lnd/brontide/noise_test.go

727 lines
21 KiB
Go

package brontide
import (
"bytes"
"encoding/hex"
"fmt"
"io"
"math"
"net"
"testing"
"testing/iotest"
"github.com/btcsuite/btcd/btcec"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnwire"
)
type maybeNetConn struct {
conn net.Conn
err error
}
func makeListener() (*Listener, *lnwire.NetAddress, error) {
// First, generate the long-term private keys for the brontide listener.
localPriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, err
}
localKeyECDH := &keychain.PrivKeyECDH{PrivKey: localPriv}
// Having a port of ":0" means a random port, and interface will be
// chosen for our listener.
addr := "localhost:0"
// Our listener will be local, and the connection remote.
listener, err := NewListener(localKeyECDH, addr)
if err != nil {
return nil, nil, err
}
netAddr := &lnwire.NetAddress{
IdentityKey: localPriv.PubKey(),
Address: listener.Addr().(*net.TCPAddr),
}
return listener, netAddr, nil
}
func establishTestConnection() (net.Conn, net.Conn, func(), error) {
listener, netAddr, err := makeListener()
if err != nil {
return nil, nil, nil, err
}
defer listener.Close()
// Nos, generate the long-term private keys remote end of the connection
// within our test.
remotePriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
return nil, nil, nil, err
}
remoteKeyECDH := &keychain.PrivKeyECDH{PrivKey: remotePriv}
// Initiate a connection with a separate goroutine, and listen with our
// main one. If both errors are nil, then encryption+auth was
// successful.
remoteConnChan := make(chan maybeNetConn, 1)
go func() {
remoteConn, err := Dial(remoteKeyECDH, netAddr, net.Dial)
remoteConnChan <- maybeNetConn{remoteConn, err}
}()
localConnChan := make(chan maybeNetConn, 1)
go func() {
localConn, err := listener.Accept()
localConnChan <- maybeNetConn{localConn, err}
}()
remote := <-remoteConnChan
if remote.err != nil {
return nil, nil, nil, err
}
local := <-localConnChan
if local.err != nil {
return nil, nil, nil, err
}
cleanUp := func() {
local.conn.Close()
remote.conn.Close()
}
return local.conn, remote.conn, cleanUp, nil
}
func TestConnectionCorrectness(t *testing.T) {
// Create a test connection, grabbing either side of the connection
// into local variables. If the initial crypto handshake fails, then
// we'll get a non-nil error here.
localConn, remoteConn, cleanUp, err := establishTestConnection()
if err != nil {
t.Fatalf("unable to establish test connection: %v", err)
}
defer cleanUp()
// Test out some message full-message reads.
for i := 0; i < 10; i++ {
msg := []byte("hello" + string(i))
if _, err := localConn.Write(msg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(msg))
if _, err := remoteConn.Read(readBuf); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(readBuf, msg) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(msg))
}
}
// Now try incremental message reads. This simulates first writing a
// message header, then a message body.
outMsg := []byte("hello world")
if _, err := localConn.Write(outMsg); err != nil {
t.Fatalf("remote conn failed to write: %v", err)
}
readBuf := make([]byte, len(outMsg))
if _, err := remoteConn.Read(readBuf[:len(outMsg)/2]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if _, err := remoteConn.Read(readBuf[len(outMsg)/2:]); err != nil {
t.Fatalf("local conn failed to read: %v", err)
}
if !bytes.Equal(outMsg, readBuf) {
t.Fatalf("messages don't match, %v vs %v",
string(readBuf), string(outMsg))
}
}
// TestConecurrentHandshakes verifies the listener's ability to not be blocked
// by other pending handshakes. This is tested by opening multiple tcp
// connections with the listener, without completing any of the brontide acts.
// The test passes if real brontide dialer connects while the others are
// stalled.
func TestConcurrentHandshakes(t *testing.T) {
listener, netAddr, err := makeListener()
if err != nil {
t.Fatalf("unable to create listener connection: %v", err)
}
defer listener.Close()
const nblocking = 5
// Open a handful of tcp connections, that do not complete any steps of
// the brontide handshake.
connChan := make(chan maybeNetConn)
for i := 0; i < nblocking; i++ {
go func() {
conn, err := net.Dial("tcp", listener.Addr().String())
connChan <- maybeNetConn{conn, err}
}()
}
// Receive all connections/errors from our blocking tcp dials. We make a
// pass to gather all connections and errors to make sure we defer the
// calls to Close() on all successful connections.
