if we need to go on-chain for any reason, or if we detect
// that the remote party broadcasts their commitment transaction.
type IncomingHtlcResolution struct {
// Preimage is the preimage that will be used to satisfy the contract of
// the HTLC.
//
// NOTE: This field will only be populated in the incoming contest
// resolver.
Preimage [32]byte
// SignedSuccessTx is the fully signed HTLC success transaction. This
// transaction (if non-nil) can be broadcast immediately. After a csv
// delay (included below), then the output created by this transactions
// can be swept on-chain.
//
// NOTE: If this field is nil, then this indicates that we don't need
// to go to the second level to claim this HTLC. Instead, it can be
// claimed directly from the outpoint listed below.
SignedSuccessTx *wire.MsgTx
// SignDetails is non-nil if SignedSuccessTx is non-nil, and the
// channel is of the anchor type. As the above HTLC transaction will be
// signed by the channel peer using SINGLE|ANYONECANPAY for such
// channels, we can use the sign details to add the input-output pair
// of the HTLC transaction to another transaction, thereby aggregating
// multiple HTLC transactions together, and adding fees as needed.
SignDetails *input.SignDetails
// CsvDelay is the relative time lock (expressed in blocks) that must
// pass after the SignedSuccessTx is confirmed in the chain before the
// output can be swept.
//
// NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV
// delay needed to spend from the commitment transaction.
CsvDelay uint32
// ClaimOutpoint is the final outpoint that needs to be spent in order
// to fully sweep the HTLC. The SignDescriptor below should be used to
// spend this outpoint. In the case of a second-level HTLC (non-nil
// SignedTimeoutTx), then we'll be spending a new transaction.
// Otherwise, it'll be an output in the commitment transaction.
ClaimOutpoint wire.OutPoint
// SweepSignDesc is a sign descriptor that has been populated with the
// necessary items required to spend the sole output of the above
// transaction.
SweepSignDesc input.SignDescriptor
// ResolutionBlob is a blob used for aux channels that permits a
// spender of the output to properly resolve it in the case of a force
// close.
ResolutionBlob fn.Option[tlv.Blob]
}
// OutgoingHtlcResolution houses the information necessary to sweep any
// outgoing HTLC's after their contract has expired. This struct will be needed
// in one of two cases: the local party force closes the commitment transaction
// or the remote party unilaterally closes with their version of the commitment
// transaction.
type OutgoingHtlcResolution struct {
// Expiry the absolute timeout of the HTLC. This value is expressed in
// block height, meaning after this height the HLTC can be swept.
Expiry uint32
// SignedTimeoutTx is the fully signed HTLC timeout transaction. This
// must be broadcast immediately after timeout has passed. Once this
// has been confirmed, the HTLC output will transition into the
// delay+claim state.
//
// NOTE: If this field is nil, then this indicates that we don't need
// to go to the second level to claim this HTLC. Instead, it can be
// claimed directly from the outpoint listed below.
SignedTimeoutTx *wire.MsgTx
// SignDetails is non-nil if SignedTimeoutTx is non-nil, and the
// channel is of the anchor type. As the above HTLC transaction will be
// signed by the channel peer using SINGLE|ANYONECANPAY for such
// channels, we can use the sign details to add the input-output pair
// of the HTLC transaction to another transaction, thereby aggregating
// multiple HTLC transactions together, and adding fees as needed.
SignDetails *input.SignDetails
// CsvDelay is the relative time lock (expressed in blocks) that must
// pass after the SignedTimeoutTx is confirmed in the chain before the
// output can be swept.
//
// NOTE: If SignedTimeoutTx is nil, then this field denotes the CSV
// delay needed to spend from the commitment transaction.
CsvDelay uint32
// ClaimOutpoint is the final outpoint that needs to be spent in order
// to fully sweep the HTLC. The SignDescriptor below should be used to
// spend this outpoint. In the case of a second-level HTLC (non-nil
// SignedTimeoutTx), then we'll be spending a new transaction.
// Otherwise, it'll be an output in the commitment transaction.
ClaimOutpoint wire.OutPoint
// SweepSignDesc is a sign descriptor that has been populated with the
// necessary items required to spend the sole output of the above
// transaction.
SweepSignDesc input.SignDescriptor
// ResolutionBlob is a blob used for aux channels that permits a
// spender of the output to properly resolve it in the case of a force
// close.
ResolutionBlob fn.Option[tlv.Blob]
}
// HtlcResolutions contains the items necessary to sweep HTLC's on chain
// directly from a commitment transaction. We'll use this in case either party
// goes broadcasts a commitment transaction with live HTLC's.
type HtlcResolutions struct {
// IncomingHTLCs contains a set of structs that can be used to sweep
// all the incoming HTL'C that we know the preimage to.
IncomingHTLCs []IncomingHtlcResolution
// OutgoingHTLCs contains a set of structs that contains all the info
// needed to sweep an outgoing HTLC we've sent to the remote party
// after an absolute delay has expired.
OutgoingHTLCs []OutgoingHtlcResolution
}
// newOutgoingHtlcResolution generates a new HTLC resolution capable of
// allowing the caller to sweep an outgoing HTLC present on either their, or
// the remote party's commitment transaction.
func newOutgoingHtlcResolution(signer input.Signer,
localChanCfg *channeldb.ChannelConfig, commitTx *wire.MsgTx,
htlc *channeldb.HTLC, keyRing *CommitmentKeyRing,
feePerKw chainfee.SatPerKWeight, csvDelay, leaseExpiry uint32,
whoseCommit lntypes.ChannelParty, isCommitFromInitiator bool,
chanType channeldb.ChannelType, chanState *channeldb.OpenChannel,
auxLeaves fn.Option[CommitAuxLeaves],
auxResolver fn.Option[AuxContractResolver],
) (*OutgoingHtlcResolution, error) {
op := wire.OutPoint{
Hash: commitTx.TxHash(),
Index: uint32(htlc.OutputIndex),
}
// First, we'll re-generate the script used to send the HTLC to the
// remote party within their commitment transaction.
auxLeaf := fn.ChainOption(func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.OutgoingHtlcLeaves[htlc.HtlcIndex].AuxTapLeaf
})(auxLeaves)
htlcScriptInfo, err := genHtlcScript(
chanType, false, whoseCommit, htlc.RefundTimeout, htlc.RHash,
keyRing, auxLeaf,
)
if err != nil {
return nil, err
}
htlcPkScript := htlcScriptInfo.PkScript()
// As this is an outgoing HTLC, we just care about the timeout path
// here.
scriptPath := input.ScriptPathTimeout
htlcWitnessScript, err := htlcScriptInfo.WitnessScriptForPath(
scriptPath,
)
if err != nil {
return nil, err
}
htlcCsvDelay := HtlcSecondLevelInputSequence(chanType)
// If we're spending this HTLC output from the remote node's
// commitment, then we won't need to go to the second level as our
// outputs don't have a CSV delay.
if whoseCommit.IsRemote() {
// With the script generated, we can completely populated the
// SignDescriptor needed to sweep the output.
prevFetcher := txscript.NewCannedPrevOutputFetcher(
htlcPkScript, int64(htlc.Amt.ToSatoshis()),
)
signDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcWitnessScript,
Output: &wire.TxOut{
PkScript: htlcPkScript,
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: sweepSigHash(chanType),
PrevOutputFetcher: prevFetcher,
}
scriptTree, ok := htlcScriptInfo.(input.TapscriptDescriptor)
if ok {
signDesc.SignMethod = input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
scriptPath,
)
if err != nil {
return nil, err
}
signDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
resReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.RemoteCommitment.CustomBlob,
FundingBlob: chanState.CustomBlob,
Type: input.TaprootHtlcOfferedRemoteTimeout,
CloseType: RemoteForceClose,
CommitTx: commitTx,
ContractPoint: op,
SignDesc: signDesc,
KeyRing: keyRing,
CsvDelay: htlcCsvDelay,
CltvDelay: fn.Some(htlc.RefundTimeout),
CommitFee: chanState.RemoteCommitment.CommitFee,
HtlcID: fn.Some(htlc.HtlcIndex),
PayHash: fn.Some(htlc.RHash),
}
resolveRes := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
return a.ResolveContract(resReq)
},
)
if err := resolveRes.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
resolutionBlob := resolveRes.Option()
return &OutgoingHtlcResolution{
Expiry: htlc.RefundTimeout,
ClaimOutpoint: op,
SweepSignDesc: signDesc,
CsvDelay: csvDelay,
ResolutionBlob: resolutionBlob,
}, nil
}
// Otherwise, we'll need to craft a second level HTLC transaction, as
// well as a sign desc to sweep after the CSV delay.
// In order to properly reconstruct the HTLC transaction, we'll need to
// re-calculate the fee required at this state, so we can add the
// correct output value amount to the transaction.
htlcFee := HtlcTimeoutFee(chanType, feePerKw)
secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee
// With the fee calculated, re-construct the second level timeout
// transaction.
secondLevelAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.OutgoingHtlcLeaves
return leaves[htlc.HtlcIndex].SecondLevelLeaf
},
)(auxLeaves)
timeoutTx, err := CreateHtlcTimeoutTx(
chanType, isCommitFromInitiator, op, secondLevelOutputAmt,
htlc.RefundTimeout, csvDelay, leaseExpiry,
keyRing.RevocationKey, keyRing.ToLocalKey, secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
// With the transaction created, we can generate a sign descriptor
// that's capable of generating the signature required to spend the
// HTLC output using the timeout transaction.
txOut := commitTx.TxOut[htlc.OutputIndex]
prevFetcher := txscript.NewCannedPrevOutputFetcher(
txOut.PkScript, txOut.Value,
)
hashCache := txscript.NewTxSigHashes(timeoutTx, prevFetcher)
timeoutSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcWitnessScript,
Output: txOut,
HashType: sweepSigHash(chanType),
PrevOutputFetcher: prevFetcher,
SigHashes: hashCache,
InputIndex: 0,
}
htlcSig, err := input.ParseSignature(htlc.Signature)
if err != nil {
return nil, err
}
// With the sign desc created, we can now construct the full witness
// for the timeout transaction, and populate it as well.
sigHashType := HtlcSigHashType(chanType)
var timeoutWitness wire.TxWitness
if scriptTree, ok := htlcScriptInfo.(input.TapscriptDescriptor); ok {
timeoutSignDesc.SignMethod = input.TaprootScriptSpendSignMethod
timeoutWitness, err = input.SenderHTLCScriptTaprootTimeout(
htlcSig, sigHashType, signer, &timeoutSignDesc,
timeoutTx, keyRing.RevocationKey,
scriptTree.TapScriptTree(),
)
if err != nil {
return nil, err
}
// The control block is always the final element of the witness
// stack. We set this here as eventually the sweeper will need
// to re-sign, so it needs the isolated control block.
