lnd/routing/payment_lifecycle.go

991 lines
30 KiB
Go

package routing
import (
"errors"
"fmt"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/davecgh/go-spew/spew"
sphinx "github.com/lightningnetwork/lightning-onion"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/routing/shards"
)
// ErrPaymentLifecycleExiting is used when waiting for htlc attempt result, but
// the payment lifecycle is exiting .
var ErrPaymentLifecycleExiting = errors.New("payment lifecycle exiting")
// paymentLifecycle holds all information about the current state of a payment
// needed to resume if from any point.
type paymentLifecycle struct {
router *ChannelRouter
feeLimit lnwire.MilliSatoshi
identifier lntypes.Hash
paySession PaymentSession
shardTracker shards.ShardTracker
timeoutChan <-chan time.Time
currentHeight int32
// quit is closed to signal the sub goroutines of the payment lifecycle
// to stop.
quit chan struct{}
// resultCollected is used to signal that the result of an attempt has
// been collected. A nil error means the attempt is either successful
// or failed with temporary error. Otherwise, we should exit the
// lifecycle loop as a terminal error has occurred.
resultCollected chan error
// resultCollector is a function that is used to collect the result of
// an HTLC attempt, which is always mounted to `p.collectResultAsync`
// except in unit test, where we use a much simpler resultCollector to
// decouple the test flow for the payment lifecycle.
resultCollector func(attempt *channeldb.HTLCAttempt)
}
// newPaymentLifecycle initiates a new payment lifecycle and returns it.
func newPaymentLifecycle(r *ChannelRouter, feeLimit lnwire.MilliSatoshi,
identifier lntypes.Hash, paySession PaymentSession,
shardTracker shards.ShardTracker, timeout time.Duration,
currentHeight int32) *paymentLifecycle {
p := &paymentLifecycle{
router: r,
feeLimit: feeLimit,
identifier: identifier,
paySession: paySession,
shardTracker: shardTracker,
currentHeight: currentHeight,
quit: make(chan struct{}),
resultCollected: make(chan error, 1),
}
// Mount the result collector.
p.resultCollector = p.collectResultAsync
// If a timeout is specified, create a timeout channel. If no timeout is
// specified, the channel is left nil and will never abort the payment
// loop.
if timeout != 0 {
p.timeoutChan = time.After(timeout)
}
return p
}
// calcFeeBudget returns the available fee to be used for sending HTLC
// attempts.
func (p *paymentLifecycle) calcFeeBudget(
feesPaid lnwire.MilliSatoshi) lnwire.MilliSatoshi {
budget := p.feeLimit
// We'll subtract the used fee from our fee budget. In case of
// overflow, we need to check whether feesPaid exceeds our budget
// already.
if feesPaid <= budget {
budget -= feesPaid
} else {
budget = 0
}
return budget
}
// stateStep defines an action to be taken in our payment lifecycle. We either
// quit, continue, or exit the lifecycle, see details below.
type stateStep uint8
const (
// stepSkip is used when we need to skip the current lifecycle and jump
// to the next one.
stepSkip stateStep = iota
// stepProceed is used when we can proceed the current lifecycle.
stepProceed
// stepExit is used when we need to quit the current lifecycle.
stepExit
)
// decideNextStep is used to determine the next step in the payment lifecycle.
func (p *paymentLifecycle) decideNextStep(
payment dbMPPayment) (stateStep, error) {
// Check whether we could make new HTLC attempts.
allow, err := payment.AllowMoreAttempts()
if err != nil {
return stepExit, err
}
if !allow {
// Check whether we need to wait for results.
wait, err := payment.NeedWaitAttempts()
if err != nil {
return stepExit, err
}
// If we are not allowed to make new HTLC attempts and there's
// no need to wait, the lifecycle is done and we can exit.
if !wait {
return stepExit, nil
}
log.Tracef("Waiting for attempt results for payment %v",
p.identifier)
// Otherwise we wait for one HTLC attempt then continue
// the lifecycle.