tcpErrs := make([]error, 0, nblocking)
for i := 0; i < nblocking; i++ {
result := <-connChan
if result.conn != nil {
defer result.conn.Close()
}
if result.err != nil {
tcpErrs = append(tcpErrs, result.err)
}
}
for _, tcpErr := range tcpErrs {
if tcpErr != nil {
t.Fatalf("unable to tcp dial listener: %v", tcpErr)
}
}
// Now, construct a new private key and use the brontide dialer to
// connect to the listener.
remotePriv, err := btcec.NewPrivateKey(btcec.S256())
if err != nil {
t.Fatalf("unable to generate private key: %v", err)
}
remoteKeyECDH := &keychain.PrivKeyECDH{PrivKey: remotePriv}
go func() {
remoteConn, err := Dial(remoteKeyECDH, netAddr, net.Dial)
connChan <- maybeNetConn{remoteConn, err}
}()
// This connection should be accepted without error, as the brontide
// connection should bypass stalled tcp connections.
conn, err := listener.Accept()
if err != nil {
t.Fatalf("unable to accept dial: %v", err)
}
defer conn.Close()
result := <-connChan
if result.err != nil {
t.Fatalf("unable to dial %v: %v", netAddr, result.err)
}
result.conn.Close()
}
func TestMaxPayloadLength(t *testing.T) {
t.Parallel()
b := Machine{}
b.split()
// Create a payload that's only *slightly* above the maximum allotted
// payload length.
payloadToReject := make([]byte, math.MaxUint16+1)
// A write of the payload generated above to the state machine should
// be rejected as it's over the max payload length.
err := b.WriteMessage(payloadToReject)
if err != ErrMaxMessageLengthExceeded {
t.Fatalf("payload is over the max allowed length, the write " +
"should have been rejected")
}
// Generate another payload which should be accepted as a valid
// payload.
payloadToAccept := make([]byte, math.MaxUint16-1)
if err := b.WriteMessage(payloadToAccept); err != nil {
t.Fatalf("write for payload was rejected, should have been " +
"accepted")
}
// Generate a final payload which is only *slightly* above the max payload length
// when the MAC is accounted for.
payloadToReject = make([]byte, math.MaxUint16+1)
// This payload should be rejected.
err = b.WriteMessage(payloadToReject)
if err != ErrMaxMessageLengthExceeded {
t.Fatalf("payload is over the max allowed length, the write " +
"should have been rejected")
}
}
func TestWriteMessageChunking(t *testing.T) {
// Create a test connection, grabbing either side of the connection
// into local variables. If the initial crypto handshake fails, then
// we'll get a non-nil error here.
localConn, remoteConn, cleanUp, err := establishTestConnection()
if err != nil {
t.Fatalf("unable to establish test connection: %v", err)
}
defer cleanUp()
// Attempt to write a message which is over 3x the max allowed payload
// size.
largeMessage := bytes.Repeat([]byte("kek"), math.MaxUint16*3)
// Launch a new goroutine to write the large message generated above in
// chunks. We spawn a new goroutine because otherwise, we may block as
// the kernel waits for the buffer to flush.
errCh := make(chan error)
go func() {
defer close(errCh)
bytesWritten, err := localConn.Write(largeMessage)
if err != nil {
errCh <- fmt.Errorf("unable to write message: %v", err)
return
}
// The entire message should have been written out to the remote
// connection.
if bytesWritten != len(largeMessage) {
errCh <- fmt.Errorf("bytes not fully written")
return
}
}()
// Attempt to read the entirety of the message generated above.
buf := make([]byte, len(largeMessage))
if _, err := io.ReadFull(remoteConn, buf); err != nil {
t.Fatalf("unable to read message: %v", err)
}
err = <-errCh
if err != nil {
t.Fatal(err)
}
// Finally, the message the remote end of the connection received
// should be identical to what we sent from the local connection.
if !bytes.Equal(buf, largeMessage) {
t.Fatalf("bytes don't match")
}
}
// TestBolt0008TestVectors ensures that our implementation of brontide exactly
// matches the test vectors within the specification.
func TestBolt0008TestVectors(t *testing.T) {
t.Parallel()
// First, we'll generate the state of the initiator from the test
// vectors at the appendix of BOLT-0008
initiatorKeyBytes, err := hex.DecodeString("1111111111111111111111" +
"111111111111111111111111111111111111111111")
if err != nil {
t.Fatalf("unable to decode hex: %v", err)
}
initiatorPriv, _ := btcec.PrivKeyFromBytes(
btcec.S256(), initiatorKeyBytes,
)
initiatorKeyECDH := &keychain.PrivKeyECDH{PrivKey: initiatorPriv}
// We'll then do the same for the responder.