//
// TODO(roasbeef): move this into input.go?
ctlrBlkIdx := len(timeoutWitness) - 1
timeoutSignDesc.ControlBlock = timeoutWitness[ctlrBlkIdx]
} else {
timeoutWitness, err = input.SenderHtlcSpendTimeout(
htlcSig, sigHashType, signer, &timeoutSignDesc,
timeoutTx,
)
}
if err != nil {
return nil, err
}
timeoutTx.TxIn[0].Witness = timeoutWitness
// If this is an anchor type channel, the sign details will let us
// re-sign an aggregated tx later.
txSignDetails := HtlcSignDetails(
chanType, timeoutSignDesc, sigHashType, htlcSig,
)
// Finally, we'll generate the script output that the timeout
// transaction creates so we can generate the signDesc required to
// complete the claim process after a delay period.
var (
htlcSweepScript input.ScriptDescriptor
signMethod input.SignMethod
ctrlBlock []byte
)
if !chanType.IsTaproot() {
htlcSweepScript, err = SecondLevelHtlcScript(
chanType, isCommitFromInitiator, keyRing.RevocationKey,
keyRing.ToLocalKey, csvDelay, leaseExpiry,
secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
} else {
//nolint:ll
secondLevelScriptTree, err := input.TaprootSecondLevelScriptTree(
keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay,
secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
signMethod = input.TaprootScriptSpendSignMethod
controlBlock, err := secondLevelScriptTree.CtrlBlockForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
ctrlBlock, err = controlBlock.ToBytes()
if err != nil {
return nil, err
}
htlcSweepScript = secondLevelScriptTree
}
// In this case, the witness script that needs to be signed will always
// be that of the success path.
htlcSweepWitnessScript, err := htlcSweepScript.WitnessScriptForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
localDelayTweak := input.SingleTweakBytes(
keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey,
)
// In addition to the info in txSignDetails, we also need extra
// information to sweep the second level output after confirmation.
sweepSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.DelayBasePoint,
SingleTweak: localDelayTweak,
WitnessScript: htlcSweepWitnessScript,
Output: &wire.TxOut{
PkScript: htlcSweepScript.PkScript(),
Value: int64(secondLevelOutputAmt),
},
HashType: sweepSigHash(chanType),
PrevOutputFetcher: txscript.NewCannedPrevOutputFetcher(
htlcSweepScript.PkScript(),
int64(secondLevelOutputAmt),
),
SignMethod: signMethod,
ControlBlock: ctrlBlock,
}
// This might be an aux channel, so we'll go ahead and attempt to
// generate the resolution blob for the channel so we can pass along to
// the sweeping sub-system.
resolveRes := fn.MapOptionZ(
auxResolver, func(a AuxContractResolver) fn.Result[tlv.Blob] {
resReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.LocalCommitment.CustomBlob, //nolint:ll
FundingBlob: chanState.CustomBlob,
Type: input.TaprootHtlcLocalOfferedTimeout, //nolint:ll
CloseType: LocalForceClose,
CommitTx: commitTx,
ContractPoint: op,
SignDesc: sweepSignDesc,
KeyRing: keyRing,
CsvDelay: htlcCsvDelay,
HtlcAmt: btcutil.Amount(txOut.Value),
CommitCsvDelay: csvDelay,
CltvDelay: fn.Some(htlc.RefundTimeout),
CommitFee: chanState.LocalCommitment.CommitFee, //nolint:ll
HtlcID: fn.Some(htlc.HtlcIndex),
PayHash: fn.Some(htlc.RHash),
AuxSigDesc: fn.Some(AuxSigDesc{
SignDetails: *txSignDetails,
AuxSig: func() []byte {
tlvType := htlcCustomSigType.TypeVal() //nolint:ll
return htlc.CustomRecords[uint64(tlvType)] //nolint:ll
}(),
}),
}
return a.ResolveContract(resReq)
},
)
if err := resolveRes.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
resolutionBlob := resolveRes.Option()
return &OutgoingHtlcResolution{
Expiry: htlc.RefundTimeout,
SignedTimeoutTx: timeoutTx,
SignDetails: txSignDetails,
CsvDelay: csvDelay,
ResolutionBlob: resolutionBlob,
ClaimOutpoint: wire.OutPoint{
Hash: timeoutTx.TxHash(),
Index: 0,
},
SweepSignDesc: sweepSignDesc,
}, nil
}
// newIncomingHtlcResolution creates a new HTLC resolution capable of allowing
// the caller to sweep an incoming HTLC. If the HTLC is on the caller's
// commitment transaction, then they'll need to broadcast a second-level
// transaction before sweeping the output (and incur a CSV delay). Otherwise,
// they can just sweep the output immediately with knowledge of the pre-image.
//
// TODO(roasbeef) consolidate code with above func
func newIncomingHtlcResolution(signer input.Signer,
localChanCfg *channeldb.ChannelConfig, commitTx *wire.MsgTx,
htlc *channeldb.HTLC, keyRing *CommitmentKeyRing,
feePerKw chainfee.SatPerKWeight, csvDelay, leaseExpiry uint32,
whoseCommit lntypes.ChannelParty, isCommitFromInitiator bool,
chanType channeldb.ChannelType, chanState *channeldb.OpenChannel,
auxLeaves fn.Option[CommitAuxLeaves],
auxResolver fn.Option[AuxContractResolver],
) (*IncomingHtlcResolution, error) {
op := wire.OutPoint{
Hash: commitTx.TxHash(),
Index: uint32(htlc.OutputIndex),
}
// First, we'll re-generate the script the remote party used to
// send the HTLC to us in their commitment transaction.
auxLeaf := fn.ChainOption(func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.IncomingHtlcLeaves[htlc.HtlcIndex].AuxTapLeaf
})(auxLeaves)
scriptInfo, err := genHtlcScript(
chanType, true, whoseCommit, htlc.RefundTimeout, htlc.RHash,
keyRing, auxLeaf,
)
if err != nil {
return nil, err
}
htlcPkScript := scriptInfo.PkScript()
// As this is an incoming HTLC, we're attempting to sweep with the
// success path.
scriptPath := input.ScriptPathSuccess
htlcWitnessScript, err := scriptInfo.WitnessScriptForPath(
scriptPath,
)
if err != nil {
return nil, err
}
htlcCsvDelay := HtlcSecondLevelInputSequence(chanType)
// If we're spending this output from the remote node's commitment,
// then we can skip the second layer and spend the output directly.
if whoseCommit.IsRemote() {
// With the script generated, we can completely populated the
// SignDescriptor needed to sweep the output.
prevFetcher := txscript.NewCannedPrevOutputFetcher(
htlcPkScript, int64(htlc.Amt.ToSatoshis()),
)
signDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcWitnessScript,
Output: &wire.TxOut{
PkScript: htlcPkScript,
Value: int64(htlc.Amt.ToSatoshis()),
},
HashType: sweepSigHash(chanType),
PrevOutputFetcher: prevFetcher,
}
//nolint:ll
if scriptTree, ok := scriptInfo.(input.TapscriptDescriptor); ok {
signDesc.SignMethod = input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
scriptPath,
)
if err != nil {
return nil, err
}
signDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
resReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.RemoteCommitment.CustomBlob,
Type: input.TaprootHtlcAcceptedRemoteSuccess,
FundingBlob: chanState.CustomBlob,
CloseType: RemoteForceClose,
CommitTx: commitTx,
ContractPoint: op,
SignDesc: signDesc,
KeyRing: keyRing,
HtlcID: fn.Some(htlc.HtlcIndex),
CsvDelay: htlcCsvDelay,
CltvDelay: fn.Some(htlc.RefundTimeout),
CommitFee: chanState.RemoteCommitment.CommitFee,
PayHash: fn.Some(htlc.RHash),
CommitCsvDelay: csvDelay,
HtlcAmt: htlc.Amt.ToSatoshis(),
}
resolveRes := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
return a.ResolveContract(resReq)
},
)
if err := resolveRes.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
resolutionBlob := resolveRes.Option()
return &IncomingHtlcResolution{
ClaimOutpoint: op,
SweepSignDesc: signDesc,
CsvDelay: htlcCsvDelay,
ResolutionBlob: resolutionBlob,
}, nil
}
secondLevelAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
leaves := l.IncomingHtlcLeaves
return leaves[htlc.HtlcIndex].SecondLevelLeaf
},
)(auxLeaves)
// Otherwise, we'll need to go to the second level to sweep this HTLC.
//
// First, we'll reconstruct the original HTLC success transaction,
// taking into account the fee rate used.
htlcFee := HtlcSuccessFee(chanType, feePerKw)
secondLevelOutputAmt := htlc.Amt.ToSatoshis() - htlcFee
successTx, err := CreateHtlcSuccessTx(
chanType, isCommitFromInitiator, op, secondLevelOutputAmt,
csvDelay, leaseExpiry, keyRing.RevocationKey,
keyRing.ToLocalKey, secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
// Once we've created the second-level transaction, we'll generate the
// SignDesc needed spend the HTLC output using the success transaction.
txOut := commitTx.TxOut[htlc.OutputIndex]
prevFetcher := txscript.NewCannedPrevOutputFetcher(
txOut.PkScript, txOut.Value,
)
hashCache := txscript.NewTxSigHashes(successTx, prevFetcher)
successSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.HtlcBasePoint,
SingleTweak: keyRing.LocalHtlcKeyTweak,
WitnessScript: htlcWitnessScript,
Output: txOut,
HashType: sweepSigHash(chanType),
PrevOutputFetcher: prevFetcher,
SigHashes: hashCache,
InputIndex: 0,
}
htlcSig, err := input.ParseSignature(htlc.Signature)
if err != nil {
return nil, err
}
// Next, we'll construct the full witness needed to satisfy the input of
// the success transaction. Don't specify the preimage yet. The preimage
// will be supplied by the contract resolver, either directly or when it
// becomes known.
var successWitness wire.TxWitness
sigHashType := HtlcSigHashType(chanType)
if scriptTree, ok := scriptInfo.(input.TapscriptDescriptor); ok {
successSignDesc.SignMethod = input.TaprootScriptSpendSignMethod
successWitness, err = input.ReceiverHTLCScriptTaprootRedeem(
htlcSig, sigHashType, nil, signer, &successSignDesc,
successTx, keyRing.RevocationKey,
scriptTree.TapScriptTree(),
)
if err != nil {
return nil, err
}
// The control block is always the final element of the witness
// stack. We set this here as eventually the sweeper will need
// to re-sign, so it needs the isolated control block.
//
// TODO(roasbeef): move this into input.go?
ctlrBlkIdx := len(successWitness) - 1
successSignDesc.ControlBlock = successWitness[ctlrBlkIdx]
} else {
successWitness, err = input.ReceiverHtlcSpendRedeem(
htlcSig, sigHashType, nil, signer, &successSignDesc,
successTx,
)
if err != nil {
return nil, err
}
}
successTx.TxIn[0].Witness = successWitness
// If this is an anchor type channel, the sign details will let us
// re-sign an aggregated tx later.
txSignDetails := HtlcSignDetails(
chanType, successSignDesc, sigHashType, htlcSig,
)
// Finally, we'll generate the script that the second-level transaction
// creates so we can generate the proper signDesc to sweep it after the
// CSV delay has passed.
var (
htlcSweepScript input.ScriptDescriptor
signMethod input.SignMethod
ctrlBlock []byte
)
if !chanType.IsTaproot() {
htlcSweepScript, err = SecondLevelHtlcScript(
chanType, isCommitFromInitiator, keyRing.RevocationKey,
keyRing.ToLocalKey, csvDelay, leaseExpiry,
secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
} else {
//nolint:ll
secondLevelScriptTree, err := input.TaprootSecondLevelScriptTree(
keyRing.RevocationKey, keyRing.ToLocalKey, csvDelay,
secondLevelAuxLeaf,
)
if err != nil {
return nil, err
}
signMethod = input.TaprootScriptSpendSignMethod
controlBlock, err := secondLevelScriptTree.CtrlBlockForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
ctrlBlock, err = controlBlock.ToBytes()
if err != nil {
return nil, err
}
htlcSweepScript = secondLevelScriptTree
}
// In this case, the witness script that needs to be signed will always
// be that of the success path.
htlcSweepWitnessScript, err := htlcSweepScript.WitnessScriptForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
localDelayTweak := input.SingleTweakBytes(
keyRing.CommitPoint, localChanCfg.DelayBasePoint.PubKey,
)
// In addition to the info in txSignDetails, we also need extra
// information to sweep the second level output after confirmation.