//
// NOTE: we don't check `p.quit` since `decideNextStep` is
// running in the same goroutine as `resumePayment`.
select {
case err := <-p.resultCollected:
// If an error is returned, exit with it.
if err != nil {
return stepExit, err
}
log.Tracef("Received attempt result for payment %v",
p.identifier)
case <-p.router.quit:
return stepExit, ErrRouterShuttingDown
}
return stepSkip, nil
}
// Otherwise we need to make more attempts.
return stepProceed, nil
}
// resumePayment resumes the paymentLifecycle from the current state.
func (p *paymentLifecycle) resumePayment() ([32]byte, *route.Route, error) {
// When the payment lifecycle loop exits, we make sure to signal any
// sub goroutine of the HTLC attempt to exit, then wait for them to
// return.
defer p.stop()
// If we had any existing attempts outstanding, we'll start by spinning
// up goroutines that'll collect their results and deliver them to the
// lifecycle loop below.
payment, err := p.router.cfg.Control.FetchPayment(p.identifier)
if err != nil {
return [32]byte{}, nil, err
}
for _, a := range payment.InFlightHTLCs() {
a := a
log.Infof("Resuming payment shard %v for payment %v",
a.AttemptID, p.identifier)
p.resultCollector(&a)
}
// exitWithErr is a helper closure that logs and returns an error.
exitWithErr := func(err error) ([32]byte, *route.Route, error) {
log.Errorf("Payment %v with status=%v failed: %v",
p.identifier, payment.GetStatus(), err)
return [32]byte{}, nil, err
}
// We'll continue until either our payment succeeds, or we encounter a
// critical error during path finding.
lifecycle:
for {
// We update the payment state on every iteration. Since the
// payment state is affected by multiple goroutines (ie,
// collectResultAsync), it is NOT guaranteed that we always
// have the latest state here. This is fine as long as the
// state is consistent as a whole.
payment, err = p.router.cfg.Control.FetchPayment(p.identifier)
if err != nil {
return exitWithErr(err)
}
ps := payment.GetState()
remainingFees := p.calcFeeBudget(ps.FeesPaid)
log.Debugf("Payment %v: status=%v, active_shards=%v, "+
"rem_value=%v, fee_limit=%v", p.identifier,
payment.GetStatus(), ps.NumAttemptsInFlight,
ps.RemainingAmt, remainingFees)
// We now proceed our lifecycle with the following tasks in
// order,
// 1. check timeout.
// 2. request route.
// 3. create HTLC attempt.
// 4. send HTLC attempt.
// 5. collect HTLC attempt result.
//
// Before we attempt any new shard, we'll check to see if
// either we've gone past the payment attempt timeout, or the
// router is exiting. In either case, we'll stop this payment
// attempt short. If a timeout is not applicable, timeoutChan
// will be nil.
if err := p.checkTimeout(); err != nil {
return exitWithErr(err)
}
// Now decide the next step of the current lifecycle.
step, err := p.decideNextStep(payment)
if err != nil {
return exitWithErr(err)
}
switch step {
// Exit the for loop and return below.
case stepExit:
break lifecycle
// Continue the for loop and skip the rest.
case stepSkip:
continue lifecycle
// Continue the for loop and proceed the rest.
case stepProceed:
// Unknown step received, exit with an error.
default:
err = fmt.Errorf("unknown step: %v", step)
return exitWithErr(err)
}
// Now request a route to be used to create our HTLC attempt.
rt, err := p.requestRoute(ps)
if err != nil {
return exitWithErr(err)
}
// We may not be able to find a route for current attempt. In
// that case, we continue the loop and move straight to the
// next iteration in case there are results for inflight HTLCs
// that still need to be collected.
if rt == nil {
log.Errorf("No route found for payment %v",
p.identifier)
continue lifecycle
}
log.Tracef("Found route: %s", spew.Sdump(rt.Hops))
// We found a route to try, create a new HTLC attempt to try.
attempt, err := p.registerAttempt(rt, ps.RemainingAmt)
if err != nil {
return exitWithErr(err)
}
// Once the attempt is created, send it to the htlcswitch.
result, err := p.sendAttempt(attempt)
if err != nil {
return exitWithErr(err)
}
// Now that the shard was successfully sent, launch a go
// routine that will handle its result when its back.
if result.err == nil {
p.resultCollector(attempt)
}
}
// Once we are out the lifecycle loop, it means we've reached a
// terminal condition. We either return the settled preimage or the
// payment's failure reason.
