mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-01-19 05:45:21 +01:00
4196 lines
131 KiB
Go
4196 lines
131 KiB
Go
package peer
|
|
|
|
import (
|
|
"bytes"
|
|
"container/list"
|
|
"errors"
|
|
"fmt"
|
|
"math/rand"
|
|
"net"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/connmgr"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btclog"
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/buffer"
|
|
"github.com/lightningnetwork/lnd/build"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/channeldb"
|
|
"github.com/lightningnetwork/lnd/channeldb/models"
|
|
"github.com/lightningnetwork/lnd/channelnotifier"
|
|
"github.com/lightningnetwork/lnd/contractcourt"
|
|
"github.com/lightningnetwork/lnd/discovery"
|
|
"github.com/lightningnetwork/lnd/feature"
|
|
"github.com/lightningnetwork/lnd/fn"
|
|
"github.com/lightningnetwork/lnd/funding"
|
|
"github.com/lightningnetwork/lnd/htlcswitch"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hodl"
|
|
"github.com/lightningnetwork/lnd/htlcswitch/hop"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/invoices"
|
|
"github.com/lightningnetwork/lnd/lnpeer"
|
|
"github.com/lightningnetwork/lnd/lnutils"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chancloser"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
"github.com/lightningnetwork/lnd/netann"
|
|
"github.com/lightningnetwork/lnd/pool"
|
|
"github.com/lightningnetwork/lnd/queue"
|
|
"github.com/lightningnetwork/lnd/subscribe"
|
|
"github.com/lightningnetwork/lnd/ticker"
|
|
"github.com/lightningnetwork/lnd/tlv"
|
|
"github.com/lightningnetwork/lnd/watchtower/wtclient"
|
|
)
|
|
|
|
const (
|
|
// pingInterval is the interval at which ping messages are sent.
|
|
pingInterval = 1 * time.Minute
|
|
|
|
// pingTimeout is the amount of time we will wait for a pong response
|
|
// before considering the peer to be unresponsive.
|
|
//
|
|
// This MUST be a smaller value than the pingInterval.
|
|
pingTimeout = 30 * time.Second
|
|
|
|
// idleTimeout is the duration of inactivity before we time out a peer.
|
|
idleTimeout = 5 * time.Minute
|
|
|
|
// writeMessageTimeout is the timeout used when writing a message to the
|
|
// peer.
|
|
writeMessageTimeout = 5 * time.Second
|
|
|
|
// readMessageTimeout is the timeout used when reading a message from a
|
|
// peer.
|
|
readMessageTimeout = 5 * time.Second
|
|
|
|
// handshakeTimeout is the timeout used when waiting for the peer's init
|
|
// message.
|
|
handshakeTimeout = 15 * time.Second
|
|
|
|
// ErrorBufferSize is the number of historic peer errors that we store.
|
|
ErrorBufferSize = 10
|
|
|
|
// pongSizeCeiling is the upper bound on a uniformly distributed random
|
|
// variable that we use for requesting pong responses. We don't use the
|
|
// MaxPongBytes (upper bound accepted by the protocol) because it is
|
|
// needlessly wasteful of precious Tor bandwidth for little to no gain.
|
|
pongSizeCeiling = 4096
|
|
|
|
// torTimeoutMultiplier is the scaling factor we use on network timeouts
|
|
// for Tor peers.
|
|
torTimeoutMultiplier = 3
|
|
)
|
|
|
|
var (
|
|
// ErrChannelNotFound is an error returned when a channel is queried and
|
|
// either the Brontide doesn't know of it, or the channel in question
|
|
// is pending.
|
|
ErrChannelNotFound = fmt.Errorf("channel not found")
|
|
)
|
|
|
|
// outgoingMsg packages an lnwire.Message to be sent out on the wire, along with
|
|
// a buffered channel which will be sent upon once the write is complete. This
|
|
// buffered channel acts as a semaphore to be used for synchronization purposes.
|
|
type outgoingMsg struct {
|
|
priority bool
|
|
msg lnwire.Message
|
|
errChan chan error // MUST be buffered.
|
|
}
|
|
|
|
// newChannelMsg packages a channeldb.OpenChannel with a channel that allows
|
|
// the receiver of the request to report when the channel creation process has
|
|
// completed.
|
|
type newChannelMsg struct {
|
|
// channel is used when the pending channel becomes active.
|
|
channel *lnpeer.NewChannel
|
|
|
|
// channelID is used when there's a new pending channel.
|
|
channelID lnwire.ChannelID
|
|
|
|
err chan error
|
|
}
|
|
|
|
type customMsg struct {
|
|
peer [33]byte
|
|
msg lnwire.Custom
|
|
}
|
|
|
|
// closeMsg is a wrapper struct around any wire messages that deal with the
|
|
// cooperative channel closure negotiation process. This struct includes the
|
|
// raw channel ID targeted along with the original message.
|
|
type closeMsg struct {
|
|
cid lnwire.ChannelID
|
|
msg lnwire.Message
|
|
}
|
|
|
|
// PendingUpdate describes the pending state of a closing channel.
|
|
type PendingUpdate struct {
|
|
Txid []byte
|
|
OutputIndex uint32
|
|
}
|
|
|
|
// ChannelCloseUpdate contains the outcome of the close channel operation.
|
|
type ChannelCloseUpdate struct {
|
|
ClosingTxid []byte
|
|
Success bool
|
|
}
|
|
|
|
// TimestampedError is a timestamped error that is used to store the most recent
|
|
// errors we have experienced with our peers.
|
|
type TimestampedError struct {
|
|
Error error
|
|
Timestamp time.Time
|
|
}
|
|
|
|
// Config defines configuration fields that are necessary for a peer object
|
|
// to function.
|
|
type Config struct {
|
|
// Conn is the underlying network connection for this peer.
|
|
Conn MessageConn
|
|
|
|
// ConnReq stores information related to the persistent connection request
|
|
// for this peer.
|
|
ConnReq *connmgr.ConnReq
|
|
|
|
// PubKeyBytes is the serialized, compressed public key of this peer.
|
|
PubKeyBytes [33]byte
|
|
|
|
// Addr is the network address of the peer.
|
|
Addr *lnwire.NetAddress
|
|
|
|
// Inbound indicates whether or not the peer is an inbound peer.
|
|
Inbound bool
|
|
|
|
// Features is the set of features that we advertise to the remote party.
|
|
Features *lnwire.FeatureVector
|
|
|
|
// LegacyFeatures is the set of features that we advertise to the remote
|
|
// peer for backwards compatibility. Nodes that have not implemented
|
|
// flat features will still be able to read our feature bits from the
|
|
// legacy global field, but we will also advertise everything in the
|
|
// default features field.
|
|
LegacyFeatures *lnwire.FeatureVector
|
|
|
|
// OutgoingCltvRejectDelta defines the number of blocks before expiry of
|
|
// an htlc where we don't offer it anymore.
|
|
OutgoingCltvRejectDelta uint32
|
|
|
|
// ChanActiveTimeout specifies the duration the peer will wait to request
|
|
// a channel reenable, beginning from the time the peer was started.
|
|
ChanActiveTimeout time.Duration
|
|
|
|
// ErrorBuffer stores a set of errors related to a peer. It contains error
|
|
// messages that our peer has recently sent us over the wire and records of
|
|
// unknown messages that were sent to us so that we can have a full track
|
|
// record of the communication errors we have had with our peer. If we
|
|
// choose to disconnect from a peer, it also stores the reason we had for
|
|
// disconnecting.
|
|
ErrorBuffer *queue.CircularBuffer
|
|
|
|
// WritePool is the task pool that manages reuse of write buffers. Write
|
|
// tasks are submitted to the pool in order to conserve the total number of
|
|
// write buffers allocated at any one time, and decouple write buffer
|
|
// allocation from the peer life cycle.
|
|
WritePool *pool.Write
|
|
|
|
// ReadPool is the task pool that manages reuse of read buffers.
|
|
ReadPool *pool.Read
|
|
|
|
// Switch is a pointer to the htlcswitch. It is used to setup, get, and
|
|
// tear-down ChannelLinks.
|
|
Switch messageSwitch
|
|
|
|
// InterceptSwitch is a pointer to the InterceptableSwitch, a wrapper around
|
|
// the regular Switch. We only export it here to pass ForwardPackets to the
|
|
// ChannelLinkConfig.
|
|
InterceptSwitch *htlcswitch.InterceptableSwitch
|
|
|
|
// ChannelDB is used to fetch opened channels, and closed channels.
|
|
ChannelDB *channeldb.ChannelStateDB
|
|
|
|
// ChannelGraph is a pointer to the channel graph which is used to
|
|
// query information about the set of known active channels.
|
|
ChannelGraph *channeldb.ChannelGraph
|
|
|
|
// ChainArb is used to subscribe to channel events, update contract signals,
|
|
// and force close channels.
|
|
ChainArb *contractcourt.ChainArbitrator
|
|
|
|
// AuthGossiper is needed so that the Brontide impl can register with the
|
|
// gossiper and process remote channel announcements.
|
|
AuthGossiper *discovery.AuthenticatedGossiper
|
|
|
|
// ChanStatusMgr is used to set or un-set the disabled bit in channel
|
|
// updates.
|
|
ChanStatusMgr *netann.ChanStatusManager
|
|
|
|
// ChainIO is used to retrieve the best block.
|
|
ChainIO lnwallet.BlockChainIO
|
|
|
|
// FeeEstimator is used to compute our target ideal fee-per-kw when
|
|
// initializing the coop close process.
|
|
FeeEstimator chainfee.Estimator
|
|
|
|
// Signer is used when creating *lnwallet.LightningChannel instances.
|
|
Signer input.Signer
|
|
|
|
// SigPool is used when creating *lnwallet.LightningChannel instances.
|
|
SigPool *lnwallet.SigPool
|
|
|
|
// Wallet is used to publish transactions and generates delivery
|
|
// scripts during the coop close process.
|
|
Wallet *lnwallet.LightningWallet
|
|
|
|
// ChainNotifier is used to receive confirmations of a coop close
|
|
// transaction.
|
|
ChainNotifier chainntnfs.ChainNotifier
|
|
|
|
// BestBlockView is used to efficiently query for up-to-date
|
|
// blockchain state information
|
|
BestBlockView chainntnfs.BestBlockView
|
|
|
|
// RoutingPolicy is used to set the forwarding policy for links created by
|
|
// the Brontide.
|
|
RoutingPolicy models.ForwardingPolicy
|
|
|
|
// Sphinx is used when setting up ChannelLinks so they can decode sphinx
|
|
// onion blobs.
