lnd/itest/lnd_onchain_test.go
shaurya947 44fdd02ab4
lnrpc+itest: return channel Memo for Pending channels
In a previous PR we added a Memo field for channels that could be
specified when opening a channel. This was a reference note-to-self
with no bearing on the functioning of the channel. In that PR, the
memo value was returned only through ListChannels. This commit builds
upon that PR by also returning the Memo field for channels returned by
PendingChannels RPC.
2023-06-15 15:16:06 -04:00

684 lines
23 KiB
Go

package itest
import (
"bytes"
"fmt"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/chainrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/sweep"
"github.com/stretchr/testify/require"
)
// testChainKit tests ChainKit RPC endpoints.
func testChainKit(ht *lntest.HarnessTest) {
// Test functions registered as test cases spin up separate nodes
// during execution. By calling sub-test functions as seen below we
// avoid the need to start separate nodes.
testChainKitGetBlock(ht)
testChainKitGetBlockHash(ht)
testChainKitSendOutputsAnchorReserve(ht)
}
// testChainKitGetBlock ensures that given a block hash, the RPC endpoint
// returns the correct target block.
func testChainKitGetBlock(ht *lntest.HarnessTest) {
// Get best block hash.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
var bestBlockHash chainhash.Hash
err := bestBlockHash.SetBytes(bestBlockRes.BlockHash)
require.NoError(ht, err)
// Retrieve the best block by hash.
getBlockReq := &chainrpc.GetBlockRequest{
BlockHash: bestBlockHash[:],
}
getBlockRes := ht.Alice.RPC.GetBlock(getBlockReq)
// Deserialize the block which was retrieved by hash.
msgBlock := &wire.MsgBlock{}
blockReader := bytes.NewReader(getBlockRes.RawBlock)
err = msgBlock.Deserialize(blockReader)
require.NoError(ht, err)
// Ensure best block hash is the same as retrieved block hash.
expected := bestBlockHash
actual := msgBlock.BlockHash()
require.Equal(ht, expected, actual)
}
// testChainKitGetBlockHash ensures that given a block height, the RPC endpoint
// returns the correct target block hash.
func testChainKitGetBlockHash(ht *lntest.HarnessTest) {
// Get best block hash.
bestBlockRes := ht.Alice.RPC.GetBestBlock(nil)
// Retrieve the block hash at best block height.
req := &chainrpc.GetBlockHashRequest{
BlockHeight: int64(bestBlockRes.BlockHeight),
}
getBlockHashRes := ht.Alice.RPC.GetBlockHash(req)
// Ensure best block hash is the same as retrieved block hash.
expected := bestBlockRes.BlockHash
actual := getBlockHashRes.BlockHash
require.Equal(ht, expected, actual)
}
// testChainKitSendOutputsAnchorReserve checks if the SendOutputs rpc prevents
// our wallet balance to drop below the required anchor channel reserve amount.
func testChainKitSendOutputsAnchorReserve(ht *lntest.HarnessTest) {
// Start two nodes supporting anchor channels.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
// NOTE: we cannot reuse the standby node here as the test requires the
// node to start with no UTXOs.
charlie := ht.NewNode("Charlie", args)
bob := ht.Bob
ht.RestartNodeWithExtraArgs(bob, args)
// We'll start the test by sending Charlie some coins.
fundingAmount := btcutil.Amount(100_000)
ht.FundCoins(fundingAmount, charlie)
// Before opening the channel we ensure that the nodes are connected.
ht.EnsureConnected(charlie, bob)
// We'll get the anchor reserve that is required for a single channel.
reserve := charlie.RPC.RequiredReserve(
&walletrpc.RequiredReserveRequest{
AdditionalPublicChannels: 1,
},
)
// Charlie opens an anchor channel and keeps twice the amount of the
// anchor reserve in her wallet.