sweepSignDesc := input.SignDescriptor{
KeyDesc: localChanCfg.DelayBasePoint,
SingleTweak: localDelayTweak,
WitnessScript: htlcSweepWitnessScript,
Output: &wire.TxOut{
PkScript: htlcSweepScript.PkScript(),
Value: int64(secondLevelOutputAmt),
},
HashType: sweepSigHash(chanType),
PrevOutputFetcher: txscript.NewCannedPrevOutputFetcher(
htlcSweepScript.PkScript(),
int64(secondLevelOutputAmt),
),
SignMethod: signMethod,
ControlBlock: ctrlBlock,
}
resolveRes := fn.MapOptionZ(
auxResolver, func(a AuxContractResolver) fn.Result[tlv.Blob] {
resReq := ResolutionReq{
ChanPoint: chanState.FundingOutpoint,
ChanType: chanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.LocalCommitment.CustomBlob, //nolint:ll
Type: input.TaprootHtlcAcceptedLocalSuccess, //nolint:ll
FundingBlob: chanState.CustomBlob,
CloseType: LocalForceClose,
CommitTx: commitTx,
ContractPoint: op,
SignDesc: sweepSignDesc,
KeyRing: keyRing,
HtlcID: fn.Some(htlc.HtlcIndex),
CsvDelay: htlcCsvDelay,
CommitFee: chanState.LocalCommitment.CommitFee, //nolint:ll
PayHash: fn.Some(htlc.RHash),
AuxSigDesc: fn.Some(AuxSigDesc{
SignDetails: *txSignDetails,
AuxSig: func() []byte {
tlvType := htlcCustomSigType.TypeVal() //nolint:ll
return htlc.CustomRecords[uint64(tlvType)] //nolint:ll
}(),
}),
CommitCsvDelay: csvDelay,
HtlcAmt: btcutil.Amount(txOut.Value),
CltvDelay: fn.Some(htlc.RefundTimeout),
}
return a.ResolveContract(resReq)
},
)
if err := resolveRes.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
resolutionBlob := resolveRes.Option()
return &IncomingHtlcResolution{
SignedSuccessTx: successTx,
SignDetails: txSignDetails,
CsvDelay: csvDelay,
ResolutionBlob: resolutionBlob,
ClaimOutpoint: wire.OutPoint{
Hash: successTx.TxHash(),
Index: 0,
},
SweepSignDesc: sweepSignDesc,
}, nil
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
func (r *IncomingHtlcResolution) HtlcPoint() wire.OutPoint {
// If we have a success transaction, then the htlc's outpoint
// is the transaction's only input. Otherwise, it's the claim
// point.
if r.SignedSuccessTx != nil {
return r.SignedSuccessTx.TxIn[0].PreviousOutPoint
}
return r.ClaimOutpoint
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
func (r *OutgoingHtlcResolution) HtlcPoint() wire.OutPoint {
// If we have a timeout transaction, then the htlc's outpoint
// is the transaction's only input. Otherwise, it's the claim
// point.
if r.SignedTimeoutTx != nil {
return r.SignedTimeoutTx.TxIn[0].PreviousOutPoint
}
return r.ClaimOutpoint
}
// extractHtlcResolutions creates a series of outgoing HTLC resolutions, and
// the local key used when generating the HTLC scrips. This function is to be
// used in two cases: force close, or a unilateral close.
func extractHtlcResolutions(feePerKw chainfee.SatPerKWeight,
whoseCommit lntypes.ChannelParty, signer input.Signer,
htlcs []channeldb.HTLC, keyRing *CommitmentKeyRing,
localChanCfg, remoteChanCfg *channeldb.ChannelConfig,
commitTx *wire.MsgTx, chanType channeldb.ChannelType,
isCommitFromInitiator bool, leaseExpiry uint32,
chanState *channeldb.OpenChannel, auxLeaves fn.Option[CommitAuxLeaves],
auxResolver fn.Option[AuxContractResolver]) (*HtlcResolutions, error) {
// TODO(roasbeef): don't need to swap csv delay?
dustLimit := remoteChanCfg.DustLimit
csvDelay := remoteChanCfg.CsvDelay
if whoseCommit.IsLocal() {
dustLimit = localChanCfg.DustLimit
csvDelay = localChanCfg.CsvDelay
}
incomingResolutions := make([]IncomingHtlcResolution, 0, len(htlcs))
outgoingResolutions := make([]OutgoingHtlcResolution, 0, len(htlcs))
for _, htlc := range htlcs {
htlc := htlc
// We'll skip any HTLC's which were dust on the commitment
// transaction, as these don't have a corresponding output
// within the commitment transaction.
if HtlcIsDust(
chanType, htlc.Incoming, whoseCommit, feePerKw,
htlc.Amt.ToSatoshis(), dustLimit,
) {
continue
}
// If the HTLC is incoming, then we'll attempt to see if we
// know the pre-image to the HTLC.
if htlc.Incoming {
// Otherwise, we'll create an incoming HTLC resolution
// as we can satisfy the contract.
ihr, err := newIncomingHtlcResolution(
signer, localChanCfg, commitTx, &htlc,
keyRing, feePerKw, uint32(csvDelay),
leaseExpiry, whoseCommit, isCommitFromInitiator,
chanType, chanState, auxLeaves, auxResolver,
)
if err != nil {
return nil, fmt.Errorf("incoming resolution "+
"failed: %v", err)
}
incomingResolutions = append(incomingResolutions, *ihr)
continue
}
ohr, err := newOutgoingHtlcResolution(
signer, localChanCfg, commitTx, &htlc, keyRing,
feePerKw, uint32(csvDelay), leaseExpiry, whoseCommit,
isCommitFromInitiator, chanType, chanState, auxLeaves,
auxResolver,
)
if err != nil {
return nil, fmt.Errorf("outgoing resolution "+
"failed: %v", err)
}
outgoingResolutions = append(outgoingResolutions, *ohr)
}
return &HtlcResolutions{
IncomingHTLCs: incomingResolutions,
OutgoingHTLCs: outgoingResolutions,
}, nil
}
// AnchorResolution holds the information necessary to spend our commitment tx
// anchor.
type AnchorResolution struct {
// AnchorSignDescriptor is the sign descriptor for our anchor.
AnchorSignDescriptor input.SignDescriptor
// CommitAnchor is the anchor outpoint on the commit tx.
CommitAnchor wire.OutPoint
// CommitFee is the fee of the commit tx.
CommitFee btcutil.Amount
// CommitWeight is the weight of the commit tx.
CommitWeight lntypes.WeightUnit
}
// LocalForceCloseSummary describes the final commitment state before the
// channel is locked-down to initiate a force closure by broadcasting the
// latest state on-chain. If we intend to broadcast this this state, the
// channel should not be used after generating this close summary. The summary
// includes all the information required to claim all rightfully owned outputs
// when the commitment gets confirmed.
type LocalForceCloseSummary struct {
// ChanPoint is the outpoint that created the channel which has been
// force closed.
ChanPoint wire.OutPoint
// CloseTx is the transaction which can be used to close the channel
// on-chain. When we initiate a force close, this will be our latest
// commitment state.
CloseTx *wire.MsgTx
// ChanSnapshot is a snapshot of the final state of the channel at the
// time the summary was created.
ChanSnapshot channeldb.ChannelSnapshot
// ContractResolutions contains all the data required for resolving the
// different output types of a commitment transaction.
ContractResolutions fn.Option[ContractResolutions]
}
// ContractResolutions contains all the data required for resolving the
// different output types of a commitment transaction.
type ContractResolutions struct {
// CommitResolution contains all the data required to sweep the output
// to ourselves. Since this is our commitment transaction, we'll need
// to wait a time delay before we can sweep the output.
//
// NOTE: If our commitment delivery output is below the dust limit,
// then this will be nil.
CommitResolution *CommitOutputResolution
// AnchorResolution contains the data required to sweep the anchor
// output. If the channel type doesn't include anchors, the value of
// this field will be nil.
AnchorResolution *AnchorResolution
// HtlcResolutions contains all the data required to sweep any outgoing
// HTLC's and incoming HTLc's we know the preimage to. For each of these
// HTLC's, we'll need to go to the second level to sweep them fully.
HtlcResolutions *HtlcResolutions
}
// ForceCloseOpt is a functional option argument for the ForceClose method.
type ForceCloseOpt func(*forceCloseConfig)
// forceCloseConfig holds the configuration options for force closing a channel.
type forceCloseConfig struct {
// skipResolution if true will skip creating the contract resolutions
// when generating the force close summary.
skipResolution bool
}
// defaultForceCloseConfig returns the default force close configuration.
func defaultForceCloseConfig() *forceCloseConfig {
return &forceCloseConfig{}
}
// WithSkipContractResolutions creates an option to skip the contract
// resolutions from the returned summary.
func WithSkipContractResolutions() ForceCloseOpt {
return func(cfg *forceCloseConfig) {
cfg.skipResolution = true
}
}
// ForceClose executes a unilateral closure of the transaction at the current
// lowest commitment height of the channel. Following a force closure, all
// state transitions, or modifications to the state update logs will be
// rejected. Additionally, this function also returns a LocalForceCloseSummary
// which includes the necessary details required to sweep all the time-locked
// outputs within the commitment transaction.
//
// TODO(roasbeef): all methods need to abort if in dispute state
func (lc *LightningChannel) ForceClose(opts ...ForceCloseOpt) (
*LocalForceCloseSummary, error) {
lc.Lock()
defer lc.Unlock()
cfg := defaultForceCloseConfig()
for _, opt := range opts {
opt(cfg)
}
// If we've detected local data loss for this channel, then we won't
// allow a force close, as it may be the case that we have a dated
// version of the commitment, or this is actually a channel shell.
if lc.channelState.HasChanStatus(channeldb.ChanStatusLocalDataLoss) {
return nil, fmt.Errorf("%w: channel_state=%v",
ErrForceCloseLocalDataLoss,
lc.channelState.ChanStatus())
}
commitTx, err := lc.getSignedCommitTx()
if err != nil {
return nil, err
}
if cfg.skipResolution {
return &LocalForceCloseSummary{
ChanPoint: lc.channelState.FundingOutpoint,
ChanSnapshot: *lc.channelState.Snapshot(),
CloseTx: commitTx,
}, nil
}
localCommitment := lc.channelState.LocalCommitment
summary, err := NewLocalForceCloseSummary(
lc.channelState, lc.Signer, commitTx,
localCommitment.CommitHeight, lc.leafStore, lc.auxResolver,
)
if err != nil {
return nil, fmt.Errorf("unable to gen force close "+
"summary: %w", err)
}
// Mark the channel as closed to block future closure requests.
lc.isClosed = true
return summary, nil
}
// NewLocalForceCloseSummary generates a LocalForceCloseSummary from the given
// channel state. The passed commitTx must be a fully signed commitment
// transaction corresponding to localCommit.
func NewLocalForceCloseSummary(chanState *channeldb.OpenChannel,
signer input.Signer, commitTx *wire.MsgTx, stateNum uint64,
leafStore fn.Option[AuxLeafStore],
auxResolver fn.Option[AuxContractResolver]) (*LocalForceCloseSummary,
error) {
// Re-derive the original pkScript for to-self output within the
// commitment transaction. We'll need this to find the corresponding
// output in the commitment transaction and potentially for creating
// the sign descriptor.
csvTimeout := uint32(chanState.LocalChanCfg.CsvDelay)
// We use the passed state num to derive our scripts, since in case
// this is after recovery, our latest channels state might not be up to
// date.
revocation, err := chanState.RevocationProducer.AtIndex(stateNum)
if err != nil {
return nil, err
}
commitPoint := input.ComputeCommitmentPoint(revocation[:])
keyRing := DeriveCommitmentKeys(
commitPoint, lntypes.Local, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
auxResult, err := fn.MapOptionZ(
leafStore, func(s AuxLeafStore) fn.Result[CommitDiffAuxResult] {
return s.FetchLeavesFromCommit(
NewAuxChanState(chanState),
chanState.LocalCommitment, *keyRing,
lntypes.Local,
)
},
).Unpack()
if err != nil {
return nil, fmt.Errorf("unable to fetch aux leaves: %w", err)
}
var leaseExpiry uint32
if chanState.ChanType.HasLeaseExpiration() {
leaseExpiry = chanState.ThawHeight
}
localAuxLeaf := fn.ChainOption(
func(l CommitAuxLeaves) input.AuxTapLeaf {
return l.LocalAuxLeaf
},
)(auxResult.AuxLeaves)
toLocalScript, err := CommitScriptToSelf(
chanState.ChanType, chanState.IsInitiator, keyRing.ToLocalKey,
keyRing.RevocationKey, csvTimeout, leaseExpiry, localAuxLeaf,
)
if err != nil {
return nil, err
}
// Locate the output index of the delayed commitment output back to us.