//
// Optionally delete the failed attempts from the database.
err = p.router.cfg.Control.DeleteFailedAttempts(p.identifier)
if err != nil {
log.Errorf("Error deleting failed htlc attempts for payment "+
"%v: %v", p.identifier, err)
}
htlc, failure := payment.TerminalInfo()
if htlc != nil {
return htlc.Settle.Preimage, &htlc.Route, nil
}
// Otherwise return the payment failure reason.
return [32]byte{}, nil, *failure
}
// checkTimeout checks whether the payment has reached its timeout.
func (p *paymentLifecycle) checkTimeout() error {
select {
case <-p.timeoutChan:
log.Warnf("payment attempt not completed before timeout")
// By marking the payment failed, depending on whether it has
// inflight HTLCs or not, its status will now either be
// `StatusInflight` or `StatusFailed`. In either case, no more
// HTLCs will be attempted.
err := p.router.cfg.Control.FailPayment(
p.identifier, channeldb.FailureReasonTimeout,
)
if err != nil {
return fmt.Errorf("FailPayment got %w", err)
}
case <-p.router.quit:
return fmt.Errorf("check payment timeout got: %w",
ErrRouterShuttingDown)
// Fall through if we haven't hit our time limit.
default:
}
return nil
}
// requestRoute is responsible for finding a route to be used to create an HTLC
// attempt.
func (p *paymentLifecycle) requestRoute(
ps *channeldb.MPPaymentState) (*route.Route, error) {
remainingFees := p.calcFeeBudget(ps.FeesPaid)
// Query our payment session to construct a route.
rt, err := p.paySession.RequestRoute(
ps.RemainingAmt, remainingFees,
uint32(ps.NumAttemptsInFlight), uint32(p.currentHeight),
)
// Exit early if there's no error.
if err == nil {
return rt, nil
}
// Otherwise we need to handle the error.
log.Warnf("Failed to find route for payment %v: %v", p.identifier, err)
// If the error belongs to `noRouteError` set, it means a non-critical
// error has happened during path finding and we will mark the payment
// failed with this reason. Otherwise, we'll return the critical error
// found to abort the lifecycle.
var routeErr noRouteError
if !errors.As(err, &routeErr) {
return nil, fmt.Errorf("requestRoute got: %w", err)
}
// It's the `paymentSession`'s responsibility to find a route for us
// with best effort. When it cannot find a path, we need to treat it as
// a terminal condition and fail the payment no matter it has inflight
// HTLCs or not.
failureCode := routeErr.FailureReason()
log.Warnf("Marking payment %v permanently failed with no route: %v",
p.identifier, failureCode)
err = p.router.cfg.Control.FailPayment(p.identifier, failureCode)
if err != nil {
return nil, fmt.Errorf("FailPayment got: %w", err)
}
// NOTE: we decide to not return the non-critical noRouteError here to
// avoid terminating the payment lifecycle as there might be other
// inflight HTLCs which we must wait for their results.
return nil, nil
}
// stop signals any active shard goroutine to exit.
func (p *paymentLifecycle) stop() {
close(p.quit)
}
// attemptResult holds the HTLC attempt and a possible error returned from
// sending it.
type attemptResult struct {
// err is non-nil if a non-critical error was encountered when trying
// to send the attempt, and we successfully updated the control tower
// to reflect this error. This can be errors like not enough local
// balance for the given route etc.
err error
// attempt is the attempt structure as recorded in the database.
attempt *channeldb.HTLCAttempt
}
// collectResultAsync launches a goroutine that will wait for the result of the
// given HTLC attempt to be available then handle its result. Once received, it
// will send a nil error to channel `resultCollected` to indicate there's an
// result.
func (p *paymentLifecycle) collectResultAsync(attempt *channeldb.HTLCAttempt) {
log.Debugf("Collecting result for attempt %v in payment %v",
attempt.AttemptID, p.identifier)
go func() {
// Block until the result is available.
_, err := p.collectResult(attempt)
if err != nil {
log.Errorf("Error collecting result for attempt %v "+
"in payment %v: %v", attempt.AttemptID,
p.identifier, err)
}
log.Debugf("Result collected for attempt %v in payment %v",
attempt.AttemptID, p.identifier)
// Once the result is collected, we signal it by writing the
// error to `resultCollected`.
select {
// Send the signal or quit.
case p.resultCollected <- err:
case <-p.quit:
log.Debugf("Lifecycle exiting while collecting "+
"result for payment %v", p.identifier)
case <-p.router.quit:
return
}
}()
}
// collectResult waits for the result for the given attempt to be available
// from the Switch, then records the attempt outcome with the control tower.