chanAmt := fundingAmount - 2*btcutil.Amount(reserve.RequiredReserve)
outpoint := ht.OpenChannel(charlie, bob, lntest.OpenChannelParams{
Amt: chanAmt,
CommitmentType: lnrpc.CommitmentType_ANCHORS,
SatPerVByte: 1,
})
// Now we obtain a taproot address from bob which Charlie will use to
// send coins to him via the SendOutputs rpc.
address := bob.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
decodedAddr := ht.DecodeAddress(address.Address)
addrScript := ht.PayToAddrScript(decodedAddr)
// First she will try to send Bob an amount that would undershoot her
// reserve requirement by one satoshi.
balance := charlie.RPC.WalletBalance()
utxo := &wire.TxOut{
Value: balance.TotalBalance - reserve.RequiredReserve + 1,
PkScript: addrScript,
}
req := &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
}},
SatPerKw: 2400,
MinConfs: 1,
}
// We try to send the reserve violating transaction and expect it to
// fail.
_, err := charlie.RPC.WalletKit.SendOutputs(ht.Context(), req)
require.ErrorContains(ht, err, walletrpc.ErrInsufficientReserve.Error())
ht.MineBlocksAndAssertNumTxes(1, 0)
// Next she will try to send Bob an amount that just leaves enough
// reserves in her wallet.
utxo = &wire.TxOut{
Value: balance.TotalBalance - reserve.RequiredReserve,
PkScript: addrScript,
}
req = &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
}},
SatPerKw: 2400,
MinConfs: 1,
}
// This second transaction should be published correctly.
charlie.RPC.SendOutputs(req)
ht.MineBlocksAndAssertNumTxes(1, 1)
// Clean up our test setup.
ht.CloseChannel(charlie, outpoint)
}
// testCPFP ensures that the daemon can bump an unconfirmed transaction's fee
// rate by broadcasting a Child-Pays-For-Parent (CPFP) transaction.
//
// TODO(wilmer): Add RBF case once btcd supports it.
func testCPFP(ht *lntest.HarnessTest) {
runCPFP(ht, ht.Alice, ht.Bob)
}
// runCPFP ensures that the daemon can bump an unconfirmed transaction's fee
// rate by broadcasting a Child-Pays-For-Parent (CPFP) transaction.
func runCPFP(ht *lntest.HarnessTest, alice, bob *node.HarnessNode) {
// Skip this test for neutrino, as it's not aware of mempool
// transactions.
if ht.IsNeutrinoBackend() {
ht.Skipf("skipping CPFP test for neutrino backend")
}
// We'll start the test by sending Alice some coins, which she'll use
// to send to Bob.
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
// Create an address for Bob to send the coins to.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
resp := bob.RPC.NewAddress(req)
// Send the coins from Alice to Bob. We should expect a transaction to
// be broadcast and seen in the mempool.
sendReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
Amount: btcutil.SatoshiPerBitcoin,
}
alice.RPC.SendCoins(sendReq)
txid := ht.Miner.AssertNumTxsInMempool(1)[0]
// We'll then extract the raw transaction from the mempool in order to
// determine the index of Bob's output.
tx := ht.Miner.GetRawTransaction(txid)
bobOutputIdx := -1
for i, txOut := range tx.MsgTx().TxOut {
_, addrs, _, err := txscript.ExtractPkScriptAddrs(
txOut.PkScript, ht.Miner.ActiveNet,
)
require.NoErrorf(ht, err, "unable to extract address "+
"from pkScript=%x: %v", txOut.PkScript, err)
if addrs[0].String() == resp.Address {
bobOutputIdx = i
}
}
require.NotEqual(ht, -1, bobOutputIdx, "bob's output was not found "+
"within the transaction")
// Wait until bob has seen the tx and considers it as owned.
op := &lnrpc.OutPoint{
TxidBytes: txid[:],
OutputIndex: uint32(bobOutputIdx),
}
ht.AssertUTXOInWallet(bob, op, "")
// We'll attempt to bump the fee of this transaction by performing a
// CPFP from Alice's point of view.