// We'll return the details of this output to the caller so they can
// sweep it once it's mature.
var (
delayIndex uint32
delayOut *wire.TxOut
)
for i, txOut := range commitTx.TxOut {
if !bytes.Equal(toLocalScript.PkScript(), txOut.PkScript) {
continue
}
delayIndex = uint32(i)
delayOut = txOut
break
}
// With the necessary information gathered above, create a new sign
// descriptor which is capable of generating the signature the caller
// needs to sweep this output. The hash cache, and input index are not
// set as the caller will decide these values once sweeping the output.
// If the output is non-existent (dust), have the sign descriptor be
// nil.
var commitResolution *CommitOutputResolution
if delayOut != nil {
// When attempting to sweep our own output, we only need the
// witness script for the delay path
scriptPath := input.ScriptPathDelay
witnessScript, err := toLocalScript.WitnessScriptForPath(
scriptPath,
)
if err != nil {
return nil, err
}
localBalance := delayOut.Value
commitResolution = &CommitOutputResolution{
SelfOutPoint: wire.OutPoint{
Hash: commitTx.TxHash(),
Index: delayIndex,
},
SelfOutputSignDesc: input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.DelayBasePoint,
SingleTweak: keyRing.LocalCommitKeyTweak,
WitnessScript: witnessScript,
Output: &wire.TxOut{
PkScript: delayOut.PkScript,
Value: localBalance,
},
HashType: sweepSigHash(chanState.ChanType),
},
MaturityDelay: csvTimeout,
}
// For taproot channels, we'll need to set some additional
// fields to ensure the output can be swept.
scriptTree, ok := toLocalScript.(input.TapscriptDescriptor)
if ok {
commitResolution.SelfOutputSignDesc.SignMethod =
input.TaprootScriptSpendSignMethod
ctrlBlock, err := scriptTree.CtrlBlockForPath(
scriptPath,
)
if err != nil {
return nil, err
}
//nolint:ll
commitResolution.SelfOutputSignDesc.ControlBlock, err = ctrlBlock.ToBytes()
if err != nil {
return nil, err
}
}
// At this point, we'll check to see if we need any extra
// resolution data for this output.
resolveBlob := fn.MapOptionZ(
auxResolver,
func(a AuxContractResolver) fn.Result[tlv.Blob] {
//nolint:ll
return a.ResolveContract(ResolutionReq{
ChanPoint: chanState.FundingOutpoint, //nolint:ll
ChanType: chanState.ChanType,
ShortChanID: chanState.ShortChanID(),
Initiator: chanState.IsInitiator,
CommitBlob: chanState.LocalCommitment.CustomBlob,
FundingBlob: chanState.CustomBlob,
Type: input.TaprootLocalCommitSpend,
CloseType: LocalForceClose,
CommitTx: commitTx,
ContractPoint: commitResolution.SelfOutPoint,
SignDesc: commitResolution.SelfOutputSignDesc,
KeyRing: keyRing,
CsvDelay: csvTimeout,
CommitFee: chanState.LocalCommitment.CommitFee,
})
},
)
if err := resolveBlob.Err(); err != nil {
return nil, fmt.Errorf("unable to aux resolve: %w", err)
}
commitResolution.ResolutionBlob = resolveBlob.Option()
}
// Once the delay output has been found (if it exists), then we'll also
// need to create a series of sign descriptors for any lingering
// outgoing HTLC's that we'll need to claim as well. If this is after
// recovery there is not much we can do with HTLCs, so we'll always
// use what we have in our latest state when extracting resolutions.
localCommit := chanState.LocalCommitment
htlcResolutions, err := extractHtlcResolutions(
chainfee.SatPerKWeight(localCommit.FeePerKw), lntypes.Local,
signer, localCommit.Htlcs, keyRing, &chanState.LocalChanCfg,
&chanState.RemoteChanCfg, commitTx, chanState.ChanType,
chanState.IsInitiator, leaseExpiry, chanState,
auxResult.AuxLeaves, auxResolver,
)
if err != nil {
return nil, fmt.Errorf("unable to gen htlc resolution: %w", err)
}
anchorResolution, err := NewAnchorResolution(
chanState, commitTx, keyRing, lntypes.Local,
)
if err != nil {
return nil, fmt.Errorf("unable to gen anchor "+
"resolution: %w", err)
}
return &LocalForceCloseSummary{
ChanPoint: chanState.FundingOutpoint,
CloseTx: commitTx,
ChanSnapshot: *chanState.Snapshot(),
ContractResolutions: fn.Some(ContractResolutions{
CommitResolution: commitResolution,
HtlcResolutions: htlcResolutions,
AnchorResolution: anchorResolution,
}),
}, nil
}
// CloseOutput wraps a normal tx out with additional metadata that indicates if
// the output belongs to the initiator of the channel or not.
type CloseOutput struct {
wire.TxOut
// IsLocal indicates if the output belong to the local party.
IsLocal bool
}
// CloseSortFunc is a function type alias for a function that sorts the closing
// transaction.
type CloseSortFunc func(*wire.MsgTx) error
// chanCloseOpt is a functional option that can be used to modify the co-op
// close process.
type chanCloseOpt struct {
musigSession *MusigSession
extraCloseOutputs []CloseOutput
// customSort is a custom function that can be used to sort the
// transaction outputs. If this isn't set, then the default BIP-69
// sorting is used.
customSort CloseSortFunc
}
// ChanCloseOpt is a closure type that cen be used to modify the set of default
// options.
type ChanCloseOpt func(*chanCloseOpt)
// defaultCloseOpts is the default set of close options.
func defaultCloseOpts() *chanCloseOpt {
return &chanCloseOpt{}
}
// WithCoopCloseMusigSession can be used to apply an existing musig2 session to
// the cooperative close process. If specified, then a musig2 co-op close
// (single sig keyspend) will be used.
func WithCoopCloseMusigSession(session *MusigSession) ChanCloseOpt {
return func(opts *chanCloseOpt) {
opts.musigSession = session
}
}
// WithExtraCloseOutputs can be used to add extra outputs to the cooperative
// transaction.
func WithExtraCloseOutputs(extraOutputs []CloseOutput) ChanCloseOpt {
return func(opts *chanCloseOpt) {
opts.extraCloseOutputs = extraOutputs
}
}
// WithCustomCoopSort can be used to modify the way the co-op close transaction
// is sorted.
func WithCustomCoopSort(sorter CloseSortFunc) ChanCloseOpt {
return func(opts *chanCloseOpt) {
opts.customSort = sorter
}
}
// CreateCloseProposal is used by both parties in a cooperative channel close
// workflow to generate proposed close transactions and signatures. This method
// should only be executed once all pending HTLCs (if any) on the channel have
// been cleared/removed. Upon completion, the source channel will shift into
// the "closing" state, which indicates that all incoming/outgoing HTLC
// requests should be rejected. A signature for the closing transaction is
// returned.
func (lc *LightningChannel) CreateCloseProposal(proposedFee btcutil.Amount,
localDeliveryScript []byte, remoteDeliveryScript []byte,
closeOpts ...ChanCloseOpt) (input.Signature, *chainhash.Hash,
btcutil.Amount, error) {
lc.Lock()
defer lc.Unlock()
// If we're already closing the channel, then ignore this request.
if lc.isClosed {
return nil, nil, 0, ErrChanClosing
}
opts := defaultCloseOpts()
for _, optFunc := range closeOpts {
optFunc(opts)
}
// Get the final balances after subtracting the proposed fee, taking
// care not to persist the adjusted balance, as the feeRate may change
// during the channel closing process.
ourBalance, theirBalance, err := CoopCloseBalance(
lc.channelState.ChanType, lc.channelState.IsInitiator,
proposedFee,
lc.channelState.LocalCommitment.LocalBalance.ToSatoshis(),
lc.channelState.LocalCommitment.RemoteBalance.ToSatoshis(),
lc.channelState.LocalCommitment.CommitFee,
)
if err != nil {
return nil, nil, 0, err
}
var closeTxOpts []CloseTxOpt
// If this is a taproot channel, then we use an RBF'able funding input.
if lc.channelState.ChanType.IsTaproot() {
closeTxOpts = append(closeTxOpts, WithRBFCloseTx())
}
// If we have any extra outputs to pass along, then we'll map that to
// the co-op close option txn type.
if opts.extraCloseOutputs != nil {
closeTxOpts = append(closeTxOpts, WithExtraTxCloseOutputs(
opts.extraCloseOutputs,
))
}
if opts.customSort != nil {
closeTxOpts = append(
closeTxOpts, WithCustomTxSort(opts.customSort),
)
}
closeTx, err := CreateCooperativeCloseTx(
fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit,
lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance,
localDeliveryScript, remoteDeliveryScript, closeTxOpts...,
)
if err != nil {
return nil, nil, 0, err
}
// Ensure that the transaction doesn't explicitly violate any
// consensus rules such as being too big, or having any value with a
// negative output.
tx := btcutil.NewTx(closeTx)
if err := blockchain.CheckTransactionSanity(tx); err != nil {
return nil, nil, 0, err
}
// If we have a co-op close musig session, then this is a taproot
// channel, so we'll generate a _partial_ signature.
var sig input.Signature
if opts.musigSession != nil {
sig, err = opts.musigSession.SignCommit(closeTx)
if err != nil {
return nil, nil, 0, err
}
} else {
// For regular channels we'll, sign the completed cooperative
// closure transaction. As the initiator we'll simply send our
// signature over to the remote party, using the generated txid
// to be notified once the closure transaction has been
// confirmed.
lc.signDesc.SigHashes = input.NewTxSigHashesV0Only(closeTx)
sig, err = lc.Signer.SignOutputRaw(closeTx, lc.signDesc)
if err != nil {
return nil, nil, 0, err
}
}
closeTXID := closeTx.TxHash()
return sig, &closeTXID, ourBalance, nil
}
// CompleteCooperativeClose completes the cooperative closure of the target
// active lightning channel. A fully signed closure transaction as well as the
// signature itself are returned. Additionally, we also return our final
// settled balance, which reflects any fees we may have paid.