|
|
Sphinx *hop.OnionProcessor
|
|
|
|
// WitnessBeacon is used when setting up ChannelLinks so they can add any
|
|
// preimages that they learn.
|
|
WitnessBeacon contractcourt.WitnessBeacon
|
|
|
|
// Invoices is passed to the ChannelLink on creation and handles all
|
|
// invoice-related logic.
|
|
Invoices *invoices.InvoiceRegistry
|
|
|
|
// ChannelNotifier is used by the link to notify other sub-systems about
|
|
// channel-related events and by the Brontide to subscribe to
|
|
// ActiveLinkEvents.
|
|
ChannelNotifier *channelnotifier.ChannelNotifier
|
|
|
|
// HtlcNotifier is used when creating a ChannelLink.
|
|
HtlcNotifier *htlcswitch.HtlcNotifier
|
|
|
|
// TowerClient is used to backup revoked states.
|
|
TowerClient wtclient.ClientManager
|
|
|
|
// DisconnectPeer is used to disconnect this peer if the cooperative close
|
|
// process fails.
|
|
DisconnectPeer func(*btcec.PublicKey) error
|
|
|
|
// GenNodeAnnouncement is used to send our node announcement to the remote
|
|
// on startup.
|
|
GenNodeAnnouncement func(...netann.NodeAnnModifier) (
|
|
lnwire.NodeAnnouncement, error)
|
|
|
|
// PrunePersistentPeerConnection is used to remove all internal state
|
|
// related to this peer in the server.
|
|
PrunePersistentPeerConnection func([33]byte)
|
|
|
|
// FetchLastChanUpdate fetches our latest channel update for a target
|
|
// channel.
|
|
FetchLastChanUpdate func(lnwire.ShortChannelID) (*lnwire.ChannelUpdate,
|
|
error)
|
|
|
|
// FundingManager is an implementation of the funding.Controller interface.
|
|
FundingManager funding.Controller
|
|
|
|
// Hodl is used when creating ChannelLinks to specify HodlFlags as
|
|
// breakpoints in dev builds.
|
|
Hodl *hodl.Config
|
|
|
|
// UnsafeReplay is used when creating ChannelLinks to specify whether or
|
|
// not to replay adds on its commitment tx.
|
|
UnsafeReplay bool
|
|
|
|
// MaxOutgoingCltvExpiry is used when creating ChannelLinks and is the max
|
|
// number of blocks that funds could be locked up for when forwarding
|
|
// payments.
|
|
MaxOutgoingCltvExpiry uint32
|
|
|
|
// MaxChannelFeeAllocation is used when creating ChannelLinks and is the
|
|
// maximum percentage of total funds that can be allocated to a channel's
|
|
// commitment fee. This only applies for the initiator of the channel.
|
|
MaxChannelFeeAllocation float64
|
|
|
|
// MaxAnchorsCommitFeeRate is the maximum fee rate we'll use as an
|
|
// initiator for anchor channel commitments.
|
|
MaxAnchorsCommitFeeRate chainfee.SatPerKWeight
|
|
|
|
// CoopCloseTargetConfs is the confirmation target that will be used
|
|
// to estimate the fee rate to use during a cooperative channel
|
|
// closure initiated by the remote peer.
|
|
CoopCloseTargetConfs uint32
|
|
|
|
// ServerPubKey is the serialized, compressed public key of our lnd node.
|
|
// It is used to determine which policy (channel edge) to pass to the
|
|
// ChannelLink.
|
|
ServerPubKey [33]byte
|
|
|
|
// ChannelCommitInterval is the maximum time that is allowed to pass between
|
|
// receiving a channel state update and signing the next commitment.
|
|
// Setting this to a longer duration allows for more efficient channel
|
|
// operations at the cost of latency.
|
|
ChannelCommitInterval time.Duration
|
|
|
|
// PendingCommitInterval is the maximum time that is allowed to pass
|
|
// while waiting for the remote party to revoke a locally initiated
|
|
// commitment state. Setting this to a longer duration if a slow
|
|
// response is expected from the remote party or large number of
|
|
// payments are attempted at the same time.
|
|
PendingCommitInterval time.Duration
|
|
|
|
// ChannelCommitBatchSize is the maximum number of channel state updates
|
|
// that is accumulated before signing a new commitment.
|
|
ChannelCommitBatchSize uint32
|
|
|
|
// HandleCustomMessage is called whenever a custom message is received
|
|
// from the peer.
|
|
HandleCustomMessage func(peer [33]byte, msg *lnwire.Custom) error
|
|
|
|
// GetAliases is passed to created links so the Switch and link can be
|
|
// aware of the channel's aliases.
|
|
GetAliases func(base lnwire.ShortChannelID) []lnwire.ShortChannelID
|
|
|
|
// RequestAlias allows the Brontide struct to request an alias to send
|
|
// to the peer.
|
|
RequestAlias func() (lnwire.ShortChannelID, error)
|
|
|
|
// AddLocalAlias persists an alias to an underlying alias store.
|
|
AddLocalAlias func(alias, base lnwire.ShortChannelID,
|
|
gossip bool) error
|
|
|
|
// PongBuf is a slice we'll reuse instead of allocating memory on the
|
|
// heap. Since only reads will occur and no writes, there is no need
|
|
// for any synchronization primitives. As a result, it's safe to share
|
|
// this across multiple Peer struct instances.
|
|
PongBuf []byte
|
|
|
|
// Adds the option to disable forwarding payments in blinded routes
|
|
// by failing back any blinding-related payloads as if they were
|
|
// invalid.
|
|
DisallowRouteBlinding bool
|
|
|
|
// Quit is the server's quit channel. If this is closed, we halt operation.
|
|
Quit chan struct{}
|
|
}
|
|
|
|
// Brontide is an active peer on the Lightning Network. This struct is responsible
|
|
// for managing any channel state related to this peer. To do so, it has
|
|
// several helper goroutines to handle events such as HTLC timeouts, new
|
|
// funding workflow, and detecting an uncooperative closure of any active
|
|
// channels.
|
|
// TODO(roasbeef): proper reconnection logic.
|
|
type Brontide struct {
|
|
// MUST be used atomically.
|
|
started int32
|
|
disconnect int32
|
|
|
|
// MUST be used atomically.
|
|
bytesReceived uint64
|
|
bytesSent uint64
|
|
|
|
// isTorConnection is a flag that indicates whether or not we believe
|
|
// the remote peer is a tor connection. It is not always possible to
|
|
// know this with certainty but we have heuristics we use that should
|
|
// catch most cases.
|
|
//
|
|
// NOTE: We judge the tor-ness of a connection by if the remote peer has
|
|
// ".onion" in the address OR if it's connected over localhost.
|
|
// This will miss cases where our peer is connected to our clearnet
|
|
// address over the tor network (via exit nodes). It will also misjudge
|
|
// actual localhost connections as tor. We need to include this because
|
|
// inbound connections to our tor address will appear to come from the
|
|
// local socks5 proxy. This heuristic is only used to expand the timeout
|
|
// window for peers so it is OK to misjudge this. If you use this field
|
|
// for any other purpose you should seriously consider whether or not
|
|
// this heuristic is good enough for your use case.
|
|
isTorConnection bool
|
|
|
|
pingManager *PingManager
|
|
|
|
// lastPingPayload stores an unsafe pointer wrapped as an atomic
|
|
// variable which points to the last payload the remote party sent us
|
|
// as their ping.
|
|
//
|
|
// MUST be used atomically.
|
|
lastPingPayload atomic.Value
|
|
|
|
cfg Config
|
|
|
|
// activeSignal when closed signals that the peer is now active and
|
|
// ready to process messages.
|
|
activeSignal chan struct{}
|
|
|
|
// startTime is the time this peer connection was successfully established.
|
|
// It will be zero for peers that did not successfully call Start().
|
|
startTime time.Time
|
|
|
|
// sendQueue is the channel which is used to queue outgoing messages to be
|
|
// written onto the wire. Note that this channel is unbuffered.
|
|
sendQueue chan outgoingMsg
|
|
|
|
// outgoingQueue is a buffered channel which allows second/third party
|
|
// objects to queue messages to be sent out on the wire.
|
|
outgoingQueue chan outgoingMsg
|
|
|
|
// activeChannels is a map which stores the state machines of all
|
|
// active channels. Channels are indexed into the map by the txid of
|
|
// the funding transaction which opened the channel.
|
|
//
|
|
// NOTE: On startup, pending channels are stored as nil in this map.
|
|
// Confirmed channels have channel data populated in the map. This means
|
|
// that accesses to this map should nil-check the LightningChannel to
|
|
// see if this is a pending channel or not. The tradeoff here is either
|
|
// having two maps everywhere (one for pending, one for confirmed chans)
|
|
// or having an extra nil-check per access.
|
|
activeChannels *lnutils.SyncMap[
|
|
lnwire.ChannelID, *lnwallet.LightningChannel]
|
|
|
|
// addedChannels tracks any new channels opened during this peer's
|
|
// lifecycle. We use this to filter out these new channels when the time
|
|
// comes to request a reenable for active channels, since they will have
|
|
// waited a shorter duration.
|
|
addedChannels *lnutils.SyncMap[lnwire.ChannelID, struct{}]
|
|
|
|
// newActiveChannel is used by the fundingManager to send fully opened
|
|
// channels to the source peer which handled the funding workflow.
|
|
newActiveChannel chan *newChannelMsg
|
|
|
|
// newPendingChannel is used by the fundingManager to send pending open
|
|
// channels to the source peer which handled the funding workflow.
|
|
newPendingChannel chan *newChannelMsg
|
|
|
|
// removePendingChannel is used by the fundingManager to cancel pending
|
|
// open channels to the source peer when the funding flow is failed.
|
|
removePendingChannel chan *newChannelMsg
|
|
|
|
// activeMsgStreams is a map from channel id to the channel streams that
|
|
// proxy messages to individual, active links.
|
|
activeMsgStreams map[lnwire.ChannelID]*msgStream
|
|
|
|
// activeChanCloses is a map that keeps track of all the active
|
|
// cooperative channel closures. Any channel closing messages are directed
|
|
// to one of these active state machines. Once the channel has been closed,
|
|
// the state machine will be deleted from the map.
|
|
activeChanCloses map[lnwire.ChannelID]*chancloser.ChanCloser
|
|
|
|
// localCloseChanReqs is a channel in which any local requests to close
|
|
// a particular channel are sent over.