bumpFeeReq := &walletrpc.BumpFeeRequest{
Outpoint: op,
SatPerVbyte: uint64(
sweep.DefaultMaxFeeRate.FeePerKVByte() / 2000,
),
}
bob.RPC.BumpFee(bumpFeeReq)
// We should now expect to see two transactions within the mempool, a
// parent and its child.
ht.Miner.AssertNumTxsInMempool(2)
// We should also expect to see the output being swept by the
// UtxoSweeper. We'll ensure it's using the fee rate specified.
pendingSweepsResp := bob.RPC.PendingSweeps()
require.Len(ht, pendingSweepsResp.PendingSweeps, 1,
"expected to find 1 pending sweep")
pendingSweep := pendingSweepsResp.PendingSweeps[0]
require.Equal(ht, pendingSweep.Outpoint.TxidBytes, op.TxidBytes,
"output txid not matched")
require.Equal(ht, pendingSweep.Outpoint.OutputIndex, op.OutputIndex,
"output index not matched")
require.Equal(ht, pendingSweep.SatPerVbyte, bumpFeeReq.SatPerVbyte,
"sweep sat per vbyte not matched")
// Mine a block to clean up the unconfirmed transactions.
ht.MineBlocksAndAssertNumTxes(1, 2)
// The input used to CPFP should no longer be pending.
err := wait.NoError(func() error {
resp := bob.RPC.PendingSweeps()
if len(resp.PendingSweeps) != 0 {
return fmt.Errorf("expected 0 pending sweeps, found %d",
len(resp.PendingSweeps))
}
return nil
}, defaultTimeout)
require.NoError(ht, err, "timeout checking bob's pending sweeps")
}
// testAnchorReservedValue tests that we won't allow sending transactions when
// that would take the value we reserve for anchor fee bumping out of our
// wallet.
func testAnchorReservedValue(ht *lntest.HarnessTest) {
// Start two nodes supporting anchor channels.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
// NOTE: we cannot reuse the standby node here as the test requires the
// node to start with no UTXOs.
alice := ht.NewNode("Alice", args)
bob := ht.Bob
ht.RestartNodeWithExtraArgs(bob, args)
ht.ConnectNodes(alice, bob)
// Send just enough coins for Alice to open a channel without a change
// output.
const (
chanAmt = 1000000
feeEst = 8000
)
ht.FundCoins(chanAmt+feeEst, alice)
// wallet, without a change output. This should not be allowed.
ht.OpenChannelAssertErr(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
}, lnwallet.ErrReservedValueInvalidated,
)
// Alice opens a smaller channel. This works since it will have a
// change output.
chanPoint1 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
// If Alice tries to open another anchor channel to Bob, Bob should not
// reject it as he is not contributing any funds.
chanPoint2 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
// Similarly, if Alice tries to open a legacy channel to Bob, Bob
// should not reject it as he is not contributing any funds. We'll
// restart Bob to remove his support for anchors.
ht.RestartNode(bob)
// Before opening the channel, make sure the nodes are connected.
ht.EnsureConnected(alice, bob)
chanPoint3 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{Amt: chanAmt / 4},
)
chanPoints := []*lnrpc.ChannelPoint{chanPoint1, chanPoint2, chanPoint3}
// Alice tries to send all coins to an internal address. This is
// allowed, since the final wallet balance will still be above the
// reserved value.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
resp := alice.RPC.NewAddress(req)
sweepReq := &lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
assertNumTxInAndTxOut := func(tx *wire.MsgTx, in, out int) {
require.Len(ht, tx.TxIn, in, "num inputs not matched")
require.Len(ht, tx.TxOut, out, "num outputs not matched")
}
// The sweep transaction should have exactly one input, the change from
// the previous SendCoins call.
sweepTx := block.Transactions[1]
// It should have a single output.
assertNumTxInAndTxOut(sweepTx, 1, 1)
// Wait for Alice to see her balance as confirmed.