//
// NOTE: The passed local and remote sigs are expected to be fully complete
// signatures including the proper sighash byte.
func (lc *LightningChannel) CompleteCooperativeClose(
localSig, remoteSig input.Signature,
localDeliveryScript, remoteDeliveryScript []byte,
proposedFee btcutil.Amount,
closeOpts ...ChanCloseOpt) (*wire.MsgTx, btcutil.Amount, error) {
lc.Lock()
defer lc.Unlock()
// If the channel is already closing, then ignore this request.
if lc.isClosed {
// TODO(roasbeef): check to ensure no pending payments
return nil, 0, ErrChanClosing
}
opts := defaultCloseOpts()
for _, optFunc := range closeOpts {
optFunc(opts)
}
// Get the final balances after subtracting the proposed fee.
ourBalance, theirBalance, err := CoopCloseBalance(
lc.channelState.ChanType, lc.channelState.IsInitiator,
proposedFee,
lc.channelState.LocalCommitment.LocalBalance.ToSatoshis(),
lc.channelState.LocalCommitment.RemoteBalance.ToSatoshis(),
lc.channelState.LocalCommitment.CommitFee,
)
if err != nil {
return nil, 0, err
}
var closeTxOpts []CloseTxOpt
// If this is a taproot channel, then we use an RBF'able funding input.
if lc.channelState.ChanType.IsTaproot() {
closeTxOpts = append(closeTxOpts, WithRBFCloseTx())
}
// If we have any extra outputs to pass along, then we'll map that to
// the co-op close option txn type.
if opts.extraCloseOutputs != nil {
closeTxOpts = append(closeTxOpts, WithExtraTxCloseOutputs(
opts.extraCloseOutputs,
))
}
if opts.customSort != nil {
closeTxOpts = append(
closeTxOpts, WithCustomTxSort(opts.customSort),
)
}
// Create the transaction used to return the current settled balance
// on this active channel back to both parties. In this current model,
// the initiator pays full fees for the cooperative close transaction.
closeTx, err := CreateCooperativeCloseTx(
fundingTxIn(lc.channelState), lc.channelState.LocalChanCfg.DustLimit,
lc.channelState.RemoteChanCfg.DustLimit, ourBalance, theirBalance,
localDeliveryScript, remoteDeliveryScript, closeTxOpts...,
)
if err != nil {
return nil, 0, err
}
// Ensure that the transaction doesn't explicitly validate any
// consensus rules such as being too big, or having any value with a
// negative output.
tx := btcutil.NewTx(closeTx)
prevOut := lc.signDesc.Output
if err := blockchain.CheckTransactionSanity(tx); err != nil {
return nil, 0, err
}
prevOutputFetcher := txscript.NewCannedPrevOutputFetcher(
prevOut.PkScript, prevOut.Value,
)
hashCache := txscript.NewTxSigHashes(closeTx, prevOutputFetcher)
// Next, we'll complete the co-op close transaction. Depending on the
// set of options, we'll either do a regular p2wsh spend, or construct
// the final schnorr signature from a set of partial sigs.
if opts.musigSession != nil {
// For taproot channels, we'll use the attached session to
// combine the two partial signatures into a proper schnorr
// signature.
remotePartialSig, ok := remoteSig.(*MusigPartialSig)
if !ok {
return nil, 0, fmt.Errorf("expected MusigPartialSig, "+
"got %T", remoteSig)
}
finalSchnorrSig, err := opts.musigSession.CombineSigs(
remotePartialSig.sig,
)
if err != nil {
return nil, 0, fmt.Errorf("unable to combine "+
"final co-op close sig: %w", err)
}
// The witness for a keyspend is just the signature itself.
closeTx.TxIn[0].Witness = wire.TxWitness{
finalSchnorrSig.Serialize(),
}
} else {
// For regular channels, we'll need to , construct the witness
// stack minding the order of the pubkeys+sigs on the stack.
ourKey := lc.channelState.LocalChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
theirKey := lc.channelState.RemoteChanCfg.MultiSigKey.PubKey.
SerializeCompressed()
witness := input.SpendMultiSig(
lc.signDesc.WitnessScript, ourKey, localSig, theirKey,
remoteSig,
)
closeTx.TxIn[0].Witness = witness
}
// Validate the finalized transaction to ensure the output script is
// properly met, and that the remote peer supplied a valid signature.
vm, err := txscript.NewEngine(
prevOut.PkScript, closeTx, 0, txscript.StandardVerifyFlags, nil,
hashCache, prevOut.Value, prevOutputFetcher,
)
if err != nil {
return nil, 0, err
}
if err := vm.Execute(); err != nil {
return nil, 0, err
}
// As the transaction is sane, and the scripts are valid we'll mark the
// channel now as closed as the closure transaction should get into the
// chain in a timely manner and possibly be re-broadcast by the wallet.
lc.isClosed = true
return closeTx, ourBalance, nil
}
// AnchorResolutions is a set of anchor resolutions that's being used when
// sweeping anchors during local channel force close.
type AnchorResolutions struct {
// Local is the anchor resolution for the local commitment tx.
Local *AnchorResolution
// Remote is the anchor resolution for the remote commitment tx.
Remote *AnchorResolution
// RemotePending is the anchor resolution for the remote pending
// commitment tx. The value will be non-nil iff we've created a new
// commitment tx for the remote party which they haven't ACKed yet.
RemotePending *AnchorResolution
}
// NewAnchorResolutions returns a set of anchor resolutions wrapped in the
// struct AnchorResolutions. Because we have no view on the mempool, we can
// only blindly anchor all of these txes down. The caller needs to check the
// returned values against nil to decide whether there exists an anchor
// resolution for local/remote/pending remote commitment txes.
func (lc *LightningChannel) NewAnchorResolutions() (*AnchorResolutions,
error) {
lc.Lock()
defer lc.Unlock()
var resolutions AnchorResolutions
// Add anchor for local commitment tx, if any.
revocation, err := lc.channelState.RevocationProducer.AtIndex(
lc.currentHeight,
)
if err != nil {
return nil, err
}
localCommitPoint := input.ComputeCommitmentPoint(revocation[:])
localKeyRing := DeriveCommitmentKeys(
localCommitPoint, lntypes.Local, lc.channelState.ChanType,
&lc.channelState.LocalChanCfg, &lc.channelState.RemoteChanCfg,
)
localRes, err := NewAnchorResolution(
lc.channelState, lc.channelState.LocalCommitment.CommitTx,
localKeyRing, lntypes.Local,
)
if err != nil {
return nil, err
}
resolutions.Local = localRes
// Add anchor for remote commitment tx, if any.
remoteKeyRing := DeriveCommitmentKeys(
lc.channelState.RemoteCurrentRevocation, lntypes.Remote,
lc.channelState.ChanType, &lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
remoteRes, err := NewAnchorResolution(
lc.channelState, lc.channelState.RemoteCommitment.CommitTx,
remoteKeyRing, lntypes.Remote,
)
if err != nil {
return nil, err
}
resolutions.Remote = remoteRes
// Add anchor for remote pending commitment tx, if any.
remotePendingCommit, err := lc.channelState.RemoteCommitChainTip()
if err != nil && err != channeldb.ErrNoPendingCommit {
return nil, err
}
if remotePendingCommit != nil {
pendingRemoteKeyRing := DeriveCommitmentKeys(
lc.channelState.RemoteNextRevocation, lntypes.Remote,
lc.channelState.ChanType, &lc.channelState.LocalChanCfg,
&lc.channelState.RemoteChanCfg,
)
remotePendingRes, err := NewAnchorResolution(
lc.channelState,
remotePendingCommit.Commitment.CommitTx,
pendingRemoteKeyRing, lntypes.Remote,
)
if err != nil {
return nil, err
}
resolutions.RemotePending = remotePendingRes
}
return &resolutions, nil
}
// NewAnchorResolution returns the information that is required to sweep the
// local anchor.
func NewAnchorResolution(chanState *channeldb.OpenChannel,
commitTx *wire.MsgTx, keyRing *CommitmentKeyRing,
whoseCommit lntypes.ChannelParty) (*AnchorResolution, error) {
// Return nil resolution if the channel has no anchors.
if !chanState.ChanType.HasAnchors() {
return nil, nil
}
// Derive our local anchor script. For taproot channels, rather than
// use the same multi-sig key for both commitments, the anchor script
// will differ depending on if this is our local or remote
// commitment.
localAnchor, remoteAnchor, err := CommitScriptAnchors(
chanState.ChanType, &chanState.LocalChanCfg,
&chanState.RemoteChanCfg, keyRing,
)
if err != nil {
return nil, err
}
if chanState.ChanType.IsTaproot() && whoseCommit.IsRemote() {
//nolint:ineffassign
localAnchor, remoteAnchor = remoteAnchor, localAnchor
}
// TODO(roasbeef): remote anchor not needed above
// Look up the script on the commitment transaction. It may not be
// present if there is no output paying to us.
found, index := input.FindScriptOutputIndex(
commitTx, localAnchor.PkScript(),
)
if !found {
return nil, nil
}
// For anchor outputs, we'll only ever care about the success path.
// script (sweep after 1 block csv delay).
anchorWitnessScript, err := localAnchor.WitnessScriptForPath(
input.ScriptPathSuccess,
)
if err != nil {
return nil, err
}
outPoint := &wire.OutPoint{
Hash: commitTx.TxHash(),
Index: index,
}
// Instantiate the sign descriptor that allows sweeping of the anchor.
signDesc := &input.SignDescriptor{
KeyDesc: chanState.LocalChanCfg.MultiSigKey,
WitnessScript: anchorWitnessScript,
Output: &wire.TxOut{
PkScript: localAnchor.PkScript(),
Value: int64(AnchorSize),
},
HashType: sweepSigHash(chanState.ChanType),
}
// For taproot outputs, we'll need to ensure that the proper sign
// method is used, and the tweak as well.
if scriptTree, ok := localAnchor.(input.TapscriptDescriptor); ok {
signDesc.SignMethod = input.TaprootKeySpendSignMethod
//nolint:ll
signDesc.PrevOutputFetcher = txscript.NewCannedPrevOutputFetcher(
localAnchor.PkScript(), int64(AnchorSize),
)
// For anchor outputs with taproot channels, the key desc is
// also different: we'll just re-use our local delay base point
// (which becomes our to local output).
if whoseCommit.IsLocal() {
// In addition to the sign method, we'll also need to
// ensure that the single tweak is set, as with the
// current formulation, we'll need to use two levels of
// tweaks: the normal LN tweak, and the tapscript
// tweak.
signDesc.SingleTweak = keyRing.LocalCommitKeyTweak
signDesc.KeyDesc = chanState.LocalChanCfg.DelayBasePoint
} else {
// When we're playing the force close of a remote
// commitment, as this is a "tweakless" channel type,
// we don't need a tweak value at all.
//
//nolint:ll
signDesc.KeyDesc = chanState.LocalChanCfg.PaymentBasePoint
}
// Finally, as this is a keyspend method, we'll need to also
// include the taptweak as well.
signDesc.TapTweak = scriptTree.TapTweak()
}
var witnessWeight int64
if chanState.ChanType.IsTaproot() {
witnessWeight = input.TaprootKeyPathWitnessSize
} else {
witnessWeight = input.WitnessCommitmentTxWeight
}
// Calculate commit tx weight. This commit tx doesn't yet include the
// witness spending the funding output, so we add the (worst case)
// weight for that too.
utx := btcutil.NewTx(commitTx)
weight := blockchain.GetTransactionWeight(utx) + witnessWeight
// Calculate commit tx fee.
fee := chanState.Capacity
for _, out := range commitTx.TxOut {
fee -= btcutil.Amount(out.Value)
}
return &AnchorResolution{
CommitAnchor: *outPoint,
AnchorSignDescriptor: *signDesc,
CommitWeight: lntypes.WeightUnit(weight),
CommitFee: fee,
}, nil
}
// AvailableBalance returns the current balance available for sending within
// the channel. By available balance, we mean that if at this very instance a
// new commitment were to be created which evals all the log entries, what
// would our available balance for adding an additional HTLC be. It takes into
// account the fee that must be paid for adding this HTLC, that we cannot spend
// from the channel reserve and moreover the FeeBuffer when we are the
// initiator of the channel. This method is useful when deciding if a given
// channel can accept an HTLC in the multi-hop forwarding scenario.
func (lc *LightningChannel) AvailableBalance() lnwire.MilliSatoshi {
lc.RLock()
defer lc.RUnlock()
bal, _ := lc.availableBalance(FeeBuffer)
return bal
}
// availableBalance is the private, non mutexed version of AvailableBalance.
// This method is provided so methods that already hold the lock can access
// this method. Additionally, the total weight of the next to be created
// commitment is returned for accounting purposes.
func (lc *LightningChannel) availableBalance(
buffer BufferType) (lnwire.MilliSatoshi, lntypes.WeightUnit) {
// We'll grab the current set of log updates that the remote has
// ACKed.
remoteACKedIndex := lc.commitChains.Local.tip().messageIndices.Remote
htlcView := lc.fetchHTLCView(remoteACKedIndex,
lc.updateLogs.Local.logIndex)
// Calculate our available balance from our local commitment.
// TODO(halseth): could reuse parts validateCommitmentSanity to do this
// balance calculation, as most of the logic is the same.