responderKeyBytes, err := hex.DecodeString("212121212121212121212121" +
"2121212121212121212121212121212121212121")
if err != nil {
t.Fatalf("unable to decode hex: %v", err)
}
responderPriv, responderPub := btcec.PrivKeyFromBytes(
btcec.S256(), responderKeyBytes,
)
responderKeyECDH := &keychain.PrivKeyECDH{PrivKey: responderPriv}
// With the initiator's key data parsed, we'll now define a custom
// EphemeralGenerator function for the state machine to ensure that the
// initiator and responder both generate the ephemeral public key
// defined within the test vectors.
initiatorEphemeral := EphemeralGenerator(func() (*btcec.PrivateKey, error) {
e := "121212121212121212121212121212121212121212121212121212" +
"1212121212"
eBytes, err := hex.DecodeString(e)
if err != nil {
return nil, err
}
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), eBytes)
return priv, nil
})
responderEphemeral := EphemeralGenerator(func() (*btcec.PrivateKey, error) {
e := "222222222222222222222222222222222222222222222222222" +
"2222222222222"
eBytes, err := hex.DecodeString(e)
if err != nil {
return nil, err
}
priv, _ := btcec.PrivKeyFromBytes(btcec.S256(), eBytes)
return priv, nil
})
// Finally, we'll create both brontide state machines, so we can begin
// our test.
initiator := NewBrontideMachine(
true, initiatorKeyECDH, responderPub, initiatorEphemeral,
)
responder := NewBrontideMachine(
false, responderKeyECDH, nil, responderEphemeral,
)
// We'll start with the initiator generating the initial payload for
// act one. This should consist of exactly 50 bytes. We'll assert that
// the payload return is _exactly_ the same as what's specified within
// the test vectors.
actOne, err := initiator.GenActOne()
if err != nil {
t.Fatalf("unable to generate act one: %v", err)
}
expectedActOne, err := hex.DecodeString("00036360e856310ce5d294e" +
"8be33fc807077dc56ac80d95d9cd4ddbd21325eff73f70df608655115" +
"1f58b8afe6c195782c6a")
if err != nil {
t.Fatalf("unable to parse expected act one: %v", err)
}
if !bytes.Equal(expectedActOne, actOne[:]) {
t.Fatalf("act one mismatch: expected %x, got %x",
expectedActOne, actOne)
}
// With the assertion above passed, we'll now process the act one
// payload with the responder of the crypto handshake.
if err := responder.RecvActOne(actOne); err != nil {
t.Fatalf("responder unable to process act one: %v", err)
}
// Next, we'll start the second act by having the responder generate
// its contribution to the crypto handshake. We'll also verify that we
// produce the _exact_ same byte stream as advertised within the spec's
// test vectors.
actTwo, err := responder.GenActTwo()
if err != nil {
t.Fatalf("unable to generate act two: %v", err)
}
expectedActTwo, err := hex.DecodeString("0002466d7fcae563e5cb09a0" +
"d1870bb580344804617879a14949cf22285f1bae3f276e2470b93aac58" +
"3c9ef6eafca3f730ae")
if err != nil {
t.Fatalf("unable to parse expected act two: %v", err)
}
if !bytes.Equal(expectedActTwo, actTwo[:]) {
t.Fatalf("act two mismatch: expected %x, got %x",
expectedActTwo, actTwo)
}
// Moving the handshake along, we'll also ensure that the initiator
// accepts the act two payload.
if err := initiator.RecvActTwo(actTwo); err != nil {
t.Fatalf("initiator unable to process act two: %v", err)
}
// At the final step, we'll generate the last act from the initiator
// and once again verify that it properly matches the test vectors.
actThree, err := initiator.GenActThree()
if err != nil {
t.Fatalf("unable to generate act three: %v", err)
}
expectedActThree, err := hex.DecodeString("00b9e3a702e93e3a9948c2e" +
"d6e5fd7590a6e1c3a0344cfc9d5b57357049aa22355361aa02e55a8f" +
"c28fef5bd6d71ad0c38228dc68b1c466263b47fdf31e560e139ba")
if err != nil {
t.Fatalf("unable to parse expected act three: %v", err)
}
if !bytes.Equal(expectedActThree, actThree[:]) {
t.Fatalf("act three mismatch: expected %x, got %x",
expectedActThree, actThree)
}
// Finally, we'll ensure that the responder itself also properly parses
// the last payload in the crypto handshake.