waitForConfirmedBalance := func() int64 {
var balance int64
err := wait.NoError(func() error {
resp := alice.RPC.WalletBalance()
if resp.TotalBalance == 0 {
return fmt.Errorf("no balance")
}
if resp.UnconfirmedBalance > 0 {
return fmt.Errorf("unconfirmed balance")
}
balance = resp.TotalBalance
return nil
}, defaultTimeout)
require.NoError(ht, err, "timeout checking alice's balance")
return balance
}
waitForConfirmedBalance()
// Alice tries to send all funds to an external address, the reserved
// value must stay in her wallet.
minerAddr := ht.Miner.NewMinerAddress()
sweepReq = &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
// We'll mine a block which should include the sweep transaction we
// generated above.
block = ht.MineBlocksAndAssertNumTxes(1, 1)[0]
// The sweep transaction should have exactly one inputs as we only had
// the single output from above in the wallet.
sweepTx = block.Transactions[1]
// It should have two outputs, one being the miner address, the other
// one being the reserve going back to our wallet.
assertNumTxInAndTxOut(sweepTx, 1, 2)
// The reserved value is now back in Alice's wallet.
aliceBalance := waitForConfirmedBalance()
// Alice closes channel, should now be allowed to send everything to an
// external address.
for _, chanPoint := range chanPoints {
ht.CloseChannel(alice, chanPoint)
}
newBalance := waitForConfirmedBalance()
require.Greater(ht, newBalance, aliceBalance,
"Alice's balance did not increase after channel close")
// Assert there are no open or pending channels anymore.
ht.AssertNumWaitingClose(alice, 0)
ht.AssertNodeNumChannels(alice, 0)
// We'll wait for the balance to reflect that the channel has been
// closed and the funds are in the wallet.
sweepReq = &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
}
alice.RPC.SendCoins(sweepReq)
// We'll mine a block which should include the sweep transaction we
// generated above.
block = ht.MineBlocksAndAssertNumTxes(1, 1)[0]
// The sweep transaction should have four inputs, the change output from
// the previous sweep, and the outputs from the coop closed channels.
sweepTx = block.Transactions[1]
// It should have a single output.
assertNumTxInAndTxOut(sweepTx, 4, 1)
}
// testAnchorThirdPartySpend tests that if we force close a channel, but then
// don't sweep the anchor in time and a 3rd party spends it, that we remove any
// transactions that are a descendent of that sweep.
func testAnchorThirdPartySpend(ht *lntest.HarnessTest) {
// First, we'll create two new nodes that both default to anchor
// channels.
//
// NOTE: The itests differ here as anchors is default off vs the normal
// lnd binary.
args := lntest.NodeArgsForCommitType(lnrpc.CommitmentType_ANCHORS)
alice := ht.NewNode("Alice", args)
bob := ht.NewNode("Bob", args)
ht.EnsureConnected(alice, bob)
// We'll fund our Alice with coins, as she'll be opening the channel.
// We'll fund her with *just* enough coins to open the channel and
// sweep the anchor.
const (
firstChanSize = 1_000_000
anchorFeeBuffer = 500_000
testMemo = "bob is a good peer"
)
ht.FundCoins(firstChanSize+anchorFeeBuffer, alice)
// Open the channel between the two nodes and wait for it to confirm
// fully.
aliceChanPoint1 := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: firstChanSize,
Memo: testMemo,
},
)
// Send another UTXO if this is a neutrino backend. When sweeping
// anchors, there are two transactions created, `local_sweep_tx` for
// sweeping Alice's anchor on the local commitment, `remote_sweep_tx`
// for sweeping her anchor on the remote commitment. Whenever the force
// close transaction is published, Alice will always create these two
// transactions to sweep her anchor.
// On the other hand, when creating the sweep txes, the anchor itself
// is not able to cover the fee, so another wallet UTXO is needed. In
// our test case, there's a change output that can be used from the
// above funding process. And it's used by both sweep txes - when `lnd`
// happens to create the `remote_sweep_tx` first, it will receive an
// error since its parent tx, the remote commitment, is not known,
// hence freeing the change output to be used by `local_sweep_tx`.
// For neutrino client, however, it will consider the transaction which
// sweeps the remote anchor as an orphan tx, and it will neither send
// it to the mempool nor return an error to free the change output.