//
// NOTE: This is not always accurate, since the remote node can always
// add updates concurrently, causing our balance to go down if we're
// the initiator, but this is a problem on the protocol level.
ourLocalCommitBalance, commitWeight := lc.availableCommitmentBalance(
htlcView, lntypes.Local, buffer,
)
// Do the same calculation from the remote commitment point of view.
ourRemoteCommitBalance, _ := lc.availableCommitmentBalance(
htlcView, lntypes.Remote, buffer,
)
// Return which ever balance is lowest.
if ourRemoteCommitBalance < ourLocalCommitBalance {
return ourRemoteCommitBalance, commitWeight
}
return ourLocalCommitBalance, commitWeight
}
// availableCommitmentBalance attempts to calculate the balance we have
// available for HTLCs on the local/remote commitment given the HtlcView. To
// account for sending HTLCs of different sizes, it will report the balance
// available for sending non-dust HTLCs, which will be manifested on the
// commitment, increasing the commitment fee we must pay as an initiator,
// eating into our balance. It will make sure we won't violate the channel
// reserve constraints for this amount.
func (lc *LightningChannel) availableCommitmentBalance(view *HtlcView,
whoseCommitChain lntypes.ChannelParty, buffer BufferType) (
lnwire.MilliSatoshi, lntypes.WeightUnit) {
// Compute the current balances for this commitment. This will take
// into account HTLCs to determine the commit weight, which the
// initiator must pay the fee for.
ourBalance, theirBalance, commitWeight, filteredView, err := lc.computeView(
view, whoseCommitChain, false,
fn.None[chainfee.SatPerKWeight](),
)
if err != nil {
lc.log.Errorf("Unable to fetch available balance: %v", err)
return 0, 0
}
// We can never spend from the channel reserve, so we'll subtract it
// from our available balance.
ourReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.ChanReserve,
)
if ourReserve <= ourBalance {
ourBalance -= ourReserve
} else {
ourBalance = 0
}
// Calculate the commitment fee in the case where we would add another
// HTLC to the commitment, as only the balance remaining after this fee
// has been paid is actually available for sending.
feePerKw := filteredView.FeePerKw
additionalHtlcFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(input.HTLCWeight),
)
commitFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(commitWeight))
if lc.channelState.IsInitiator {
// When the buffer is of type `FeeBuffer` type we know we are
// going to send or forward an htlc over this channel therefore
// we account for an additional htlc output on the commitment
// tx.
futureCommitWeight := commitWeight
if buffer == FeeBuffer {
futureCommitWeight += input.HTLCWeight
}
// Make sure we do not overwrite `ourBalance` that's why we
// declare bufferAmt beforehand.
var bufferAmt lnwire.MilliSatoshi
ourBalance, bufferAmt, commitFee, err = lc.applyCommitFee(
ourBalance, futureCommitWeight, feePerKw, buffer,
)
if err != nil {
lc.log.Warnf("Set available amount to 0 because we "+
"could not pay for the CommitmentFee of the "+
"new ChannelState: ourBalance is negative "+
"after applying the fee: ourBalance=%v, "+
"current commitFee(w/o additional htlc)=%v, "+
"feeBuffer=%v (type=%v) local_chan_initiator",
ourBalance, commitFee, bufferAmt, buffer)
return 0, commitWeight
}
return ourBalance, commitWeight
}
// If we're not the initiator, we must check whether the remote has
// enough balance to pay for the fee of our HTLC. We'll start by also
// subtracting our counterparty's reserve from their balance.
theirReserve := lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.ChanReserve,
)
if theirReserve <= theirBalance {
theirBalance -= theirReserve
} else {
theirBalance = 0
}
// We'll use the dustlimit and htlcFee to find the largest HTLC value
// that will be considered dust on the commitment.
dustlimit := lnwire.NewMSatFromSatoshis(
lc.channelState.LocalChanCfg.DustLimit,
)
// For an extra HTLC fee to be paid on our commitment, the HTLC must be
// large enough to make a non-dust HTLC timeout transaction.
htlcFee := lnwire.NewMSatFromSatoshis(
HtlcTimeoutFee(lc.channelState.ChanType, feePerKw),
)
// If we are looking at the remote commitment, we must use the remote
// dust limit and the fee for adding an HTLC success transaction.
if whoseCommitChain.IsRemote() {
dustlimit = lnwire.NewMSatFromSatoshis(
lc.channelState.RemoteChanCfg.DustLimit,
)
htlcFee = lnwire.NewMSatFromSatoshis(
HtlcSuccessFee(lc.channelState.ChanType, feePerKw),
)
}
// The HTLC output will be manifested on the commitment if it
// is non-dust after paying the HTLC fee.
nonDustHtlcAmt := dustlimit + htlcFee
// commitFeeWithHtlc is the fee our peer has to pay in case we add
// another htlc to the commitment.
commitFeeWithHtlc := commitFee + additionalHtlcFee
// If they cannot pay the fee if we add another non-dust HTLC, we'll
// report our available balance just below the non-dust amount, to
// avoid attempting HTLCs larger than this size.
if theirBalance < commitFeeWithHtlc && ourBalance >= nonDustHtlcAmt {
// see https://github.com/lightning/bolts/issues/728
ourReportedBalance := nonDustHtlcAmt - 1
lc.log.Infof("Reducing local (reported) balance "+
"(from %v to %v): remote side does not have enough "+
"funds (%v < %v) to pay for non-dust HTLC in case of "+
"unilateral close.", ourBalance, ourReportedBalance,
theirBalance, commitFeeWithHtlc)
ourBalance = ourReportedBalance
}
return ourBalance, commitWeight
}
// StateSnapshot returns a snapshot of the current fully committed state within
// the channel.
func (lc *LightningChannel) StateSnapshot() *channeldb.ChannelSnapshot {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.Snapshot()
}
// validateFeeRate ensures that if the passed fee is applied to the channel,
// and a new commitment is created (which evaluates this fee), then the
// initiator of the channel does not dip below their reserve.
func (lc *LightningChannel) validateFeeRate(feePerKw chainfee.SatPerKWeight) error {
// We'll ensure that we can accommodate this new fee change, yet still
// be above our reserve balance. Otherwise, we'll reject the fee
// update.
// We do not enforce the FeeBuffer here because it was exactly
// introduced to use this buffer for potential fee rate increases.
availableBalance, txWeight := lc.availableBalance(AdditionalHtlc)
oldFee := lnwire.NewMSatFromSatoshis(
lc.commitChains.Local.tip().feePerKw.FeeForWeight(txWeight),
)
// Our base balance is the total amount of satoshis we can commit
// towards fees before factoring in the channel reserve.
baseBalance := availableBalance + oldFee
// Using the weight of the commitment transaction if we were to create
// a commitment now, we'll compute our remaining balance if we apply
// this new fee update.
newFee := lnwire.NewMSatFromSatoshis(
feePerKw.FeeForWeight(txWeight),
)
// If the total fee exceeds our available balance (taking into account
// the fee from the last state), then we'll reject this update as it
// would mean we need to trim our entire output.
if newFee > baseBalance {
return fmt.Errorf("cannot apply fee_update=%v sat/kw, new fee "+
"of %v is greater than balance of %v", int64(feePerKw),
newFee, baseBalance)
}
// TODO(halseth): should fail if fee update is unreasonable,
// as specified in BOLT#2.
// * COMMENT(roasbeef): can cross-check with our ideal fee rate
return nil
}
// UpdateFee initiates a fee update for this channel. Must only be called by
// the channel initiator, and must be called before sending update_fee to
// the remote.
func (lc *LightningChannel) UpdateFee(feePerKw chainfee.SatPerKWeight) error {
lc.Lock()
defer lc.Unlock()
// Only initiator can send fee update, so trying to send one as
// non-initiator will fail.
if !lc.channelState.IsInitiator {
return fmt.Errorf("local fee update as non-initiator")
}
// Ensure that the passed fee rate meets our current requirements.
if err := lc.validateFeeRate(feePerKw); err != nil {
return err
}
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
LogIndex: lc.updateLogs.Local.logIndex,
Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)),
EntryType: FeeUpdate,
}
lc.updateLogs.Local.appendUpdate(pd)
return nil
}
// CommitFeeTotalAt applies a proposed feerate to the channel and returns the
// commitment fee with this new feerate. It does not modify the underlying
// LightningChannel.
func (lc *LightningChannel) CommitFeeTotalAt(
feePerKw chainfee.SatPerKWeight) (btcutil.Amount, btcutil.Amount,
error) {
lc.RLock()
defer lc.RUnlock()
dryRunFee := fn.Some[chainfee.SatPerKWeight](feePerKw)
// We want to grab every update in both update logs to calculate the
// commitment fees in the worst-case with this fee-rate.
localIdx := lc.updateLogs.Local.logIndex
remoteIdx := lc.updateLogs.Remote.logIndex
localHtlcView := lc.fetchHTLCView(remoteIdx, localIdx)
var localCommitFee, remoteCommitFee btcutil.Amount
// Compute the local commitment's weight.
_, _, localWeight, _, err := lc.computeView(
localHtlcView, lntypes.Local, false, dryRunFee,
)
if err != nil {
return 0, 0, err
}
localCommitFee = feePerKw.FeeForWeight(localWeight)
// Create another view in case for some reason the prior one was
// mutated.
remoteHtlcView := lc.fetchHTLCView(remoteIdx, localIdx)
// Compute the remote commitment's weight.
_, _, remoteWeight, _, err := lc.computeView(
remoteHtlcView, lntypes.Remote, false, dryRunFee,
)
if err != nil {
return 0, 0, err
}
remoteCommitFee = feePerKw.FeeForWeight(remoteWeight)
return localCommitFee, remoteCommitFee, err
}
// ReceiveUpdateFee handles an updated fee sent from remote. This method will
// return an error if called as channel initiator.
func (lc *LightningChannel) ReceiveUpdateFee(feePerKw chainfee.SatPerKWeight) error {
lc.Lock()
defer lc.Unlock()
// Only initiator can send fee update, and we must fail if we receive
// fee update as initiator
if lc.channelState.IsInitiator {
return fmt.Errorf("received fee update as initiator")
}
// TODO(roasbeef): or just modify to use the other balance?
pd := &paymentDescriptor{
ChanID: lc.ChannelID(),
LogIndex: lc.updateLogs.Remote.logIndex,
Amount: lnwire.NewMSatFromSatoshis(btcutil.Amount(feePerKw)),
EntryType: FeeUpdate,
}
lc.updateLogs.Remote.appendUpdate(pd)
return nil
}
// generateRevocation generates the revocation message for a given height.
func (lc *LightningChannel) generateRevocation(height uint64) (*lnwire.RevokeAndAck,
error) {
// Now that we've accept a new state transition, we send the remote
// party the revocation for our current commitment state.
revocationMsg := &lnwire.RevokeAndAck{}
commitSecret, err := lc.channelState.RevocationProducer.AtIndex(height)
if err != nil {
return nil, err
}
copy(revocationMsg.Revocation[:], commitSecret[:])
// Along with this revocation, we'll also send the _next_ commitment
// point that the remote party should use to create our next commitment
// transaction. We use a +2 here as we already gave them a look ahead
// of size one after the ChannelReady message was sent:
//
// 0: current revocation, 1: their "next" revocation, 2: this revocation
//
// We're revoking the current revocation. Once they receive this
// message they'll set the "current" revocation for us to their stored
// "next" revocation, and this revocation will become their new "next"
// revocation.