|
|
localCloseChanReqs chan *htlcswitch.ChanClose
|
|
|
|
// linkFailures receives all reported channel failures from the switch,
|
|
// and instructs the channelManager to clean remaining channel state.
|
|
linkFailures chan linkFailureReport
|
|
|
|
// chanCloseMsgs is a channel that any message related to channel
|
|
// closures are sent over. This includes lnwire.Shutdown message as
|
|
// well as lnwire.ClosingSigned messages.
|
|
chanCloseMsgs chan *closeMsg
|
|
|
|
// remoteFeatures is the feature vector received from the peer during
|
|
// the connection handshake.
|
|
remoteFeatures *lnwire.FeatureVector
|
|
|
|
// resentChanSyncMsg is a set that keeps track of which channels we
|
|
// have re-sent channel reestablishment messages for. This is done to
|
|
// avoid getting into loop where both peers will respond to the other
|
|
// peer's chansync message with its own over and over again.
|
|
resentChanSyncMsg map[lnwire.ChannelID]struct{}
|
|
|
|
// channelEventClient is the channel event subscription client that's
|
|
// used to assist retry enabling the channels. This client is only
|
|
// created when the reenableTimeout is no greater than 1 minute. Once
|
|
// created, it is canceled once the reenabling has been finished.
|
|
//
|
|
// NOTE: we choose to create the client conditionally to avoid
|
|
// potentially holding lots of un-consumed events.
|
|
channelEventClient *subscribe.Client
|
|
|
|
startReady chan struct{}
|
|
quit chan struct{}
|
|
wg sync.WaitGroup
|
|
|
|
// log is a peer-specific logging instance.
|
|
log btclog.Logger
|
|
}
|
|
|
|
// A compile-time check to ensure that Brontide satisfies the lnpeer.Peer interface.
|
|
var _ lnpeer.Peer = (*Brontide)(nil)
|
|
|
|
// NewBrontide creates a new Brontide from a peer.Config struct.
|
|
func NewBrontide(cfg Config) *Brontide {
|
|
logPrefix := fmt.Sprintf("Peer(%x):", cfg.PubKeyBytes)
|
|
|
|
p := &Brontide{
|
|
cfg: cfg,
|
|
activeSignal: make(chan struct{}),
|
|
sendQueue: make(chan outgoingMsg),
|
|
outgoingQueue: make(chan outgoingMsg),
|
|
addedChannels: &lnutils.SyncMap[lnwire.ChannelID, struct{}]{},
|
|
activeChannels: &lnutils.SyncMap[
|
|
lnwire.ChannelID, *lnwallet.LightningChannel,
|
|
]{},
|
|
newActiveChannel: make(chan *newChannelMsg, 1),
|
|
newPendingChannel: make(chan *newChannelMsg, 1),
|
|
removePendingChannel: make(chan *newChannelMsg),
|
|
|
|
activeMsgStreams: make(map[lnwire.ChannelID]*msgStream),
|
|
activeChanCloses: make(map[lnwire.ChannelID]*chancloser.ChanCloser),
|
|
localCloseChanReqs: make(chan *htlcswitch.ChanClose),
|
|
linkFailures: make(chan linkFailureReport),
|
|
chanCloseMsgs: make(chan *closeMsg),
|
|
resentChanSyncMsg: make(map[lnwire.ChannelID]struct{}),
|
|
startReady: make(chan struct{}),
|
|
quit: make(chan struct{}),
|
|
log: build.NewPrefixLog(logPrefix, peerLog),
|
|
}
|
|
|
|
if cfg.Conn != nil && cfg.Conn.RemoteAddr() != nil {
|
|
remoteAddr := cfg.Conn.RemoteAddr().String()
|
|
p.isTorConnection = strings.Contains(remoteAddr, ".onion") ||
|
|
strings.Contains(remoteAddr, "127.0.0.1")
|
|
}
|
|
|
|
var (
|
|
lastBlockHeader *wire.BlockHeader
|
|
lastSerializedBlockHeader [wire.MaxBlockHeaderPayload]byte
|
|
)
|
|
newPingPayload := func() []byte {
|
|
// We query the BestBlockHeader from our BestBlockView each time
|
|
// this is called, and update our serialized block header if
|
|
// they differ. Over time, we'll use this to disseminate the
|
|
// latest block header between all our peers, which can later be
|
|
// used to cross-check our own view of the network to mitigate
|
|
// various types of eclipse attacks.
|
|
header, err := p.cfg.BestBlockView.BestBlockHeader()
|
|
if err != nil && header == lastBlockHeader {
|
|
return lastSerializedBlockHeader[:]
|
|
}
|
|
|
|
buf := bytes.NewBuffer(lastSerializedBlockHeader[0:0])
|
|
err = header.Serialize(buf)
|
|
if err == nil {
|
|
lastBlockHeader = header
|
|
} else {
|
|
p.log.Warn("unable to serialize current block" +
|
|
"header for ping payload generation." +
|
|
"This should be impossible and means" +
|
|
"there is an implementation bug.")
|
|
}
|
|
|
|
return lastSerializedBlockHeader[:]
|
|
}
|
|
|
|
// TODO(roasbeef): make dynamic in order to create fake cover traffic.
|
|
//
|
|
// NOTE(proofofkeags): this was changed to be dynamic to allow better
|
|
// pong identification, however, more thought is needed to make this
|
|
// actually usable as a traffic decoy.
|
|
randPongSize := func() uint16 {
|
|
return uint16(
|
|
// We don't need cryptographic randomness here.
|
|
/* #nosec */
|
|
rand.Intn(pongSizeCeiling) + 1,
|
|
)
|
|
}
|
|
|
|
p.pingManager = NewPingManager(&PingManagerConfig{
|
|
NewPingPayload: newPingPayload,
|
|
NewPongSize: randPongSize,
|
|
IntervalDuration: p.scaleTimeout(pingInterval),
|
|
TimeoutDuration: p.scaleTimeout(pingTimeout),
|
|
SendPing: func(ping *lnwire.Ping) {
|
|
p.queueMsg(ping, nil)
|
|
},
|
|
OnPongFailure: func(err error) {
|
|
eStr := "pong response failure for %s: %v " +
|
|
"-- disconnecting"
|
|
p.log.Warnf(eStr, p, err)
|
|
go p.Disconnect(fmt.Errorf(eStr, p, err))
|
|
},
|
|
})
|
|
|
|
return p
|
|
}
|
|
|
|
// Start starts all helper goroutines the peer needs for normal operations. In
|
|
// the case this peer has already been started, then this function is a noop.
|
|
func (p *Brontide) Start() error {
|
|
if atomic.AddInt32(&p.started, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
// Once we've finished starting up the peer, we'll signal to other
|
|
// goroutines that the they can move forward to tear down the peer, or
|
|
// carry out other relevant changes.
|
|
defer close(p.startReady)
|
|
|
|
p.log.Tracef("starting with conn[%v->%v]",
|
|
p.cfg.Conn.LocalAddr(), p.cfg.Conn.RemoteAddr())
|
|
|
|
// Fetch and then load all the active channels we have with this remote
|
|
// peer from the database.
|
|
activeChans, err := p.cfg.ChannelDB.FetchOpenChannels(
|
|
p.cfg.Addr.IdentityKey,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("Unable to fetch active chans "+
|
|
"for peer: %v", err)
|
|
return err
|
|
}
|
|
|
|
if len(activeChans) == 0 {
|
|
go p.cfg.PrunePersistentPeerConnection(p.cfg.PubKeyBytes)
|
|
}
|
|
|
|
// Quickly check if we have any existing legacy channels with this
|
|
// peer.
|
|
haveLegacyChan := false
|
|
for _, c := range activeChans {
|
|
if c.ChanType.IsTweakless() {
|
|
continue
|
|
}
|
|
|
|
haveLegacyChan = true
|
|
break
|
|
}
|
|
|
|
// Exchange local and global features, the init message should be very
|
|
// first between two nodes.
|
|
if err := p.sendInitMsg(haveLegacyChan); err != nil {
|
|
return fmt.Errorf("unable to send init msg: %w", err)
|
|
}
|
|
|
|
// Before we launch any of the helper goroutines off the peer struct,
|
|
// we'll first ensure proper adherence to the p2p protocol. The init
|
|
// message MUST be sent before any other message.
|
|
readErr := make(chan error, 1)
|
|
msgChan := make(chan lnwire.Message, 1)
|
|
p.wg.Add(1)
|
|
go func() {
|
|
defer p.wg.Done()
|
|
|
|
msg, err := p.readNextMessage()
|
|
if err != nil {
|
|
readErr <- err
|
|
msgChan <- nil
|
|
return
|
|
}
|
|
readErr <- nil
|
|
msgChan <- msg
|
|
}()
|
|
|
|
select {
|
|
// In order to avoid blocking indefinitely, we'll give the other peer
|
|
// an upper timeout to respond before we bail out early.
|
|
case <-time.After(handshakeTimeout):
|
|
return fmt.Errorf("peer did not complete handshake within %v",
|
|
handshakeTimeout)
|
|
case err := <-readErr:
|
|
if err != nil {
|
|
return fmt.Errorf("unable to read init msg: %w", err)
|
|
}
|
|
}
|
|
|
|
// Once the init message arrives, we can parse it so we can figure out
|
|
// the negotiation of features for this session.
|
|
msg := <-msgChan
|
|
if msg, ok := msg.(*lnwire.Init); ok {
|
|
if err := p.handleInitMsg(msg); err != nil {
|
|
p.storeError(err)
|
|
return err
|
|
}
|
|
} else {
|
|
return errors.New("very first message between nodes " +
|
|
"must be init message")
|
|
}
|
|
|
|
// Next, load all the active channels we have with this peer,
|
|
// registering them with the switch and launching the necessary
|
|
// goroutines required to operate them.
|
|
p.log.Debugf("Loaded %v active channels from database",
|
|
len(activeChans))
|
|
|
|
// Conditionally subscribe to channel events before loading channels so
|
|
// we won't miss events. This subscription is used to listen to active
|
|
// channel event when reenabling channels. Once the reenabling process
|
|
// is finished, this subscription will be canceled.
|
|
//
|
|
// NOTE: ChannelNotifier must be started before subscribing events
|
|
// otherwise we'd panic here.
|
|
if err := p.attachChannelEventSubscription(); err != nil {
|
|
return err
|
|
}
|
|
|
|
msgs, err := p.loadActiveChannels(activeChans)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to load channels: %w", err)
|
|
}
|
|
|
|
p.startTime = time.Now()
|
|
|
|
// Before launching the writeHandler goroutine, we send any channel
|
|
// sync messages that must be resent for borked channels. We do this to
|
|
// avoid data races with WriteMessage & Flush calls.