// An attemptResult is returned, indicating the final outcome of this HTLC
// attempt.
func (p *paymentLifecycle) collectResult(attempt *channeldb.HTLCAttempt) (
*attemptResult, error) {
// We'll retrieve the hash specific to this shard from the
// shardTracker, since it will be needed to regenerate the circuit
// below.
hash, err := p.shardTracker.GetHash(attempt.AttemptID)
if err != nil {
return p.failAttempt(attempt.AttemptID, err)
}
// Regenerate the circuit for this attempt.
_, circuit, err := generateSphinxPacket(
&attempt.Route, hash[:], attempt.SessionKey(),
)
// TODO(yy): We generate this circuit to create the error decryptor,
// which is then used in htlcswitch as the deobfuscator to decode the
// error from `UpdateFailHTLC`. However, suppose it's an
// `UpdateFulfillHTLC` message yet for some reason the sphinx packet is
// failed to be generated, we'd miss settling it. This means we should
// give it a second chance to try the settlement path in case
// `GetAttemptResult` gives us back the preimage. And move the circuit
// creation into htlcswitch so it's only constructed when there's a
// failure message we need to decode.
if err != nil {
log.Debugf("Unable to generate circuit for attempt %v: %v",
attempt.AttemptID, err)
return p.failAttempt(attempt.AttemptID, err)
}
// Using the created circuit, initialize the error decrypter so we can
// parse+decode any failures incurred by this payment within the
// switch.
errorDecryptor := &htlcswitch.SphinxErrorDecrypter{
OnionErrorDecrypter: sphinx.NewOnionErrorDecrypter(circuit),
}
// Now ask the switch to return the result of the payment when
// available.
//
// TODO(yy): consider using htlcswitch to create the `errorDecryptor`
// since the htlc is already in db. This will also make the interface
// `PaymentAttemptDispatcher` deeper and easier to use. Moreover, we'd
// only create the decryptor when received a failure, further saving us
// a few CPU cycles.
resultChan, err := p.router.cfg.Payer.GetAttemptResult(
attempt.AttemptID, p.identifier, errorDecryptor,
)
// Handle the switch error.
if err != nil {
log.Errorf("Failed getting result for attemptID %d "+
"from switch: %v", attempt.AttemptID, err)
return p.handleSwitchErr(attempt, err)
}
// The switch knows about this payment, we'll wait for a result to be
// available.
var (
result *htlcswitch.PaymentResult
ok bool
)
select {
case result, ok = <-resultChan:
if !ok {
return nil, htlcswitch.ErrSwitchExiting
}
case <-p.quit:
return nil, ErrPaymentLifecycleExiting
case <-p.router.quit:
return nil, ErrRouterShuttingDown
}
// In case of a payment failure, fail the attempt with the control
// tower and return.
if result.Error != nil {
return p.handleSwitchErr(attempt, result.Error)
}
// We successfully got a payment result back from the switch.
log.Debugf("Payment %v succeeded with pid=%v",
p.identifier, attempt.AttemptID)
// Report success to mission control.
err = p.router.cfg.MissionControl.ReportPaymentSuccess(
attempt.AttemptID, &attempt.Route,
)
if err != nil {
log.Errorf("Error reporting payment success to mc: %v", err)
}
// In case of success we atomically store settle result to the DB move
// the shard to the settled state.
htlcAttempt, err := p.router.cfg.Control.SettleAttempt(
p.identifier, attempt.AttemptID,
&channeldb.HTLCSettleInfo{
Preimage: result.Preimage,
SettleTime: p.router.cfg.Clock.Now(),
},
)
if err != nil {
log.Errorf("Error settling attempt %v for payment %v with "+
"preimage %v: %v", attempt.AttemptID, p.identifier,
result.Preimage, err)
// We won't mark the attempt as failed since we already have
// the preimage.
return nil, err
}
return &attemptResult{
attempt: htlcAttempt,
}, nil
}
// registerAttempt is responsible for creating and saving an HTLC attempt in db
// by using the route info provided. The `remainingAmt` is used to decide
// whether this is the last attempt.
func (p *paymentLifecycle) registerAttempt(rt *route.Route,
remainingAmt lnwire.MilliSatoshi) (*channeldb.HTLCAttempt, error) {
// If this route will consume the last remaining amount to send
// to the receiver, this will be our last shard (for now).