// Thus, if the change output is already used in `remote_sweep_tx`, we
// won't have UTXO to create `local_sweep_tx`.
//
// NOTE: the order of the sweep requests for the two anchors cannot be
// guaranteed. If the sweeper happens to sweep the remote anchor first,
// then the test won't pass without the extra UTXO, which is the source
// of the flakeness.
//
// TODO(yy): make a RPC server for sweeper so we can explicitly check
// and control its state.
if ht.IsNeutrinoBackend() {
ht.FundCoins(anchorFeeBuffer, alice)
}
// With the channel open, we'll actually immediately force close it. We
// don't care about network announcements here since there's no routing
// in this test.
ht.CloseChannelAssertPending(alice, aliceChanPoint1, true)
// Now that the channel has been force closed, it should show up in the
// PendingChannels RPC under the waiting close section.
waitingClose := ht.AssertChannelWaitingClose(alice, aliceChanPoint1)
// Verify that the channel Memo is returned even for channels that are
// waiting close (close TX broadcasted but not confirmed)
pendingChannelsResp := alice.RPC.PendingChannels()
require.Equal(ht, testMemo,
pendingChannelsResp.WaitingCloseChannels[0].Channel.Memo)
// At this point, the channel is waiting close, and we have both the
// commitment transaction and anchor sweep in the mempool.
const expectedTxns = 2
sweepTxns := ht.Miner.GetNumTxsFromMempool(expectedTxns)
aliceCloseTx := waitingClose.Commitments.LocalTxid
_, aliceAnchor := ht.FindCommitAndAnchor(sweepTxns, aliceCloseTx)
// We'll now mine _only_ the commitment force close transaction, as we
// want the anchor sweep to stay unconfirmed.
forceCloseTxID, _ := chainhash.NewHashFromStr(aliceCloseTx)
commitTxn := ht.Miner.GetRawTransaction(forceCloseTxID)
ht.Miner.MineBlockWithTxes([]*btcutil.Tx{commitTxn})
// Assert that the channel is now in PendingForceClose.
//
// NOTE: We must do this check to make sure `lnd` node has updated its
// internal state regarding the closing transaction, otherwise the
// `SendCoins` below might fail since it involves a reserved value
// check, which requires a certain amount of coins to be reserved based
// on the number of anchor channels.
ht.AssertChannelPendingForceClose(alice, aliceChanPoint1)
// Verify that the channel Memo is returned even for channels that are
// pending force close (close TX confirmed but sweep hasn't happened)
pendingChannelsResp = alice.RPC.PendingChannels()
require.Equal(ht, testMemo,
pendingChannelsResp.PendingForceClosingChannels[0].Channel.Memo)
// With the anchor output located, and the main commitment mined we'll
// instruct the wallet to send all coins in the wallet to a new address
// (to the miner), including unconfirmed change.
minerAddr := ht.Miner.NewMinerAddress()
sweepReq := &lnrpc.SendCoinsRequest{
Addr: minerAddr.String(),
SendAll: true,
MinConfs: 0,
SpendUnconfirmed: true,
}
sweepAllResp := alice.RPC.SendCoins(sweepReq)
// Both the original anchor sweep transaction, as well as the
// transaction we created to sweep all the coins from Alice's wallet
// should be found in her transaction store.
sweepAllTxID, _ := chainhash.NewHashFromStr(sweepAllResp.Txid)
ht.AssertTransactionInWallet(alice, aliceAnchor.SweepTx.TxHash())
ht.AssertTransactionInWallet(alice, *sweepAllTxID)
// Next, we'll shutdown Alice, and allow 16 blocks to pass so that the
// anchor output can be swept by anyone. Rather than use the normal API
// call, we'll generate a series of _empty_ blocks here.
aliceRestart := ht.SuspendNode(alice)
const anchorCsv = 16
ht.MineEmptyBlocks(anchorCsv)
// Before we sweep the anchor, we'll restart Alice.