|
|
if len(msgs) > 0 {
|
|
p.log.Infof("Sending %d channel sync messages to peer after "+
|
|
"loading active channels", len(msgs))
|
|
|
|
// Send the messages directly via writeMessage and bypass the
|
|
// writeHandler goroutine.
|
|
for _, msg := range msgs {
|
|
if err := p.writeMessage(msg); err != nil {
|
|
return fmt.Errorf("unable to send "+
|
|
"reestablish msg: %v", err)
|
|
}
|
|
}
|
|
}
|
|
|
|
err = p.pingManager.Start()
|
|
if err != nil {
|
|
return fmt.Errorf("could not start ping manager %w", err)
|
|
}
|
|
|
|
p.wg.Add(4)
|
|
go p.queueHandler()
|
|
go p.writeHandler()
|
|
go p.channelManager()
|
|
go p.readHandler()
|
|
|
|
// Signal to any external processes that the peer is now active.
|
|
close(p.activeSignal)
|
|
|
|
// Node announcements don't propagate very well throughout the network
|
|
// as there isn't a way to efficiently query for them through their
|
|
// timestamp, mostly affecting nodes that were offline during the time
|
|
// of broadcast. We'll resend our node announcement to the remote peer
|
|
// as a best-effort delivery such that it can also propagate to their
|
|
// peers. To ensure they can successfully process it in most cases,
|
|
// we'll only resend it as long as we have at least one confirmed
|
|
// advertised channel with the remote peer.
|
|
//
|
|
// TODO(wilmer): Remove this once we're able to query for node
|
|
// announcements through their timestamps.
|
|
go p.maybeSendNodeAnn(activeChans)
|
|
|
|
return nil
|
|
}
|
|
|
|
// initGossipSync initializes either a gossip syncer or an initial routing
|
|
// dump, depending on the negotiated synchronization method.
|
|
func (p *Brontide) initGossipSync() {
|
|
// If the remote peer knows of the new gossip queries feature, then
|
|
// we'll create a new gossipSyncer in the AuthenticatedGossiper for it.
|
|
if p.remoteFeatures.HasFeature(lnwire.GossipQueriesOptional) {
|
|
p.log.Info("Negotiated chan series queries")
|
|
|
|
if p.cfg.AuthGossiper == nil {
|
|
// This should only ever be hit in the unit tests.
|
|
p.log.Warn("No AuthGossiper configured. Abandoning " +
|
|
"gossip sync.")
|
|
return
|
|
}
|
|
|
|
// Register the peer's gossip syncer with the gossiper.
|
|
// This blocks synchronously to ensure the gossip syncer is
|
|
// registered with the gossiper before attempting to read
|
|
// messages from the remote peer.
|
|
//
|
|
// TODO(wilmer): Only sync updates from non-channel peers. This
|
|
// requires an improved version of the current network
|
|
// bootstrapper to ensure we can find and connect to non-channel
|
|
// peers.
|
|
p.cfg.AuthGossiper.InitSyncState(p)
|
|
}
|
|
}
|
|
|
|
// taprootShutdownAllowed returns true if both parties have negotiated the
|
|
// shutdown-any-segwit feature.
|
|
func (p *Brontide) taprootShutdownAllowed() bool {
|
|
return p.RemoteFeatures().HasFeature(lnwire.ShutdownAnySegwitOptional) &&
|
|
p.LocalFeatures().HasFeature(lnwire.ShutdownAnySegwitOptional)
|
|
}
|
|
|
|
// QuitSignal is a method that should return a channel which will be sent upon
|
|
// or closed once the backing peer exits. This allows callers using the
|
|
// interface to cancel any processing in the event the backing implementation
|
|
// exits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) QuitSignal() <-chan struct{} {
|
|
return p.quit
|
|
}
|
|
|
|
// loadActiveChannels creates indexes within the peer for tracking all active
|
|
// channels returned by the database. It returns a slice of channel reestablish
|
|
// messages that should be sent to the peer immediately, in case we have borked
|
|
// channels that haven't been closed yet.
|
|
func (p *Brontide) loadActiveChannels(chans []*channeldb.OpenChannel) (
|
|
[]lnwire.Message, error) {
|
|
|
|
// Return a slice of messages to send to the peers in case the channel
|
|
// cannot be loaded normally.
|
|
var msgs []lnwire.Message
|
|
|
|
scidAliasNegotiated := p.hasNegotiatedScidAlias()
|
|
|
|
for _, dbChan := range chans {
|
|
hasScidFeature := dbChan.ChanType.HasScidAliasFeature()
|
|
if scidAliasNegotiated && !hasScidFeature {
|
|
// We'll request and store an alias, making sure that a
|
|
// gossiper mapping is not created for the alias to the
|
|
// real SCID. This is done because the peer and funding
|
|
// manager are not aware of each other's states and if
|
|
// we did not do this, we would accept alias channel
|
|
// updates after 6 confirmations, which would be buggy.
|
|
// We'll queue a channel_ready message with the new
|
|
// alias. This should technically be done *after* the
|
|
// reestablish, but this behavior is pre-existing since
|
|
// the funding manager may already queue a
|
|
// channel_ready before the channel_reestablish.
|
|
if !dbChan.IsPending {
|
|
aliasScid, err := p.cfg.RequestAlias()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
err = p.cfg.AddLocalAlias(
|
|
aliasScid, dbChan.ShortChanID(), false,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(
|
|
dbChan.FundingOutpoint,
|
|
)
|
|
|
|
// Fetch the second commitment point to send in
|
|
// the channel_ready message.
|
|
second, err := dbChan.SecondCommitmentPoint()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
channelReadyMsg := lnwire.NewChannelReady(
|
|
chanID, second,
|
|
)
|
|
channelReadyMsg.AliasScid = &aliasScid
|
|
|
|
msgs = append(msgs, channelReadyMsg)
|
|
}
|
|
|
|
// If we've negotiated the option-scid-alias feature
|
|
// and this channel does not have ScidAliasFeature set
|
|
// to true due to an upgrade where the feature bit was
|
|
// turned on, we'll update the channel's database
|
|
// state.
|
|
err := dbChan.MarkScidAliasNegotiated()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
lnChan, err := lnwallet.NewLightningChannel(
|
|
p.cfg.Signer, dbChan, p.cfg.SigPool,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
chanPoint := dbChan.FundingOutpoint
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
p.log.Infof("Loading ChannelPoint(%v), isPending=%v",
|
|
chanPoint, lnChan.IsPending())
|
|
|
|
// Skip adding any permanently irreconcilable channels to the
|
|
// htlcswitch.
|
|
if !dbChan.HasChanStatus(channeldb.ChanStatusDefault) &&
|
|
!dbChan.HasChanStatus(channeldb.ChanStatusRestored) {
|
|
|
|
p.log.Warnf("ChannelPoint(%v) has status %v, won't "+
|
|
"start.", chanPoint, dbChan.ChanStatus())
|
|
|
|
// To help our peer recover from a potential data loss,
|
|
// we resend our channel reestablish message if the
|
|
// channel is in a borked state. We won't process any
|
|
// channel reestablish message sent from the peer, but
|
|
// that's okay since the assumption is that we did when
|
|
// marking the channel borked.
|
|
chanSync, err := dbChan.ChanSyncMsg()
|
|
if err != nil {
|
|
p.log.Errorf("Unable to create channel "+
|
|
"reestablish message for channel %v: "+
|
|
"%v", chanPoint, err)
|
|
continue
|
|
}
|
|
|
|
msgs = append(msgs, chanSync)
|
|
|
|
// Check if this channel needs to have the cooperative
|
|
// close process restarted. If so, we'll need to send
|
|
// the Shutdown message that is returned.
|
|
if dbChan.HasChanStatus(
|
|
channeldb.ChanStatusCoopBroadcasted,
|
|
) {
|
|
|
|
shutdownMsg, err := p.restartCoopClose(lnChan)
|
|
if err != nil {
|
|
p.log.Errorf("Unable to restart "+
|
|
"coop close for channel: %v",
|
|
err)
|
|
continue
|
|
}
|
|
|
|
if shutdownMsg == nil {
|
|
continue
|
|
}
|
|
|
|
// Append the message to the set of messages to
|
|
// send.
|
|
msgs = append(msgs, shutdownMsg)
|
|
}
|
|
|
|
continue
|
|
}
|
|
|
|
// Before we register this new link with the HTLC Switch, we'll
|
|
// need to fetch its current link-layer forwarding policy from
|
|
// the database.
|
|
graph := p.cfg.ChannelGraph
|
|
info, p1, p2, err := graph.FetchChannelEdgesByOutpoint(
|
|
&chanPoint,
|
|
)
|
|
if err != nil && !errors.Is(err, channeldb.ErrEdgeNotFound) {
|
|
return nil, err
|
|
}
|
|
|
|
// We'll filter out our policy from the directional channel
|
|
// edges based whom the edge connects to. If it doesn't connect
|
|
// to us, then we know that we were the one that advertised the
|
|
// policy.
|
|
//
|
|
// TODO(roasbeef): can add helper method to get policy for
|
|
// particular channel.
|
|
var selfPolicy *models.ChannelEdgePolicy
|
|
if info != nil && bytes.Equal(info.NodeKey1Bytes[:],
|
|
p.cfg.ServerPubKey[:]) {
|
|
|
|
selfPolicy = p1
|
|
} else {
|
|
selfPolicy = p2
|
|
}
|
|
|
|
// If we don't yet have an advertised routing policy, then
|
|
// we'll use the current default, otherwise we'll translate the
|
|
// routing policy into a forwarding policy.