isLastAttempt := rt.ReceiverAmt() == remainingAmt
// Using the route received from the payment session, create a new
// shard to send.
attempt, err := p.createNewPaymentAttempt(rt, isLastAttempt)
if err != nil {
return nil, err
}
// Before sending this HTLC to the switch, we checkpoint the fresh
// paymentID and route to the DB. This lets us know on startup the ID
// of the payment that we attempted to send, such that we can query the
// Switch for its whereabouts. The route is needed to handle the result
// when it eventually comes back.
err = p.router.cfg.Control.RegisterAttempt(
p.identifier, &attempt.HTLCAttemptInfo,
)
return attempt, err
}
// createNewPaymentAttempt creates a new payment attempt from the given route.
func (p *paymentLifecycle) createNewPaymentAttempt(rt *route.Route,
lastShard bool) (*channeldb.HTLCAttempt, error) {
// Generate a new key to be used for this attempt.
sessionKey, err := generateNewSessionKey()
if err != nil {
return nil, err
}
// We generate a new, unique payment ID that we will use for
// this HTLC.
attemptID, err := p.router.cfg.NextPaymentID()
if err != nil {
return nil, err
}
// Request a new shard from the ShardTracker. If this is an AMP
// payment, and this is the last shard, the outstanding shards together
// with this one will be enough for the receiver to derive all HTLC
// preimages. If this a non-AMP payment, the ShardTracker will return a
// simple shard with the payment's static payment hash.
shard, err := p.shardTracker.NewShard(attemptID, lastShard)
if err != nil {
return nil, err
}
// If this shard carries MPP or AMP options, add them to the last hop
// on the route.
hop := rt.Hops[len(rt.Hops)-1]
if shard.MPP() != nil {
hop.MPP = shard.MPP()
}
if shard.AMP() != nil {
hop.AMP = shard.AMP()
}
hash := shard.Hash()
// We now have all the information needed to populate the current
// attempt information.
attempt := channeldb.NewHtlcAttempt(
attemptID, sessionKey, *rt, p.router.cfg.Clock.Now(), &hash,
)
return attempt, nil
}
// sendAttempt attempts to send the current attempt to the switch to complete
// the payment. If this attempt fails, then we'll continue on to the next
// available route.
func (p *paymentLifecycle) sendAttempt(
attempt *channeldb.HTLCAttempt) (*attemptResult, error) {
log.Debugf("Attempting to send payment %v (pid=%v)", p.identifier,
attempt.AttemptID)
rt := attempt.Route
// Construct the first hop.
firstHop := lnwire.NewShortChanIDFromInt(rt.Hops[0].ChannelID)
// Craft an HTLC packet to send to the htlcswitch. The metadata within
// this packet will be used to route the payment through the network,
// starting with the first-hop.
htlcAdd := &lnwire.UpdateAddHTLC{
Amount: rt.TotalAmount,
Expiry: rt.TotalTimeLock,
PaymentHash: *attempt.Hash,
}
// Generate the raw encoded sphinx packet to be included along
// with the htlcAdd message that we send directly to the
// switch.
onionBlob, _, err := generateSphinxPacket(
&rt, attempt.Hash[:], attempt.SessionKey(),
)
if err != nil {
log.Errorf("Failed to create onion blob: attempt=%d in "+
"payment=%v, err:%v", attempt.AttemptID,
p.identifier, err)
return p.failAttempt(attempt.AttemptID, err)
}
copy(htlcAdd.OnionBlob[:], onionBlob)
// Send it to the Switch. When this method returns we assume
// the Switch successfully has persisted the payment attempt,
// such that we can resume waiting for the result after a
// restart.
err = p.router.cfg.Payer.SendHTLC(firstHop, attempt.AttemptID, htlcAdd)
if err != nil {
log.Errorf("Failed sending attempt %d for payment %v to "+
"switch: %v", attempt.AttemptID, p.identifier, err)
return p.handleSwitchErr(attempt, err)
}
log.Debugf("Attempt %v for payment %v successfully sent to switch, "+
"route: %v", attempt.AttemptID, p.identifier, &attempt.Route)
return &attemptResult{
attempt: attempt,
}, nil
}
// failAttemptAndPayment fails both the payment and its attempt via the
// router's control tower, which marks the payment as failed in db.
func (p *paymentLifecycle) failPaymentAndAttempt(
attemptID uint64, reason *channeldb.FailureReason,
sendErr error) (*attemptResult, error) {
log.Errorf("Payment %v failed: final_outcome=%v, raw_err=%v",
p.identifier, *reason, sendErr)
// Fail the payment via control tower.