if err := responder.RecvActThree(actThree); err != nil {
t.Fatalf("responder unable to process act three: %v", err)
}
// As a final assertion, we'll ensure that both sides have derived the
// proper symmetric encryption keys.
sendingKey, err := hex.DecodeString("969ab31b4d288cedf6218839b27a3e2" +
"140827047f2c0f01bf5c04435d43511a9")
if err != nil {
t.Fatalf("unable to parse sending key: %v", err)
}
recvKey, err := hex.DecodeString("bb9020b8965f4df047e07f955f3c4b884" +
"18984aadc5cdb35096b9ea8fa5c3442")
if err != nil {
t.Fatalf("unable to parse receiving key: %v", err)
}
chainKey, err := hex.DecodeString("919219dbb2920afa8db80f9a51787a840" +
"bcf111ed8d588caf9ab4be716e42b01")
if err != nil {
t.Fatalf("unable to parse chaining key: %v", err)
}
if !bytes.Equal(initiator.sendCipher.secretKey[:], sendingKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
initiator.sendCipher.secretKey[:], sendingKey)
}
if !bytes.Equal(initiator.recvCipher.secretKey[:], recvKey) {
t.Fatalf("receiving key mismatch: expected %x, got %x",
initiator.recvCipher.secretKey[:], recvKey)
}
if !bytes.Equal(initiator.chainingKey[:], chainKey) {
t.Fatalf("chaining key mismatch: expected %x, got %x",
initiator.chainingKey[:], chainKey)
}
if !bytes.Equal(responder.sendCipher.secretKey[:], recvKey) {
t.Fatalf("sending key mismatch: expected %x, got %x",
responder.sendCipher.secretKey[:], recvKey)
}
if !bytes.Equal(responder.recvCipher.secretKey[:], sendingKey) {
t.Fatalf("receiving key mismatch: expected %x, got %x",
responder.recvCipher.secretKey[:], sendingKey)
}
if !bytes.Equal(responder.chainingKey[:], chainKey) {
t.Fatalf("chaining key mismatch: expected %x, got %x",
responder.chainingKey[:], chainKey)
}
// Now test as per section "transport-message test" in Test Vectors
// (the transportMessageVectors ciphertexts are from this section of BOLT 8);
// we do slightly greater than 1000 encryption/decryption operations
// to ensure that the key rotation algorithm is operating as expected.
// The starting point for enc/decr is already guaranteed correct from the
// above tests of sendingKey, receivingKey, chainingKey.
transportMessageVectors := map[int]string{
0: "cf2b30ddf0cf3f80e7c35a6e6730b59fe802473180f396d88a8fb0db8cb" +
"cf25d2f214cf9ea1d95",
1: "72887022101f0b6753e0c7de21657d35a4cb2a1f5cde2650528bbc8f837" +
"d0f0d7ad833b1a256a1",
500: "178cb9d7387190fa34db9c2d50027d21793c9bc2d40b1e14dcf30ebeeeb2" +
"20f48364f7a4c68bf8",
501: "1b186c57d44eb6de4c057c49940d79bb838a145cb528d6e8fd26dbe50a6" +
"0ca2c104b56b60e45bd",
1000: "4a2f3cc3b5e78ddb83dcb426d9863d9d9a723b0337c89dd0b005d89f8d3" +
"c05c52b76b29b740f09",
1001: "2ecd8c8a5629d0d02ab457a0fdd0f7b90a192cd46be5ecb6ca570bfc5e2" +
"68338b1a16cf4ef2d36",
}
// Payload for every message is the string "hello".
payload := []byte("hello")
var buf bytes.Buffer
for i := 0; i < 1002; i++ {
err = initiator.WriteMessage(payload)
if err != nil {
t.Fatalf("could not write message %s", payload)
}
_, err = initiator.Flush(&buf)
if err != nil {
t.Fatalf("could not flush message: %v", err)
}
if val, ok := transportMessageVectors[i]; ok {
binaryVal, err := hex.DecodeString(val)
if err != nil {
t.Fatalf("Failed to decode hex string %s", val)
}
if !bytes.Equal(buf.Bytes(), binaryVal) {
t.Fatalf("Ciphertext %x was not equal to expected %s",
buf.String()[:], val)
}
}
// Responder decrypts the bytes, in every iteration, and
// should always be able to decrypt the same payload message.