|
|
var forwardingPolicy *models.ForwardingPolicy
|
|
if selfPolicy != nil {
|
|
var inboundWireFee lnwire.Fee
|
|
_, err := selfPolicy.ExtraOpaqueData.ExtractRecords(
|
|
&inboundWireFee,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
inboundFee := models.NewInboundFeeFromWire(
|
|
inboundWireFee,
|
|
)
|
|
|
|
forwardingPolicy = &models.ForwardingPolicy{
|
|
MinHTLCOut: selfPolicy.MinHTLC,
|
|
MaxHTLC: selfPolicy.MaxHTLC,
|
|
BaseFee: selfPolicy.FeeBaseMSat,
|
|
FeeRate: selfPolicy.FeeProportionalMillionths,
|
|
TimeLockDelta: uint32(selfPolicy.TimeLockDelta),
|
|
|
|
InboundFee: inboundFee,
|
|
}
|
|
} else {
|
|
p.log.Warnf("Unable to find our forwarding policy "+
|
|
"for channel %v, using default values",
|
|
chanPoint)
|
|
forwardingPolicy = &p.cfg.RoutingPolicy
|
|
}
|
|
|
|
p.log.Tracef("Using link policy of: %v",
|
|
spew.Sdump(forwardingPolicy))
|
|
|
|
// If the channel is pending, set the value to nil in the
|
|
// activeChannels map. This is done to signify that the channel
|
|
// is pending. We don't add the link to the switch here - it's
|
|
// the funding manager's responsibility to spin up pending
|
|
// channels. Adding them here would just be extra work as we'll
|
|
// tear them down when creating + adding the final link.
|
|
if lnChan.IsPending() {
|
|
p.activeChannels.Store(chanID, nil)
|
|
|
|
continue
|
|
}
|
|
|
|
shutdownInfo, err := lnChan.State().ShutdownInfo()
|
|
if err != nil && !errors.Is(err, channeldb.ErrNoShutdownInfo) {
|
|
return nil, err
|
|
}
|
|
|
|
var (
|
|
shutdownMsg fn.Option[lnwire.Shutdown]
|
|
shutdownInfoErr error
|
|
)
|
|
shutdownInfo.WhenSome(func(info channeldb.ShutdownInfo) {
|
|
// Compute an ideal fee.
|
|
feePerKw, err := p.cfg.FeeEstimator.EstimateFeePerKW(
|
|
p.cfg.CoopCloseTargetConfs,
|
|
)
|
|
if err != nil {
|
|
shutdownInfoErr = fmt.Errorf("unable to "+
|
|
"estimate fee: %w", err)
|
|
|
|
return
|
|
}
|
|
|
|
chanCloser, err := p.createChanCloser(
|
|
lnChan, info.DeliveryScript.Val, feePerKw, nil,
|
|
info.LocalInitiator.Val,
|
|
)
|
|
if err != nil {
|
|
shutdownInfoErr = fmt.Errorf("unable to "+
|
|
"create chan closer: %w", err)
|
|
|
|
return
|
|
}
|
|
|
|
chanID := lnwire.NewChanIDFromOutPoint(
|
|
lnChan.State().FundingOutpoint,
|
|
)
|
|
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
|
|
// Create the Shutdown message.
|
|
shutdown, err := chanCloser.ShutdownChan()
|
|
if err != nil {
|
|
delete(p.activeChanCloses, chanID)
|
|
shutdownInfoErr = err
|
|
|
|
return
|
|
}
|
|
|
|
shutdownMsg = fn.Some(*shutdown)
|
|
})
|
|
if shutdownInfoErr != nil {
|
|
return nil, shutdownInfoErr
|
|
}
|
|
|
|
// Subscribe to the set of on-chain events for this channel.
|
|
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(
|
|
chanPoint,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
err = p.addLink(
|
|
&chanPoint, lnChan, forwardingPolicy, chainEvents,
|
|
true, shutdownMsg,
|
|
)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to add link %v to "+
|
|
"switch: %v", chanPoint, err)
|
|
}
|
|
|
|
p.activeChannels.Store(chanID, lnChan)
|
|
}
|
|
|
|
return msgs, nil
|
|
}
|
|
|
|
// addLink creates and adds a new ChannelLink from the specified channel.
|
|
func (p *Brontide) addLink(chanPoint *wire.OutPoint,
|
|
lnChan *lnwallet.LightningChannel,
|
|
forwardingPolicy *models.ForwardingPolicy,
|
|
chainEvents *contractcourt.ChainEventSubscription,
|
|
syncStates bool, shutdownMsg fn.Option[lnwire.Shutdown]) error {
|
|
|
|
// onChannelFailure will be called by the link in case the channel
|
|
// fails for some reason.
|
|
onChannelFailure := func(chanID lnwire.ChannelID,
|
|
shortChanID lnwire.ShortChannelID,
|
|
linkErr htlcswitch.LinkFailureError) {
|
|
|
|
failure := linkFailureReport{
|
|
chanPoint: *chanPoint,
|
|
chanID: chanID,
|
|
shortChanID: shortChanID,
|
|
linkErr: linkErr,
|
|
}
|
|
|
|
select {
|
|
case p.linkFailures <- failure:
|
|
case <-p.quit:
|
|
case <-p.cfg.Quit:
|
|
}
|
|
}
|
|
|
|
updateContractSignals := func(signals *contractcourt.ContractSignals) error {
|
|
return p.cfg.ChainArb.UpdateContractSignals(*chanPoint, signals)
|
|
}
|
|
|
|
notifyContractUpdate := func(update *contractcourt.ContractUpdate) error {
|
|
return p.cfg.ChainArb.NotifyContractUpdate(*chanPoint, update)
|
|
}
|
|
|
|
//nolint:lll
|
|
linkCfg := htlcswitch.ChannelLinkConfig{
|
|
Peer: p,
|
|
DecodeHopIterators: p.cfg.Sphinx.DecodeHopIterators,
|
|
ExtractErrorEncrypter: p.cfg.Sphinx.ExtractErrorEncrypter,
|
|
FetchLastChannelUpdate: p.cfg.FetchLastChanUpdate,
|
|
HodlMask: p.cfg.Hodl.Mask(),
|
|
Registry: p.cfg.Invoices,
|
|
BestHeight: p.cfg.Switch.BestHeight,
|
|
Circuits: p.cfg.Switch.CircuitModifier(),
|
|
ForwardPackets: p.cfg.InterceptSwitch.ForwardPackets,
|
|
FwrdingPolicy: *forwardingPolicy,
|
|
FeeEstimator: p.cfg.FeeEstimator,
|
|
PreimageCache: p.cfg.WitnessBeacon,
|
|
ChainEvents: chainEvents,
|
|
UpdateContractSignals: updateContractSignals,
|
|
NotifyContractUpdate: notifyContractUpdate,
|
|
OnChannelFailure: onChannelFailure,
|
|
SyncStates: syncStates,
|
|
BatchTicker: ticker.New(p.cfg.ChannelCommitInterval),
|
|
FwdPkgGCTicker: ticker.New(time.Hour),
|
|
PendingCommitTicker: ticker.New(
|
|
p.cfg.PendingCommitInterval,
|
|
),
|
|
BatchSize: p.cfg.ChannelCommitBatchSize,
|
|
UnsafeReplay: p.cfg.UnsafeReplay,
|
|
MinUpdateTimeout: htlcswitch.DefaultMinLinkFeeUpdateTimeout,
|
|
MaxUpdateTimeout: htlcswitch.DefaultMaxLinkFeeUpdateTimeout,
|
|
OutgoingCltvRejectDelta: p.cfg.OutgoingCltvRejectDelta,
|
|
TowerClient: p.cfg.TowerClient,
|
|
MaxOutgoingCltvExpiry: p.cfg.MaxOutgoingCltvExpiry,
|
|
MaxFeeAllocation: p.cfg.MaxChannelFeeAllocation,
|
|
MaxAnchorsCommitFeeRate: p.cfg.MaxAnchorsCommitFeeRate,
|
|
NotifyActiveLink: p.cfg.ChannelNotifier.NotifyActiveLinkEvent,
|
|
NotifyActiveChannel: p.cfg.ChannelNotifier.NotifyActiveChannelEvent,
|
|
NotifyInactiveChannel: p.cfg.ChannelNotifier.NotifyInactiveChannelEvent,
|
|
NotifyInactiveLinkEvent: p.cfg.ChannelNotifier.NotifyInactiveLinkEvent,
|
|
HtlcNotifier: p.cfg.HtlcNotifier,
|
|
GetAliases: p.cfg.GetAliases,
|
|
PreviouslySentShutdown: shutdownMsg,
|
|
DisallowRouteBlinding: p.cfg.DisallowRouteBlinding,
|
|
}
|
|
|
|
// Before adding our new link, purge the switch of any pending or live
|
|
// links going by the same channel id. If one is found, we'll shut it
|
|
// down to ensure that the mailboxes are only ever under the control of
|
|
// one link.
|
|
chanID := lnwire.NewChanIDFromOutPoint(*chanPoint)
|
|
p.cfg.Switch.RemoveLink(chanID)
|
|
|
|
// With the channel link created, we'll now notify the htlc switch so
|
|
// this channel can be used to dispatch local payments and also
|
|
// passively forward payments.
|
|
return p.cfg.Switch.CreateAndAddLink(linkCfg, lnChan)
|
|
}
|
|
|
|
// maybeSendNodeAnn sends our node announcement to the remote peer if at least
|
|
// one confirmed public channel exists with them.
|
|
func (p *Brontide) maybeSendNodeAnn(channels []*channeldb.OpenChannel) {
|
|
hasConfirmedPublicChan := false
|
|
for _, channel := range channels {
|
|
if channel.IsPending {
|
|
continue
|
|
}
|
|
if channel.ChannelFlags&lnwire.FFAnnounceChannel == 0 {
|
|
continue
|
|
}
|
|
|
|
hasConfirmedPublicChan = true
|
|
break
|
|
}
|
|
if !hasConfirmedPublicChan {
|
|
return
|
|
}
|
|
|
|
ourNodeAnn, err := p.cfg.GenNodeAnnouncement()
|
|
if err != nil {
|
|
p.log.Debugf("Unable to retrieve node announcement: %v", err)
|
|
return
|
|
}
|
|
|
|
if err := p.SendMessageLazy(false, &ourNodeAnn); err != nil {
|
|
p.log.Debugf("Unable to resend node announcement: %v", err)
|
|
}
|
|
}
|
|
|
|
// WaitForDisconnect waits until the peer has disconnected. A peer may be
|
|
// disconnected if the local or remote side terminates the connection, or an
|
|
// irrecoverable protocol error has been encountered. This method will only
|
|
// begin watching the peer's waitgroup after the ready channel or the peer's
|
|
// quit channel are signaled. The ready channel should only be signaled if a
|
|
// call to Start returns no error. Otherwise, if the peer fails to start,
|
|
// calling Disconnect will signal the quit channel and the method will not
|
|
// block, since no goroutines were spawned.
|
|
func (p *Brontide) WaitForDisconnect(ready chan struct{}) {
|
|
// Before we try to call the `Wait` goroutine, we'll make sure the main
|
|
// set of goroutines are already active.