//
// NOTE: we must fail the payment first before failing the attempt.
// Otherwise, once the attempt is marked as failed, another goroutine
// might make another attempt while we are failing the payment.
err := p.router.cfg.Control.FailPayment(p.identifier, *reason)
if err != nil {
log.Errorf("Unable to fail payment: %v", err)
return nil, err
}
// Fail the attempt.
return p.failAttempt(attemptID, sendErr)
}
// handleSwitchErr inspects the given error from the Switch and determines
// whether we should make another payment attempt, or if it should be
// considered a terminal error. Terminal errors will be recorded with the
// control tower. It analyzes the sendErr for the payment attempt received from
// the switch and updates mission control and/or channel policies. Depending on
// the error type, the error is either the final outcome of the payment or we
// need to continue with an alternative route. A final outcome is indicated by
// a non-nil reason value.
func (p *paymentLifecycle) handleSwitchErr(attempt *channeldb.HTLCAttempt,
sendErr error) (*attemptResult, error) {
internalErrorReason := channeldb.FailureReasonError
attemptID := attempt.AttemptID
// reportAndFail is a helper closure that reports the failure to the
// mission control, which helps us to decide whether we want to retry
// the payment or not. If a non nil reason is returned from mission
// control, it will further fail the payment via control tower.
reportAndFail := func(srcIdx *int,
msg lnwire.FailureMessage) (*attemptResult, error) {
// Report outcome to mission control.
reason, err := p.router.cfg.MissionControl.ReportPaymentFail(
attemptID, &attempt.Route, srcIdx, msg,
)
if err != nil {
log.Errorf("Error reporting payment result to mc: %v",
err)
reason = &internalErrorReason
}
// Fail the attempt only if there's no reason.
if reason == nil {
// Fail the attempt.
return p.failAttempt(attemptID, sendErr)
}
// Otherwise fail both the payment and the attempt.
return p.failPaymentAndAttempt(attemptID, reason, sendErr)
}
// If this attempt ID is unknown to the Switch, it means it was never
// checkpointed and forwarded by the switch before a restart. In this
// case we can safely send a new payment attempt, and wait for its
// result to be available.
if errors.Is(sendErr, htlcswitch.ErrPaymentIDNotFound) {
log.Debugf("Attempt ID %v for payment %v not found in the "+
"Switch, retrying.", attempt.AttemptID, p.identifier)
return p.failAttempt(attemptID, sendErr)
}
if sendErr == htlcswitch.ErrUnreadableFailureMessage {
log.Warn("Unreadable failure when sending htlc: id=%v, hash=%v",
attempt.AttemptID, attempt.Hash)
// Since this error message cannot be decrypted, we will send a
// nil error message to our mission controller and fail the
// payment.
return reportAndFail(nil, nil)
}
// If the error is a ClearTextError, we have received a valid wire
// failure message, either from our own outgoing link or from a node
// down the route. If the error is not related to the propagation of
// our payment, we can stop trying because an internal error has
// occurred.
rtErr, ok := sendErr.(htlcswitch.ClearTextError)
if !ok {
return p.failPaymentAndAttempt(
attemptID, &internalErrorReason, sendErr,
)
}
// failureSourceIdx is the index of the node that the failure occurred
// at. If the ClearTextError received is not a ForwardingError the
// payment error occurred at our node, so we leave this value as 0
// to indicate that the failure occurred locally. If the error is a
// ForwardingError, it did not originate at our node, so we set
// failureSourceIdx to the index of the node where the failure occurred.
failureSourceIdx := 0
source, ok := rtErr.(*htlcswitch.ForwardingError)
if ok {
failureSourceIdx = source.FailureSourceIdx
}
// Extract the wire failure and apply channel update if it contains one.