//
// Put simply in the window slides to the left by one.
revHeight := height + 2
nextCommitSecret, err := lc.channelState.RevocationProducer.AtIndex(
revHeight,
)
if err != nil {
return nil, err
}
revocationMsg.NextRevocationKey = input.ComputeCommitmentPoint(nextCommitSecret[:])
revocationMsg.ChanID = lnwire.NewChanIDFromOutPoint(
lc.channelState.FundingOutpoint,
)
// If this is a taproot channel, then we also need to generate the
// verification nonce for this target state.
if lc.channelState.ChanType.IsTaproot() {
nextVerificationNonce, err := channeldb.NewMusigVerificationNonce( //nolint:ll
lc.channelState.LocalChanCfg.MultiSigKey.PubKey,
revHeight, lc.taprootNonceProducer,
)
if err != nil {
return nil, err
}
revocationMsg.LocalNonce = lnwire.SomeMusig2Nonce(
nextVerificationNonce.PubNonce,
)
}
return revocationMsg, nil
}
// closeTxOpts houses the set of options that modify how the cooperative close
// tx is to be constructed.
type closeTxOpts struct {
// enableRBF indicates whether the cooperative close tx should signal
// RBF or not.
enableRBF bool
// extraCloseOutputs is a set of additional outputs that should be
// added the co-op close transaction.
extraCloseOutputs []CloseOutput
// customSort is a custom function that can be used to sort the
// transaction outputs. If this isn't set, then the default BIP-69
// sorting is used.
customSort CloseSortFunc
}
// defaultCloseTxOpts returns a closeTxOpts struct with default values.
func defaultCloseTxOpts() closeTxOpts {
return closeTxOpts{
enableRBF: false,
}
}
// CloseTxOpt is a functional option that allows us to modify how the closing
// transaction is created.
type CloseTxOpt func(*closeTxOpts)
// WithRBFCloseTx signals that the cooperative close tx should signal RBF.
func WithRBFCloseTx() CloseTxOpt {
return func(o *closeTxOpts) {
o.enableRBF = true
}
}
// WithExtraTxCloseOutputs can be used to add extra outputs to the cooperative
// transaction.
func WithExtraTxCloseOutputs(extraOutputs []CloseOutput) CloseTxOpt {
return func(o *closeTxOpts) {
o.extraCloseOutputs = extraOutputs
}
}
// WithCustomTxSort can be used to modify the way the close transaction is
// sorted.
func WithCustomTxSort(sorter CloseSortFunc) CloseTxOpt {
return func(opts *closeTxOpts) {
opts.customSort = sorter
}
}
// CreateCooperativeCloseTx creates a transaction which if signed by both
// parties, then broadcast cooperatively closes an active channel. The creation
// of the closure transaction is modified by a boolean indicating if the party
// constructing the channel is the initiator of the closure. Currently it is
// expected that the initiator pays the transaction fees for the closing
// transaction in full.
func CreateCooperativeCloseTx(fundingTxIn wire.TxIn,
localDust, remoteDust, ourBalance, theirBalance btcutil.Amount,
ourDeliveryScript, theirDeliveryScript []byte,
closeOpts ...CloseTxOpt) (*wire.MsgTx, error) {
opts := defaultCloseTxOpts()
for _, optFunc := range closeOpts {
optFunc(&opts)
}
// If RBF is signalled, then we'll modify the sequence to permit
// replacement.
if opts.enableRBF {
fundingTxIn.Sequence = mempool.MaxRBFSequence
}
// Construct the transaction to perform a cooperative closure of the
// channel. In the event that one side doesn't have any settled funds
// within the channel then a refund output for that particular side can
// be omitted.
closeTx := wire.NewMsgTx(2)
closeTx.AddTxIn(&fundingTxIn)
// Create both cooperative closure outputs, properly respecting the
// dust limits of both parties.
var localOutputIdx fn.Option[int]
haveLocalOutput := ourBalance >= localDust
if haveLocalOutput {
closeTx.AddTxOut(&wire.TxOut{
PkScript: ourDeliveryScript,
Value: int64(ourBalance),
})
localOutputIdx = fn.Some(len(closeTx.TxOut) - 1)
}
var remoteOutputIdx fn.Option[int]
haveRemoteOutput := theirBalance >= remoteDust
if haveRemoteOutput {
closeTx.AddTxOut(&wire.TxOut{
PkScript: theirDeliveryScript,
Value: int64(theirBalance),
})
remoteOutputIdx = fn.Some(len(closeTx.TxOut) - 1)
}
// If we have extra outputs to add to the co-op close transaction, then
// we'll examine them now. We'll deduct the output's value from the
// owning party. In the case that a party can't pay for the output, then
// their normal output will be omitted.
for _, extraTxOut := range opts.extraCloseOutputs {
switch {
// For additional local outputs, add the output, then deduct
// the balance from our local balance.
case extraTxOut.IsLocal:
// The extraCloseOutputs in the options just indicate if
// an extra output should be added in general. But we
// only add one if we actually _need_ one, based on the
// balance. If we don't have enough local balance to
// cover the extra output, then localOutputIdx is None.
localOutputIdx.WhenSome(func(idx int) {
// The output that currently represents the
// local balance, which means:
// txOut.Value == ourBalance.
txOut := closeTx.TxOut[idx]
// The extra output (if one exists) is the more
// important one, as in custom channels it might
// carry some additional values. The normal
// output is just an address that sends the
// local balance back to our wallet. The extra
// one also goes to our wallet, but might also
// carry other values, so it has higher
// priority. Do we have enough balance to have
// both the extra output with the given value
// (which is subtracted from our balance) and
// still an above-dust normal output? If not, we
// skip the extra output and just overwrite the
// existing output script with the one from the
// extra output.
amtAfterOutput := btcutil.Amount(
txOut.Value - extraTxOut.Value,
)
if amtAfterOutput <= localDust {
txOut.PkScript = extraTxOut.PkScript
return
}
txOut.Value -= extraTxOut.Value
closeTx.AddTxOut(&extraTxOut.TxOut)
})
// For extra remote outputs, we'll do the opposite.
case !extraTxOut.IsLocal:
// The extraCloseOutputs in the options just indicate if
// an extra output should be added in general. But we
// only add one if we actually _need_ one, based on the
// balance. If we don't have enough remote balance to
// cover the extra output, then remoteOutputIdx is None.
remoteOutputIdx.WhenSome(func(idx int) {
// The output that currently represents the
// remote balance, which means:
// txOut.Value == theirBalance.
txOut := closeTx.TxOut[idx]
// The extra output (if one exists) is the more
// important one, as in custom channels it might
// carry some additional values. The normal
// output is just an address that sends the
// remote balance back to their wallet. The
// extra one also goes to their wallet, but
// might also carry other values, so it has
// higher priority. Do they have enough balance
// to have both the extra output with the given
// value (which is subtracted from their
// balance) and still an above-dust normal
// output? If not, we skip the extra output and
// just overwrite the existing output script
// with the one from the extra output.
amtAfterOutput := btcutil.Amount(
txOut.Value - extraTxOut.Value,
)
if amtAfterOutput <= remoteDust {
txOut.PkScript = extraTxOut.PkScript
return
}
txOut.Value -= extraTxOut.Value
closeTx.AddTxOut(&extraTxOut.TxOut)
})
}
}
if opts.customSort != nil {
if err := opts.customSort(closeTx); err != nil {
return nil, err
}
} else {
txsort.InPlaceSort(closeTx)
}
return closeTx, nil
}
// LocalBalanceDust returns true if when creating a co-op close transaction,
// the balance of the local party will be dust after accounting for any anchor
// outputs.
func (lc *LightningChannel) LocalBalanceDust() (bool, btcutil.Amount) {
lc.RLock()
defer lc.RUnlock()
chanState := lc.channelState
localBalance := chanState.LocalCommitment.LocalBalance.ToSatoshis()
// If this is an anchor channel, and we're the initiator, then we'll
// regain the stats allocated to the anchor outputs with the co-op
// close transaction.
if chanState.ChanType.HasAnchors() && chanState.IsInitiator {
localBalance += 2 * AnchorSize
}
localDust := chanState.LocalChanCfg.DustLimit
return localBalance <= localDust, localDust
}
// RemoteBalanceDust returns true if when creating a co-op close transaction,
// the balance of the remote party will be dust after accounting for any anchor
// outputs.
func (lc *LightningChannel) RemoteBalanceDust() (bool, btcutil.Amount) {
lc.RLock()
defer lc.RUnlock()
chanState := lc.channelState
remoteBalance := chanState.RemoteCommitment.RemoteBalance.ToSatoshis()
// If this is an anchor channel, and they're the initiator, then we'll
// regain the stats allocated to the anchor outputs with the co-op
// close transaction.
if chanState.ChanType.HasAnchors() && !chanState.IsInitiator {
remoteBalance += 2 * AnchorSize
}
remoteDust := chanState.RemoteChanCfg.DustLimit
return remoteBalance <= remoteDust, remoteDust
}
// CommitBalances returns the local and remote balances in the current
// commitment state.
func (lc *LightningChannel) CommitBalances() (btcutil.Amount, btcutil.Amount) {
lc.RLock()
defer lc.RUnlock()
chanState := lc.channelState
localCommit := lc.channelState.LocalCommitment
localBalance := localCommit.LocalBalance.ToSatoshis()
remoteBalance := localCommit.RemoteBalance.ToSatoshis()
if chanState.ChanType.HasAnchors() {
if chanState.IsInitiator {
localBalance += 2 * AnchorSize
} else {
remoteBalance += 2 * AnchorSize
}
}
return localBalance, remoteBalance
}
// CommitFee returns the commitment fee for the current commitment state.
func (lc *LightningChannel) CommitFee() btcutil.Amount {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.LocalCommitment.CommitFee
}
// CalcFee returns the commitment fee to use for the given fee rate
// (fee-per-kw).
func (lc *LightningChannel) CalcFee(feeRate chainfee.SatPerKWeight) btcutil.Amount {
return feeRate.FeeForWeight(CommitWeight(lc.channelState.ChanType))
}
// MaxFeeRate returns the maximum fee rate given an allocation of the channel
// initiator's spendable balance along with the local reserve amount. This can
// be useful to determine when we should stop proposing fee updates that exceed
// our maximum allocation.
// Moreover it returns the share of the total balance in the range of [0,1]
// which can be allocated to fees. When our desired fee allocation would lead to
// a maximum fee rate below the current commitment fee rate we floor the maximum
// at the current fee rate which leads to different fee allocations than
// initially requested via `maxAllocation`.
//
// NOTE: This should only be used for channels in which the local commitment is
// the initiator.
func (lc *LightningChannel) MaxFeeRate(
maxAllocation float64) (chainfee.SatPerKWeight, float64) {
lc.RLock()
defer lc.RUnlock()
// The maximum fee depends on the available balance that can be
// committed towards fees. It takes into account our local reserve
// balance. We do not account for a FeeBuffer here because that is
// exactly why it was introduced to react for sharp fee changes.
availableBalance, weight := lc.availableBalance(AdditionalHtlc)
currentFee := lc.commitChains.Local.tip().feePerKw.FeeForWeight(weight)
// baseBalance is the maximum amount available for us to spend on fees.
baseBalance := availableBalance.ToSatoshis() + currentFee
// In case our local channel balance is drained, we make sure we do not
// decrease the fee rate below the current fee rate. This could lead to
// a scenario where we lower the commitment fee rate as low as the fee
// floor although current fee rates are way higher. The maximum fee
// we allow should not be smaller then the current fee. The decrease
// in fee rate should happen when the mempool reports lower fee levels
// rather than us decreasing in local balance. The max fee rate is
// always floored by the current fee rate of the channel.
idealMaxFee := float64(baseBalance) * maxAllocation
maxFee := math.Max(float64(currentFee), idealMaxFee)
maxFeeAllocation := maxFee / float64(baseBalance)
maxFeeRate := chainfee.SatPerKWeight(maxFee / (float64(weight) / 1000))
return maxFeeRate, maxFeeAllocation
}
// IdealCommitFeeRate uses the current network fee, the minimum relay fee,
// maximum fee allocation and anchor channel commitment fee rate to determine
// the ideal fee to be used for the commitments of the channel.
func (lc *LightningChannel) IdealCommitFeeRate(netFeeRate, minRelayFeeRate,
maxAnchorCommitFeeRate chainfee.SatPerKWeight,
maxFeeAlloc float64) chainfee.SatPerKWeight {
// Get the maximum fee rate that we can use given our max fee allocation
// and given the local reserve balance that we must preserve.
maxFeeRate, _ := lc.MaxFeeRate(maxFeeAlloc)
var commitFeeRate chainfee.SatPerKWeight
// If the channel has anchor outputs then cap the fee rate at the
// max anchor fee rate if that maximum is less than our max fee rate.