|
|
select {
|
|
case <-p.startReady:
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
|
|
select {
|
|
case <-ready:
|
|
case <-p.quit:
|
|
}
|
|
|
|
p.wg.Wait()
|
|
}
|
|
|
|
// Disconnect terminates the connection with the remote peer. Additionally, a
|
|
// signal is sent to the server and htlcSwitch indicating the resources
|
|
// allocated to the peer can now be cleaned up.
|
|
func (p *Brontide) Disconnect(reason error) {
|
|
if !atomic.CompareAndSwapInt32(&p.disconnect, 0, 1) {
|
|
return
|
|
}
|
|
|
|
// Make sure initialization has completed before we try to tear things
|
|
// down.
|
|
select {
|
|
case <-p.startReady:
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
|
|
err := fmt.Errorf("disconnecting %s, reason: %v", p, reason)
|
|
p.storeError(err)
|
|
|
|
p.log.Infof(err.Error())
|
|
|
|
// Stop PingManager before closing TCP connection.
|
|
p.pingManager.Stop()
|
|
|
|
// Ensure that the TCP connection is properly closed before continuing.
|
|
p.cfg.Conn.Close()
|
|
|
|
close(p.quit)
|
|
}
|
|
|
|
// String returns the string representation of this peer.
|
|
func (p *Brontide) String() string {
|
|
return fmt.Sprintf("%x@%s", p.cfg.PubKeyBytes, p.cfg.Conn.RemoteAddr())
|
|
}
|
|
|
|
// readNextMessage reads, and returns the next message on the wire along with
|
|
// any additional raw payload.
|
|
func (p *Brontide) readNextMessage() (lnwire.Message, error) {
|
|
noiseConn := p.cfg.Conn
|
|
err := noiseConn.SetReadDeadline(time.Time{})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pktLen, err := noiseConn.ReadNextHeader()
|
|
if err != nil {
|
|
return nil, fmt.Errorf("read next header: %w", err)
|
|
}
|
|
|
|
// First we'll read the next _full_ message. We do this rather than
|
|
// reading incrementally from the stream as the Lightning wire protocol
|
|
// is message oriented and allows nodes to pad on additional data to
|
|
// the message stream.
|
|
var (
|
|
nextMsg lnwire.Message
|
|
msgLen uint64
|
|
)
|
|
err = p.cfg.ReadPool.Submit(func(buf *buffer.Read) error {
|
|
// Before reading the body of the message, set the read timeout
|
|
// accordingly to ensure we don't block other readers using the
|
|
// pool. We do so only after the task has been scheduled to
|
|
// ensure the deadline doesn't expire while the message is in
|
|
// the process of being scheduled.
|
|
readDeadline := time.Now().Add(
|
|
p.scaleTimeout(readMessageTimeout),
|
|
)
|
|
readErr := noiseConn.SetReadDeadline(readDeadline)
|
|
if readErr != nil {
|
|
return readErr
|
|
}
|
|
|
|
// The ReadNextBody method will actually end up re-using the
|
|
// buffer, so within this closure, we can continue to use
|
|
// rawMsg as it's just a slice into the buf from the buffer
|
|
// pool.
|
|
rawMsg, readErr := noiseConn.ReadNextBody(buf[:pktLen])
|
|
if readErr != nil {
|
|
return fmt.Errorf("read next body: %w", readErr)
|
|
}
|
|
msgLen = uint64(len(rawMsg))
|
|
|
|
// Next, create a new io.Reader implementation from the raw
|
|
// message, and use this to decode the message directly from.
|
|
msgReader := bytes.NewReader(rawMsg)
|
|
nextMsg, err = lnwire.ReadMessage(msgReader, 0)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// At this point, rawMsg and buf will be returned back to the
|
|
// buffer pool for re-use.
|
|
return nil
|
|
})
|
|
atomic.AddUint64(&p.bytesReceived, msgLen)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
p.logWireMessage(nextMsg, true)
|
|
|
|
return nextMsg, nil
|
|
}
|
|
|
|
// msgStream implements a goroutine-safe, in-order stream of messages to be
|
|
// delivered via closure to a receiver. These messages MUST be in order due to
|
|
// the nature of the lightning channel commitment and gossiper state machines.
|
|
// TODO(conner): use stream handler interface to abstract out stream
|
|
// state/logging.
|
|
type msgStream struct {
|
|
streamShutdown int32 // To be used atomically.
|
|
|
|
peer *Brontide
|
|
|
|
apply func(lnwire.Message)
|
|
|
|
startMsg string
|
|
stopMsg string
|
|
|
|
msgCond *sync.Cond
|
|
msgs []lnwire.Message
|
|
|
|
mtx sync.Mutex
|
|
|
|
producerSema chan struct{}
|
|
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
}
|
|
|
|
// newMsgStream creates a new instance of a chanMsgStream for a particular
|
|
// channel identified by its channel ID. bufSize is the max number of messages
|
|
// that should be buffered in the internal queue. Callers should set this to a
|
|
// sane value that avoids blocking unnecessarily, but doesn't allow an
|
|
// unbounded amount of memory to be allocated to buffer incoming messages.
|
|
func newMsgStream(p *Brontide, startMsg, stopMsg string, bufSize uint32,
|
|
apply func(lnwire.Message)) *msgStream {
|
|
|
|
stream := &msgStream{
|
|
peer: p,
|
|
apply: apply,
|
|
startMsg: startMsg,
|
|
stopMsg: stopMsg,
|
|
producerSema: make(chan struct{}, bufSize),
|
|
quit: make(chan struct{}),
|
|
}
|
|
stream.msgCond = sync.NewCond(&stream.mtx)
|
|
|
|
// Before we return the active stream, we'll populate the producer's
|
|
// semaphore channel. We'll use this to ensure that the producer won't
|
|
// attempt to allocate memory in the queue for an item until it has
|
|
// sufficient extra space.
|
|
for i := uint32(0); i < bufSize; i++ {
|
|
stream.producerSema <- struct{}{}
|
|
}
|
|
|
|
return stream
|
|
}
|
|
|
|
// Start starts the chanMsgStream.
|
|
func (ms *msgStream) Start() {
|
|
ms.wg.Add(1)
|
|
go ms.msgConsumer()
|
|
}
|
|
|
|
// Stop stops the chanMsgStream.
|
|
func (ms *msgStream) Stop() {
|
|
// TODO(roasbeef): signal too?
|
|
|
|
close(ms.quit)
|
|
|
|
// Now that we've closed the channel, we'll repeatedly signal the msg
|
|
// consumer until we've detected that it has exited.
|
|
for atomic.LoadInt32(&ms.streamShutdown) == 0 {
|
|
ms.msgCond.Signal()
|
|
time.Sleep(time.Millisecond * 100)
|
|
}
|
|
|
|
ms.wg.Wait()
|
|
}
|
|
|
|
// msgConsumer is the main goroutine that streams messages from the peer's
|
|
// readHandler directly to the target channel.
|
|
func (ms *msgStream) msgConsumer() {
|
|
defer ms.wg.Done()
|
|
defer peerLog.Tracef(ms.stopMsg)
|
|
defer atomic.StoreInt32(&ms.streamShutdown, 1)
|
|
|
|
peerLog.Tracef(ms.startMsg)
|
|
|
|
for {
|
|
// First, we'll check our condition. If the queue of messages
|
|
// is empty, then we'll wait until a new item is added.
|
|
ms.msgCond.L.Lock()
|
|
for len(ms.msgs) == 0 {
|
|
ms.msgCond.Wait()
|
|
|
|
// If we woke up in order to exit, then we'll do so.
|
|
// Otherwise, we'll check the message queue for any new
|
|
// items.
|
|
select {
|
|
case <-ms.peer.quit:
|
|
ms.msgCond.L.Unlock()
|
|
return
|
|
case <-ms.quit:
|
|
ms.msgCond.L.Unlock()
|
|
return
|
|
default:
|
|
}
|
|
}
|
|
|
|
// Grab the message off the front of the queue, shifting the
|
|
// slice's reference down one in order to remove the message
|
|
// from the queue.
|
|
msg := ms.msgs[0]
|
|
ms.msgs[0] = nil // Set to nil to prevent GC leak.
|
|
ms.msgs = ms.msgs[1:]
|
|
|
|
ms.msgCond.L.Unlock()
|
|
|
|
ms.apply(msg)
|
|
|
|
// We've just successfully processed an item, so we'll signal
|
|
// to the producer that a new slot in the buffer. We'll use
|
|
// this to bound the size of the buffer to avoid allowing it to
|
|
// grow indefinitely.
|
|
select {
|
|
case ms.producerSema <- struct{}{}:
|
|
case <-ms.peer.quit:
|
|
return
|
|
case <-ms.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// AddMsg adds a new message to the msgStream. This function is safe for
|
|
// concurrent access.
|
|
func (ms *msgStream) AddMsg(msg lnwire.Message) {
|
|
// First, we'll attempt to receive from the producerSema struct. This
|
|
// acts as a semaphore to prevent us from indefinitely buffering
|
|
// incoming items from the wire. Either the msg queue isn't full, and
|
|
// we'll not block, or the queue is full, and we'll block until either
|
|
// we're signalled to quit, or a slot is freed up.
|
|
select {
|
|
case <-ms.producerSema:
|
|
case <-ms.peer.quit:
|
|
return
|
|
case <-ms.quit:
|
|
return
|
|
}
|
|
|
|
// Next, we'll lock the condition, and add the message to the end of
|
|
// the message queue.
|
|
ms.msgCond.L.Lock()
|
|
ms.msgs = append(ms.msgs, msg)
|
|
ms.msgCond.L.Unlock()
|
|
|
|
// With the message added, we signal to the msgConsumer that there are
|
|
// additional messages to consume.
|
|
ms.msgCond.Signal()
|
|
}
|
|
|
|
// waitUntilLinkActive waits until the target link is active and returns a
|
|
// ChannelLink to pass messages to. It accomplishes this by subscribing to
|
|
// an ActiveLinkEvent which is emitted by the link when it first starts up.
|
|
func waitUntilLinkActive(p *Brontide,
|
|
cid lnwire.ChannelID) htlcswitch.ChannelUpdateHandler {
|
|
|
|
p.log.Tracef("Waiting for link=%v to be active", cid)
|
|
|
|
// Subscribe to receive channel events.