require.NoErrorf(ht, aliceRestart(), "unable to restart alice")
// Now that the channel has been closed, and Alice has an unconfirmed
// transaction spending the output produced by her anchor sweep, we'll
// mine a transaction that double spends the output.
thirdPartyAnchorSweep := genAnchorSweep(ht, aliceAnchor, anchorCsv)
ht.Miner.MineBlockWithTxes([]*btcutil.Tx{thirdPartyAnchorSweep})
// At this point, we should no longer find Alice's transaction that
// tried to sweep the anchor in her wallet.
ht.AssertTransactionNotInWallet(alice, aliceAnchor.SweepTx.TxHash())
// In addition, the transaction she sent to sweep all her coins to the
// miner also should no longer be found.
ht.AssertTransactionNotInWallet(alice, *sweepAllTxID)
// The anchor should now show as being "lost", while the force close
// response is still present.
assertAnchorOutputLost(ht, alice, aliceChanPoint1)
// At this point Alice's CSV output should already be fully spent and
// the channel marked as being resolved. We mine a block first, as so
// far we've been generating custom blocks this whole time.
commitSweepOp := wire.OutPoint{
Hash: *forceCloseTxID,
Index: 1,
}
ht.Miner.AssertOutpointInMempool(commitSweepOp)
ht.MineBlocks(1)
ht.AssertNumWaitingClose(alice, 0)
}
// assertAnchorOutputLost asserts that the anchor output for the given channel
// has the state of being lost.
func assertAnchorOutputLost(ht *lntest.HarnessTest, hn *node.HarnessNode,
chanPoint *lnrpc.ChannelPoint) {
cp := ht.OutPointFromChannelPoint(chanPoint)
expected := lnrpc.PendingChannelsResponse_ForceClosedChannel_LOST
err := wait.NoError(func() error {
resp := hn.RPC.PendingChannels()
channels := resp.PendingForceClosingChannels
for _, c := range channels {
// Not the wanted channel, skipped.
if c.Channel.ChannelPoint != cp.String() {
continue
}
// Found the channel, check the anchor state.
if c.Anchor == expected {
return nil
}
return fmt.Errorf("unexpected anchor state, want %v, "+
"got %v", expected, c.Anchor)
}
return fmt.Errorf("channel not found using cp=%v", cp)
}, defaultTimeout)
require.NoError(ht, err, "anchor doesn't show as being lost")
}
// genAnchorSweep generates a "3rd party" anchor sweeping from an existing one.
// In practice, we just re-use the existing witness, and track on our own
// output producing a 1-in-1-out transaction.
func genAnchorSweep(ht *lntest.HarnessTest,
aliceAnchor *lntest.SweptOutput, anchorCsv uint32) *btcutil.Tx {
// At this point, we have the transaction that Alice used to try to
// sweep her anchor. As this is actually just something anyone can
// spend, just need to find the input spending the anchor output, then
// we can swap the output address.
aliceAnchorTxIn := func() wire.TxIn {
sweepCopy := aliceAnchor.SweepTx.Copy()
for _, txIn := range sweepCopy.TxIn {
if txIn.PreviousOutPoint == aliceAnchor.OutPoint {
return *txIn
}
}
require.FailNow(ht, "anchor op not found")
return wire.TxIn{}
}()
// We'll set the signature on the input to nil, and then set the
// sequence to 16 (the anchor CSV period).
aliceAnchorTxIn.Witness[0] = nil
aliceAnchorTxIn.Sequence = anchorCsv
minerAddr := ht.Miner.NewMinerAddress()
addrScript, err := txscript.PayToAddrScript(minerAddr)
require.NoError(ht, err, "unable to gen addr script")
// Now that we have the txIn, we can just make a new transaction that
// uses a different script for the output.
tx := wire.NewMsgTx(2)
tx.AddTxIn(&aliceAnchorTxIn)
tx.AddTxOut(&wire.TxOut{
PkScript: addrScript,
Value: anchorSize - 1,
})
return btcutil.NewTx(tx)
}