// Otherwise, cap the fee rate at the max fee rate.
switch lc.channelState.ChanType.HasAnchors() &&
maxFeeRate > maxAnchorCommitFeeRate {
case true:
commitFeeRate = chainfee.SatPerKWeight(
math.Min(
float64(netFeeRate),
float64(maxAnchorCommitFeeRate),
),
)
case false:
commitFeeRate = chainfee.SatPerKWeight(
math.Min(float64(netFeeRate), float64(maxFeeRate)),
)
}
if commitFeeRate >= minRelayFeeRate {
return commitFeeRate
}
// The commitment fee rate is below the minimum relay fee rate.
// If the min relay fee rate is still below the maximum fee, then use
// the minimum relay fee rate.
if minRelayFeeRate <= maxFeeRate {
return minRelayFeeRate
}
// The minimum relay fee rate is more than the ideal maximum fee rate.
// Check if it is smaller than the absolute maximum fee rate we can
// use. If it is, then we use the minimum relay fee rate and we log a
// warning to indicate that the max channel fee allocation option was
// ignored.
absoluteMaxFee, _ := lc.MaxFeeRate(1)
if minRelayFeeRate <= absoluteMaxFee {
lc.log.Warn("Ignoring max channel fee allocation to " +
"ensure that the commitment fee is above the " +
"minimum relay fee.")
return minRelayFeeRate
}
// The absolute maximum fee rate we can pay is below the minimum
// relay fee rate. The commitment tx will not be able to propagate.
// To give the transaction the best chance, we use the absolute
// maximum fee we have available and we log an error.
lc.log.Errorf("The commitment fee rate of %s is below the current "+
"minimum relay fee rate of %s. The max fee rate of %s will be "+
"used.", commitFeeRate, minRelayFeeRate, absoluteMaxFee)
return absoluteMaxFee
}
// RemoteNextRevocation returns the channelState's RemoteNextRevocation. For
// musig2 channels, until a nonce pair is processed by the remote party, a nil
// public key is returned.
//
// TODO(roasbeef): revisit, maybe just make a more general method instead?
func (lc *LightningChannel) RemoteNextRevocation() *btcec.PublicKey {
lc.RLock()
defer lc.RUnlock()
if !lc.channelState.ChanType.IsTaproot() {
return lc.channelState.RemoteNextRevocation
}
if lc.musigSessions == nil {
return nil
}
return lc.channelState.RemoteNextRevocation
}
// IsInitiator returns true if we were the ones that initiated the funding
// workflow which led to the creation of this channel. Otherwise, it returns
// false.
func (lc *LightningChannel) IsInitiator() bool {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.IsInitiator
}
// CommitFeeRate returns the current fee rate of the commitment transaction in
// units of sat-per-kw.
func (lc *LightningChannel) CommitFeeRate() chainfee.SatPerKWeight {
lc.RLock()
defer lc.RUnlock()
return chainfee.SatPerKWeight(lc.channelState.LocalCommitment.FeePerKw)
}
// WorstCaseFeeRate returns the higher feerate from either the local commitment
// or the remote commitment.
func (lc *LightningChannel) WorstCaseFeeRate() chainfee.SatPerKWeight {
lc.RLock()
defer lc.RUnlock()
localFeeRate := lc.channelState.LocalCommitment.FeePerKw
remoteFeeRate := lc.channelState.RemoteCommitment.FeePerKw
if localFeeRate > remoteFeeRate {
return chainfee.SatPerKWeight(localFeeRate)
}
return chainfee.SatPerKWeight(remoteFeeRate)
}
// IsPending returns true if the channel's funding transaction has been fully
// confirmed, and false otherwise.
func (lc *LightningChannel) IsPending() bool {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.IsPending
}
// State provides access to the channel's internal state.
func (lc *LightningChannel) State() *channeldb.OpenChannel {
return lc.channelState
}
// MarkBorked marks the event when the channel as reached an irreconcilable
// state, such as a channel breach or state desynchronization. Borked channels
// should never be added to the switch.
func (lc *LightningChannel) MarkBorked() error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkBorked()
}
// MarkCommitmentBroadcasted marks the channel as a commitment transaction has
// been broadcast, either our own or the remote, and we should watch the chain
// for it to confirm before taking any further action. It takes a boolean which
// indicates whether we initiated the close.
func (lc *LightningChannel) MarkCommitmentBroadcasted(tx *wire.MsgTx,
closer lntypes.ChannelParty) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkCommitmentBroadcasted(tx, closer)
}
// MarkCoopBroadcasted marks the channel as a cooperative close transaction has
// been broadcast, and that we should watch the chain for it to confirm before
// taking any further action. It takes a locally initiated bool which is true
// if we initiated the cooperative close.
func (lc *LightningChannel) MarkCoopBroadcasted(tx *wire.MsgTx,
closer lntypes.ChannelParty) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkCoopBroadcasted(tx, closer)
}
// MarkShutdownSent persists the given ShutdownInfo. The existence of the
// ShutdownInfo represents the fact that the Shutdown message has been sent by
// us and so should be re-sent on re-establish.
func (lc *LightningChannel) MarkShutdownSent(
info *channeldb.ShutdownInfo) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkShutdownSent(info)
}
// MarkDataLoss marks sets the channel status to LocalDataLoss and stores the
// passed commitPoint for use to retrieve funds in case the remote force closes
// the channel.
func (lc *LightningChannel) MarkDataLoss(commitPoint *btcec.PublicKey) error {
lc.Lock()
defer lc.Unlock()
return lc.channelState.MarkDataLoss(commitPoint)
}
// ActiveHtlcs returns a slice of HTLC's which are currently active on *both*
// commitment transactions.
func (lc *LightningChannel) ActiveHtlcs() []channeldb.HTLC {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.ActiveHtlcs()
}
// LocalChanReserve returns our local ChanReserve requirement for the remote party.
func (lc *LightningChannel) LocalChanReserve() btcutil.Amount {
return lc.channelState.LocalChanCfg.ChanReserve
}
// NextLocalHtlcIndex returns the next unallocated local htlc index. To ensure
// this always returns the next index that has been not been allocated, this
// will first try to examine any pending commitments, before falling back to the
// last locked-in local commitment.
func (lc *LightningChannel) NextLocalHtlcIndex() (uint64, error) {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.NextLocalHtlcIndex()
}
// FwdMinHtlc returns the minimum HTLC value required by the remote node, i.e.
// the minimum value HTLC we can forward on this channel.
func (lc *LightningChannel) FwdMinHtlc() lnwire.MilliSatoshi {
return lc.channelState.LocalChanCfg.MinHTLC
}
// unsignedLocalUpdates retrieves the unsigned local updates that we should
// store upon receiving a revocation. This function is called from
// ReceiveRevocation. remoteMessageIndex is the height into the local update
// log that the remote commitment chain tip includes. localMessageIndex
// is the height into the local update log that the local commitment tail
// includes. Our local updates that are unsigned by the remote should
// have height greater than or equal to localMessageIndex (not on our commit),
// and height less than remoteMessageIndex (on the remote commit).
//
// NOTE: remoteMessageIndex is the height on the tip because this is called
// before the tail is advanced to the tip during ReceiveRevocation.
func (lc *LightningChannel) unsignedLocalUpdates(remoteMessageIndex,
localMessageIndex uint64) []channeldb.LogUpdate {
var localPeerUpdates []channeldb.LogUpdate
for e := lc.updateLogs.Local.Front(); e != nil; e = e.Next() {
pd := e.Value
// We don't save add updates as they are restored from the
// remote commitment in restoreStateLogs.
if pd.EntryType == Add {
continue
}
// This is a settle/fail that is on the remote commitment, but
// not on the local commitment. We expect this update to be
// covered in the next commitment signature that the remote
// sends.
if pd.LogIndex < remoteMessageIndex && pd.LogIndex >= localMessageIndex {
localPeerUpdates = append(
localPeerUpdates, pd.toLogUpdate(),
)
}
}
return localPeerUpdates
}
// GenMusigNonces generates the verification nonce to start off a new musig2
// channel session.
func (lc *LightningChannel) GenMusigNonces() (*musig2.Nonces, error) {
lc.Lock()
defer lc.Unlock()
var err error
// We pass in the current height+1 as this'll be the set of
// verification nonces we'll send to the party to create our _next_
// state.
lc.pendingVerificationNonce, err = channeldb.NewMusigVerificationNonce(
lc.channelState.LocalChanCfg.MultiSigKey.PubKey,
lc.currentHeight+1, lc.taprootNonceProducer,
)
if err != nil {
return nil, err
}
return lc.pendingVerificationNonce, nil
}
// HasRemoteNonces returns true if the channel has a remote nonce pair.
func (lc *LightningChannel) HasRemoteNonces() bool {
return lc.musigSessions != nil
}
// InitRemoteMusigNonces processes the remote musig nonces sent by the remote
// party. This should be called upon connection re-establishment, after we've
// generated our own nonces. Once this method returns a nil error, then the
// channel can be used to sign commitment states.
func (lc *LightningChannel) InitRemoteMusigNonces(remoteNonce *musig2.Nonces,
) error {
lc.Lock()
defer lc.Unlock()
if lc.pendingVerificationNonce == nil {
return fmt.Errorf("pending verification nonce is not set")
}
// Now that we have the set of local and remote nonces, we can generate
// a new pair of musig sessions for our local commitment and the
// commitment of the remote party.
localNonce := lc.pendingVerificationNonce
localChanCfg := lc.channelState.LocalChanCfg
remoteChanCfg := lc.channelState.RemoteChanCfg
// TODO(roasbeef): propagate rename of signing and verification nonces
sessionCfg := &MusigSessionCfg{
LocalKey: localChanCfg.MultiSigKey,
RemoteKey: remoteChanCfg.MultiSigKey,
LocalNonce: *localNonce,
RemoteNonce: *remoteNonce,
Signer: lc.Signer,
InputTxOut: &lc.fundingOutput,
TapscriptTweak: lc.channelState.TapscriptRoot,
}
lc.musigSessions = NewMusigPairSession(
sessionCfg,
)
lc.pendingVerificationNonce = nil
lc.opts.localNonce = nil
lc.opts.remoteNonce = nil
return nil
}
// ChanType returns the channel type.
func (lc *LightningChannel) ChanType() channeldb.ChannelType {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.ChanType
}
// Initiator returns the ChannelParty that originally opened this channel.
func (lc *LightningChannel) Initiator() lntypes.ChannelParty {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.Initiator()
}
// FundingTxOut returns the funding output of the channel.
func (lc *LightningChannel) FundingTxOut() *wire.TxOut {
lc.RLock()
defer lc.RUnlock()
return &lc.fundingOutput
}
// MultiSigKeys returns the set of multi-sig keys for an channel.
func (lc *LightningChannel) MultiSigKeys() (keychain.KeyDescriptor,
keychain.KeyDescriptor) {
lc.RLock()
defer lc.RUnlock()
return lc.channelState.LocalChanCfg.MultiSigKey,
lc.channelState.RemoteChanCfg.MultiSigKey
}
// LocalCommitmentBlob returns the custom blob of the local commitment.
func (lc *LightningChannel) LocalCommitmentBlob() fn.Option[tlv.Blob] {
lc.RLock()
defer lc.RUnlock()
chanState := lc.channelState
localBalance := chanState.LocalCommitment.CustomBlob
return fn.MapOption(func(b tlv.Blob) tlv.Blob {
newBlob := make([]byte, len(b))
copy(newBlob, b)
return newBlob
})(localBalance)
}
// FundingBlob returns the funding custom blob.
func (lc *LightningChannel) FundingBlob() fn.Option[tlv.Blob] {
lc.RLock()
defer lc.RUnlock()
return fn.MapOption(func(b tlv.Blob) tlv.Blob {
newBlob := make([]byte, len(b))
copy(newBlob, b)
return newBlob
})(lc.channelState.CustomBlob)
}