|
|
//
|
|
// NOTE: If the link is already active by SubscribeChannelEvents, then
|
|
// GetLink will retrieve the link and we can send messages. If the link
|
|
// becomes active between SubscribeChannelEvents and GetLink, then GetLink
|
|
// will retrieve the link. If the link becomes active after GetLink, then
|
|
// we will get an ActiveLinkEvent notification and retrieve the link. If
|
|
// the call to GetLink is before SubscribeChannelEvents, however, there
|
|
// will be a race condition.
|
|
sub, err := p.cfg.ChannelNotifier.SubscribeChannelEvents()
|
|
if err != nil {
|
|
// If we have a non-nil error, then the server is shutting down and we
|
|
// can exit here and return nil. This means no message will be delivered
|
|
// to the link.
|
|
return nil
|
|
}
|
|
defer sub.Cancel()
|
|
|
|
// The link may already be active by this point, and we may have missed the
|
|
// ActiveLinkEvent. Check if the link exists.
|
|
link := p.fetchLinkFromKeyAndCid(cid)
|
|
if link != nil {
|
|
return link
|
|
}
|
|
|
|
// If the link is nil, we must wait for it to be active.
|
|
for {
|
|
select {
|
|
// A new event has been sent by the ChannelNotifier. We first check
|
|
// whether the event is an ActiveLinkEvent. If it is, we'll check
|
|
// that the event is for this channel. Otherwise, we discard the
|
|
// message.
|
|
case e := <-sub.Updates():
|
|
event, ok := e.(channelnotifier.ActiveLinkEvent)
|
|
if !ok {
|
|
// Ignore this notification.
|
|
continue
|
|
}
|
|
|
|
chanPoint := event.ChannelPoint
|
|
|
|
// Check whether the retrieved chanPoint matches the target
|
|
// channel id.
|
|
if !cid.IsChanPoint(chanPoint) {
|
|
continue
|
|
}
|
|
|
|
// The link shouldn't be nil as we received an
|
|
// ActiveLinkEvent. If it is nil, we return nil and the
|
|
// calling function should catch it.
|
|
return p.fetchLinkFromKeyAndCid(cid)
|
|
|
|
case <-p.quit:
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
// newChanMsgStream is used to create a msgStream between the peer and
|
|
// particular channel link in the htlcswitch. We utilize additional
|
|
// synchronization with the fundingManager to ensure we don't attempt to
|
|
// dispatch a message to a channel before it is fully active. A reference to the
|
|
// channel this stream forwards to is held in scope to prevent unnecessary
|
|
// lookups.
|
|
func newChanMsgStream(p *Brontide, cid lnwire.ChannelID) *msgStream {
|
|
var chanLink htlcswitch.ChannelUpdateHandler
|
|
|
|
apply := func(msg lnwire.Message) {
|
|
// This check is fine because if the link no longer exists, it will
|
|
// be removed from the activeChannels map and subsequent messages
|
|
// shouldn't reach the chan msg stream.
|
|
if chanLink == nil {
|
|
chanLink = waitUntilLinkActive(p, cid)
|
|
|
|
// If the link is still not active and the calling function
|
|
// errored out, just return.
|
|
if chanLink == nil {
|
|
p.log.Warnf("Link=%v is not active")
|
|
return
|
|
}
|
|
}
|
|
|
|
// In order to avoid unnecessarily delivering message
|
|
// as the peer is exiting, we'll check quickly to see
|
|
// if we need to exit.
|
|
select {
|
|
case <-p.quit:
|
|
return
|
|
default:
|
|
}
|
|
|
|
chanLink.HandleChannelUpdate(msg)
|
|
}
|
|
|
|
return newMsgStream(p,
|
|
fmt.Sprintf("Update stream for ChannelID(%x) created", cid[:]),
|
|
fmt.Sprintf("Update stream for ChannelID(%x) exiting", cid[:]),
|
|
1000,
|
|
apply,
|
|
)
|
|
}
|
|
|
|
// newDiscMsgStream is used to setup a msgStream between the peer and the
|
|
// authenticated gossiper. This stream should be used to forward all remote
|
|
// channel announcements.
|
|
func newDiscMsgStream(p *Brontide) *msgStream {
|
|
apply := func(msg lnwire.Message) {
|
|
// TODO(yy): `ProcessRemoteAnnouncement` returns an error chan
|
|
// and we need to process it.
|
|
p.cfg.AuthGossiper.ProcessRemoteAnnouncement(msg, p)
|
|
}
|
|
|
|
return newMsgStream(
|
|
p,
|
|
"Update stream for gossiper created",
|
|
"Update stream for gossiper exited",
|
|
1000,
|
|
apply,
|
|
)
|
|
}
|
|
|
|
// readHandler is responsible for reading messages off the wire in series, then
|
|
// properly dispatching the handling of the message to the proper subsystem.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) readHandler() {
|
|
defer p.wg.Done()
|
|
|
|
// We'll stop the timer after a new messages is received, and also
|
|
// reset it after we process the next message.
|
|
idleTimer := time.AfterFunc(idleTimeout, func() {
|
|
err := fmt.Errorf("peer %s no answer for %s -- disconnecting",
|
|
p, idleTimeout)
|
|
p.Disconnect(err)
|
|
})
|
|
|
|
// Initialize our negotiated gossip sync method before reading messages
|
|
// off the wire. When using gossip queries, this ensures a gossip
|
|
// syncer is active by the time query messages arrive.
|
|
//
|
|
// TODO(conner): have peer store gossip syncer directly and bypass
|
|
// gossiper?
|
|
p.initGossipSync()
|
|
|
|
discStream := newDiscMsgStream(p)
|
|
discStream.Start()
|
|
defer discStream.Stop()
|
|
out:
|
|
for atomic.LoadInt32(&p.disconnect) == 0 {
|
|
nextMsg, err := p.readNextMessage()
|
|
if !idleTimer.Stop() {
|
|
select {
|
|
case <-idleTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
if err != nil {
|
|
p.log.Infof("unable to read message from peer: %v", err)
|
|
|
|
// If we could not read our peer's message due to an
|
|
// unknown type or invalid alias, we continue processing
|
|
// as normal. We store unknown message and address
|
|
// types, as they may provide debugging insight.
|
|
switch e := err.(type) {
|
|
// If this is just a message we don't yet recognize,
|
|
// we'll continue processing as normal as this allows
|
|
// us to introduce new messages in a forwards
|
|
// compatible manner.
|
|
case *lnwire.UnknownMessage:
|
|
p.storeError(e)
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If they sent us an address type that we don't yet
|
|
// know of, then this isn't a wire error, so we'll
|
|
// simply continue parsing the remainder of their
|
|
// messages.
|
|
case *lnwire.ErrUnknownAddrType:
|
|
p.storeError(e)
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If the NodeAnnouncement has an invalid alias, then
|
|
// we'll log that error above and continue so we can
|
|
// continue to read messages from the peer. We do not
|
|
// store this error because it is of little debugging
|
|
// value.
|
|
case *lnwire.ErrInvalidNodeAlias:
|
|
idleTimer.Reset(idleTimeout)
|
|
continue
|
|
|
|
// If the error we encountered wasn't just a message we
|
|
// didn't recognize, then we'll stop all processing as
|
|
// this is a fatal error.
|
|
default:
|
|
break out
|
|
}
|
|
}
|
|
|
|
var (
|
|
targetChan lnwire.ChannelID
|
|
isLinkUpdate bool
|
|
)
|
|
|
|
switch msg := nextMsg.(type) {
|
|
case *lnwire.Pong:
|
|
// When we receive a Pong message in response to our
|
|
// last ping message, we send it to the pingManager
|
|
p.pingManager.ReceivedPong(msg)
|
|
|
|
case *lnwire.Ping:
|
|
// First, we'll store their latest ping payload within
|
|
// the relevant atomic variable.
|
|
p.lastPingPayload.Store(msg.PaddingBytes[:])
|
|
|
|
// Next, we'll send over the amount of specified pong
|
|
// bytes.
|
|
pong := lnwire.NewPong(p.cfg.PongBuf[0:msg.NumPongBytes])
|
|
p.queueMsg(pong, nil)
|
|
|
|
case *lnwire.OpenChannel,
|
|
*lnwire.AcceptChannel,
|
|
*lnwire.FundingCreated,
|
|
*lnwire.FundingSigned,
|
|
*lnwire.ChannelReady:
|
|
|
|
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
|
|
|
|
case *lnwire.Shutdown:
|
|
select {
|
|
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
case *lnwire.ClosingSigned:
|
|
select {
|
|
case p.chanCloseMsgs <- &closeMsg{msg.ChannelID, msg}:
|
|
case <-p.quit:
|
|
break out
|
|
}
|
|
|
|
case *lnwire.Warning:
|
|
targetChan = msg.ChanID
|
|
isLinkUpdate = p.handleWarningOrError(targetChan, msg)
|
|
|
|
case *lnwire.Error:
|
|
targetChan = msg.ChanID
|
|
isLinkUpdate = p.handleWarningOrError(targetChan, msg)
|
|
|
|
case *lnwire.ChannelReestablish:
|
|
targetChan = msg.ChanID
|
|
isLinkUpdate = p.hasChannel(targetChan)
|
|
|
|
// If we failed to find the link in question, and the
|
|
// message received was a channel sync message, then
|
|
// this might be a peer trying to resync closed channel.
|
|
// In this case we'll try to resend our last channel
|
|
// sync message, such that the peer can recover funds
|
|
// from the closed channel.
|
|
if !isLinkUpdate {
|
|
err := p.resendChanSyncMsg(targetChan)
|
|
if err != nil {
|
|
// TODO(halseth): send error to peer?
|
|
p.log.Errorf("resend failed: %v",
|
|
err)
|
|
}
|
|
}
|
|
|
|
// For messages that implement the LinkUpdater interface, we
|
|
// will consider them as link updates and send them to
|
|
// chanStream. These messages will be queued inside chanStream
|
|
// if the channel is not active yet.
|
|
case lnwire.LinkUpdater:
|
|
targetChan = msg.TargetChanID()
|
|
isLinkUpdate = p.hasChannel(targetChan)
|
|
|
|
// Log an error if we don't have this channel. This
|
|
// means the peer has sent us a message with unknown
|
|
// channel ID.