plaintext, err := responder.ReadMessage(&buf)
if err != nil {
t.Fatalf("failed to read message in responder: %v", err)
}
// Ensure decryption succeeded
if !bytes.Equal(plaintext, payload) {
t.Fatalf("Decryption failed to receive plaintext: %s, got %s",
payload, plaintext)
}
// Clear out the buffer for the next iteration
buf.Reset()
}
}
// timeoutWriter wraps an io.Writer and throws an iotest.ErrTimeout after
// writing n bytes.
type timeoutWriter struct {
w io.Writer
n int64
}
func NewTimeoutWriter(w io.Writer, n int64) io.Writer {
return &timeoutWriter{w, n}
}
func (t *timeoutWriter) Write(p []byte) (int, error) {
n := len(p)
if int64(n) > t.n {
n = int(t.n)
}
n, err := t.w.Write(p[:n])
t.n -= int64(n)
if err == nil && t.n == 0 {
return n, iotest.ErrTimeout
}
return n, err
}
const payloadSize = 10
type flushChunk struct {
errAfter int64
expN int
expErr error
}
type flushTest struct {
name string
chunks []flushChunk
}
var flushTests = []flushTest{
{
name: "partial header write",
chunks: []flushChunk{
// Write 18-byte header in two parts, 16 then 2.
{
errAfter: encHeaderSize - 2,
expN: 0,
expErr: iotest.ErrTimeout,
},
{
errAfter: 2,
expN: 0,
expErr: iotest.ErrTimeout,
},
// Write payload and MAC in one go.
{
errAfter: -1,
expN: payloadSize,
},
},
},
{
name: "full payload then full mac",
chunks: []flushChunk{
// Write entire header and entire payload w/o MAC.
{
errAfter: encHeaderSize + payloadSize,
expN: payloadSize,
expErr: iotest.ErrTimeout,
},
// Write the entire MAC.
{
errAfter: -1,
expN: 0,
},
},
},
{
name: "payload-only, straddle, mac-only",
chunks: []flushChunk{
// Write header and all but last byte of payload.
{
errAfter: encHeaderSize + payloadSize - 1,
expN: payloadSize - 1,
expErr: iotest.ErrTimeout,
},
// Write last byte of payload and first byte of MAC.
{
errAfter: 2,
expN: 1,
expErr: iotest.ErrTimeout,
},
// Write 10 bytes of the MAC.
{
errAfter: 10,
expN: 0,
expErr: iotest.ErrTimeout,
},
// Write the remaining 5 MAC bytes.
{
errAfter: -1,
expN: 0,
},
},
},
}
// TestFlush asserts a Machine's ability to handle timeouts during Flush that
// cause partial writes, and that the machine can properly resume writes on
// subsequent calls to Flush.
func TestFlush(t *testing.T) {
// Run each test individually, to assert that they pass in isolation.
for _, test := range flushTests {
t.Run(test.name, func(t *testing.T) {
var (
w bytes.Buffer
b Machine
)
b.split()
testFlush(t, test, &b, &w)
})
}
// Finally, run the tests serially as if all on one connection.
t.Run("flush serial", func(t *testing.T) {
var (
w bytes.Buffer
b Machine
)
b.split()
for _, test := range flushTests {
testFlush(t, test, &b, &w)
}
})
}
// testFlush buffers a message on the Machine, then flushes it to the io.Writer
// in chunks. Once complete, a final call to flush is made to assert that Write
// is not called again.
func testFlush(t *testing.T, test flushTest, b *Machine, w io.Writer) {
payload := make([]byte, payloadSize)
if err := b.WriteMessage(payload); err != nil {
t.Fatalf("unable to write message: %v", err)
}
for _, chunk := range test.chunks {
assertFlush(t, b, w, chunk.errAfter, chunk.expN, chunk.expErr)
}
// We should always be able to call Flush after a message has been
// successfully written, and it should result in a NOP.
assertFlush(t, b, w, 0, 0, nil)
}
// assertFlush flushes a chunk to the passed io.Writer. If n >= 0, a
// timeoutWriter will be used the flush should stop with iotest.ErrTimeout after
// n bytes. The method asserts that the returned error matches expErr and that
// the number of bytes written by Flush matches expN.
func assertFlush(t *testing.T, b *Machine, w io.Writer, n int64, expN int,
expErr error) {
t.Helper()
if n >= 0 {
w = NewTimeoutWriter(w, n)
}
nn, err := b.Flush(w)
if err != expErr {
t.Fatalf("expected flush err: %v, got: %v", expErr, err)
}
if nn != expN {
t.Fatalf("expected n: %d, got: %d", expN, nn)
}
}