// If we received an unknown failure message from a node along the
// route, the failure message will be nil.
failureMessage := rtErr.WireMessage()
err := p.handleFailureMessage(
&attempt.Route, failureSourceIdx, failureMessage,
)
if err != nil {
return p.failPaymentAndAttempt(
attemptID, &internalErrorReason, sendErr,
)
}
log.Tracef("Node=%v reported failure when sending htlc",
failureSourceIdx)
return reportAndFail(&failureSourceIdx, failureMessage)
}
// handleFailureMessage tries to apply a channel update present in the failure
// message if any.
func (p *paymentLifecycle) handleFailureMessage(rt *route.Route,
errorSourceIdx int, failure lnwire.FailureMessage) error {
if failure == nil {
return nil
}
// It makes no sense to apply our own channel updates.
if errorSourceIdx == 0 {
log.Errorf("Channel update of ourselves received")
return nil
}
// Extract channel update if the error contains one.
update := p.router.extractChannelUpdate(failure)
if update == nil {
return nil
}
// Parse pubkey to allow validation of the channel update. This should
// always succeed, otherwise there is something wrong in our
// implementation. Therefore return an error.
errVertex := rt.Hops[errorSourceIdx-1].PubKeyBytes
errSource, err := btcec.ParsePubKey(errVertex[:])
if err != nil {
log.Errorf("Cannot parse pubkey: idx=%v, pubkey=%v",
errorSourceIdx, errVertex)
return err
}
var (
isAdditionalEdge bool
policy *models.CachedEdgePolicy
)
// Before we apply the channel update, we need to decide whether the
// update is for additional (ephemeral) edge or normal edge stored in
// db.
//
// Note: the p.paySession might be nil here if it's called inside
// SendToRoute where there's no payment lifecycle.
if p.paySession != nil {
policy = p.paySession.GetAdditionalEdgePolicy(
errSource, update.ShortChannelID.ToUint64(),
)
if policy != nil {
isAdditionalEdge = true
}
}
// Apply channel update to additional edge policy.
if isAdditionalEdge {
if !p.paySession.UpdateAdditionalEdge(
update, errSource, policy) {
log.Debugf("Invalid channel update received: node=%v",
errVertex)
}
return nil
}
// Apply channel update to the channel edge policy in our db.
if !p.router.applyChannelUpdate(update) {
log.Debugf("Invalid channel update received: node=%v",
errVertex)
}
return nil
}
// failAttempt calls control tower to fail the current payment attempt.
func (p *paymentLifecycle) failAttempt(attemptID uint64,
sendError error) (*attemptResult, error) {
log.Warnf("Attempt %v for payment %v failed: %v", attemptID,
p.identifier, sendError)
failInfo := marshallError(
sendError,
p.router.cfg.Clock.Now(),
)
// Now that we are failing this payment attempt, cancel the shard with
// the ShardTracker such that it can derive the correct hash for the
// next attempt.
if err := p.shardTracker.CancelShard(attemptID); err != nil {
return nil, err
}
attempt, err := p.router.cfg.Control.FailAttempt(
p.identifier, attemptID, failInfo,
)
if err != nil {
return nil, err
}
return &attemptResult{
attempt: attempt,
err: sendError,
}, nil
}
// marshallError marshall an error as received from the switch to a structure
// that is suitable for database storage.
func marshallError(sendError error, time time.Time) *channeldb.HTLCFailInfo {
response := &channeldb.HTLCFailInfo{
FailTime: time,
}
switch sendError {
case htlcswitch.ErrPaymentIDNotFound:
response.Reason = channeldb.HTLCFailInternal
return response
case htlcswitch.ErrUnreadableFailureMessage:
response.Reason = channeldb.HTLCFailUnreadable
return response
}
rtErr, ok := sendError.(htlcswitch.ClearTextError)
if !ok {
response.Reason = channeldb.HTLCFailInternal
return response
}
message := rtErr.WireMessage()
if message != nil {
response.Reason = channeldb.HTLCFailMessage
response.Message = message
} else {
response.Reason = channeldb.HTLCFailUnknown
}
// If the ClearTextError received is a ForwardingError, the error
// originated from a node along the route, not locally on our outgoing
// link. We set failureSourceIdx to the index of the node where the
// failure occurred. If the error is not a ForwardingError, the failure
// occurred at our node, so we leave the index as 0 to indicate that
// we failed locally.
fErr, ok := rtErr.(*htlcswitch.ForwardingError)
if ok {
response.FailureSourceIndex = uint32(fErr.FailureSourceIdx)
}
return response
}