|
|
if !isLinkUpdate {
|
|
p.log.Errorf("Unknown channel ID: %v found "+
|
|
"in received msg=%s", targetChan,
|
|
nextMsg.MsgType())
|
|
}
|
|
|
|
case *lnwire.ChannelUpdate,
|
|
*lnwire.ChannelAnnouncement,
|
|
*lnwire.NodeAnnouncement,
|
|
*lnwire.AnnounceSignatures,
|
|
*lnwire.GossipTimestampRange,
|
|
*lnwire.QueryShortChanIDs,
|
|
*lnwire.QueryChannelRange,
|
|
*lnwire.ReplyChannelRange,
|
|
*lnwire.ReplyShortChanIDsEnd:
|
|
|
|
discStream.AddMsg(msg)
|
|
|
|
case *lnwire.Custom:
|
|
err := p.handleCustomMessage(msg)
|
|
if err != nil {
|
|
p.storeError(err)
|
|
p.log.Errorf("%v", err)
|
|
}
|
|
|
|
default:
|
|
// If the message we received is unknown to us, store
|
|
// the type to track the failure.
|
|
err := fmt.Errorf("unknown message type %v received",
|
|
uint16(msg.MsgType()))
|
|
p.storeError(err)
|
|
|
|
p.log.Errorf("%v", err)
|
|
}
|
|
|
|
if isLinkUpdate {
|
|
// If this is a channel update, then we need to feed it
|
|
// into the channel's in-order message stream.
|
|
p.sendLinkUpdateMsg(targetChan, nextMsg)
|
|
}
|
|
|
|
idleTimer.Reset(idleTimeout)
|
|
}
|
|
|
|
p.Disconnect(errors.New("read handler closed"))
|
|
|
|
p.log.Trace("readHandler for peer done")
|
|
}
|
|
|
|
// handleCustomMessage handles the given custom message if a handler is
|
|
// registered.
|
|
func (p *Brontide) handleCustomMessage(msg *lnwire.Custom) error {
|
|
if p.cfg.HandleCustomMessage == nil {
|
|
return fmt.Errorf("no custom message handler for "+
|
|
"message type %v", uint16(msg.MsgType()))
|
|
}
|
|
|
|
return p.cfg.HandleCustomMessage(p.PubKey(), msg)
|
|
}
|
|
|
|
// isLoadedFromDisk returns true if the provided channel ID is loaded from
|
|
// disk.
|
|
//
|
|
// NOTE: only returns true for pending channels.
|
|
func (p *Brontide) isLoadedFromDisk(chanID lnwire.ChannelID) bool {
|
|
// If this is a newly added channel, no need to reestablish.
|
|
_, added := p.addedChannels.Load(chanID)
|
|
if added {
|
|
return false
|
|
}
|
|
|
|
// Return false if the channel is unknown.
|
|
channel, ok := p.activeChannels.Load(chanID)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
// During startup, we will use a nil value to mark a pending channel
|
|
// that's loaded from disk.
|
|
return channel == nil
|
|
}
|
|
|
|
// isActiveChannel returns true if the provided channel id is active, otherwise
|
|
// returns false.
|
|
func (p *Brontide) isActiveChannel(chanID lnwire.ChannelID) bool {
|
|
// The channel would be nil if,
|
|
// - the channel doesn't exist, or,
|
|
// - the channel exists, but is pending. In this case, we don't
|
|
// consider this channel active.
|
|
channel, _ := p.activeChannels.Load(chanID)
|
|
|
|
return channel != nil
|
|
}
|
|
|
|
// isPendingChannel returns true if the provided channel ID is pending, and
|
|
// returns false if the channel is active or unknown.
|
|
func (p *Brontide) isPendingChannel(chanID lnwire.ChannelID) bool {
|
|
// Return false if the channel is unknown.
|
|
channel, ok := p.activeChannels.Load(chanID)
|
|
if !ok {
|
|
return false
|
|
}
|
|
|
|
return channel == nil
|
|
}
|
|
|
|
// hasChannel returns true if the peer has a pending/active channel specified
|
|
// by the channel ID.
|
|
func (p *Brontide) hasChannel(chanID lnwire.ChannelID) bool {
|
|
_, ok := p.activeChannels.Load(chanID)
|
|
return ok
|
|
}
|
|
|
|
// storeError stores an error in our peer's buffer of recent errors with the
|
|
// current timestamp. Errors are only stored if we have at least one active
|
|
// channel with the peer to mitigate a dos vector where a peer costlessly
|
|
// connects to us and spams us with errors.
|
|
func (p *Brontide) storeError(err error) {
|
|
var haveChannels bool
|
|
|
|
p.activeChannels.Range(func(_ lnwire.ChannelID,
|
|
channel *lnwallet.LightningChannel) bool {
|
|
|
|
// Pending channels will be nil in the activeChannels map.
|
|
if channel == nil {
|
|
// Return true to continue the iteration.
|
|
return true
|
|
}
|
|
|
|
haveChannels = true
|
|
|
|
// Return false to break the iteration.
|
|
return false
|
|
})
|
|
|
|
// If we do not have any active channels with the peer, we do not store
|
|
// errors as a dos mitigation.
|
|
if !haveChannels {
|
|
p.log.Trace("no channels with peer, not storing err")
|
|
return
|
|
}
|
|
|
|
p.cfg.ErrorBuffer.Add(
|
|
&TimestampedError{Timestamp: time.Now(), Error: err},
|
|
)
|
|
}
|
|
|
|
// handleWarningOrError processes a warning or error msg and returns true if
|
|
// msg should be forwarded to the associated channel link. False is returned if
|
|
// any necessary forwarding of msg was already handled by this method. If msg is
|
|
// an error from a peer with an active channel, we'll store it in memory.
|
|
//
|
|
// NOTE: This method should only be called from within the readHandler.
|
|
func (p *Brontide) handleWarningOrError(chanID lnwire.ChannelID,
|
|
msg lnwire.Message) bool {
|
|
|
|
if errMsg, ok := msg.(*lnwire.Error); ok {
|
|
p.storeError(errMsg)
|
|
}
|
|
|
|
switch {
|
|
// Connection wide messages should be forwarded to all channel links
|
|
// with this peer.
|
|
case chanID == lnwire.ConnectionWideID:
|
|
for _, chanStream := range p.activeMsgStreams {
|
|
chanStream.AddMsg(msg)
|
|
}
|
|
|
|
return false
|
|
|
|
// If the channel ID for the message corresponds to a pending channel,
|
|
// then the funding manager will handle it.
|
|
case p.cfg.FundingManager.IsPendingChannel(chanID, p):
|
|
p.cfg.FundingManager.ProcessFundingMsg(msg, p)
|
|
return false
|
|
|
|
// If not we hand the message to the channel link for this channel.
|
|
case p.isActiveChannel(chanID):
|
|
return true
|
|
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// messageSummary returns a human-readable string that summarizes a
|
|
// incoming/outgoing message. Not all messages will have a summary, only those
|
|
// which have additional data that can be informative at a glance.
|
|
func messageSummary(msg lnwire.Message) string {
|
|
switch msg := msg.(type) {
|
|
case *lnwire.Init:
|
|
// No summary.
|
|
return ""
|
|
|
|
case *lnwire.OpenChannel:
|
|
return fmt.Sprintf("temp_chan_id=%x, chain=%v, csv=%v, amt=%v, "+
|
|
"push_amt=%v, reserve=%v, flags=%v",
|
|
msg.PendingChannelID[:], msg.ChainHash,
|
|
msg.CsvDelay, msg.FundingAmount, msg.PushAmount,
|
|
msg.ChannelReserve, msg.ChannelFlags)
|
|
|
|
case *lnwire.AcceptChannel:
|
|
return fmt.Sprintf("temp_chan_id=%x, reserve=%v, csv=%v, num_confs=%v",
|
|
msg.PendingChannelID[:], msg.ChannelReserve, msg.CsvDelay,
|
|
msg.MinAcceptDepth)
|
|
|
|
case *lnwire.FundingCreated:
|
|
return fmt.Sprintf("temp_chan_id=%x, chan_point=%v",
|
|
msg.PendingChannelID[:], msg.FundingPoint)
|
|
|
|
case *lnwire.FundingSigned:
|
|
return fmt.Sprintf("chan_id=%v", msg.ChanID)
|
|
|
|
case *lnwire.ChannelReady:
|
|
return fmt.Sprintf("chan_id=%v, next_point=%x",
|
|
msg.ChanID, msg.NextPerCommitmentPoint.SerializeCompressed())
|
|
|
|
case *lnwire.Shutdown:
|
|
return fmt.Sprintf("chan_id=%v, script=%x", msg.ChannelID,
|
|
msg.Address[:])
|
|
|
|
case *lnwire.ClosingSigned:
|
|
return fmt.Sprintf("chan_id=%v, fee_sat=%v", msg.ChannelID,
|
|
msg.FeeSatoshis)
|
|
|
|
case *lnwire.UpdateAddHTLC:
|
|
var blindingPoint []byte
|
|
msg.BlindingPoint.WhenSome(
|
|
func(b tlv.RecordT[lnwire.BlindingPointTlvType,
|
|
*btcec.PublicKey]) {
|
|
|
|
blindingPoint = b.Val.SerializeCompressed()
|
|
},
|
|
)
|
|
|
|
return fmt.Sprintf("chan_id=%v, id=%v, amt=%v, expiry=%v, "+
|
|
"hash=%x, blinding_point=%x", msg.ChanID, msg.ID,
|
|
msg.Amount, msg.Expiry, msg.PaymentHash[:],
|
|
blindingPoint)
|
|
|
|
case *lnwire.UpdateFailHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, reason=%x", msg.ChanID,
|
|
msg.ID, msg.Reason)
|
|
|
|
case *lnwire.UpdateFulfillHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, pre_image=%x",
|
|
msg.ChanID, msg.ID, msg.PaymentPreimage[:])
|
|
|
|
case *lnwire.CommitSig:
|
|
return fmt.Sprintf("chan_id=%v, num_htlcs=%v", msg.ChanID,
|
|
len(msg.HtlcSigs))
|
|
|
|
case *lnwire.RevokeAndAck:
|
|
return fmt.Sprintf("chan_id=%v, rev=%x, next_point=%x",
|
|
msg.ChanID, msg.Revocation[:],
|
|
msg.NextRevocationKey.SerializeCompressed())
|
|
|
|
case *lnwire.UpdateFailMalformedHTLC:
|
|
return fmt.Sprintf("chan_id=%v, id=%v, fail_code=%v",
|
|
msg.ChanID, msg.ID, msg.FailureCode)
|
|
|
|
case *lnwire.Warning:
|
|
return fmt.Sprintf("%v", msg.Warning())
|
|
|
|
case *lnwire.Error:
|
|
return fmt.Sprintf("%v", msg.Error())
|
|
|
|
case *lnwire.AnnounceSignatures:
|
|
return fmt.Sprintf("chan_id=%v, short_chan_id=%v", msg.ChannelID,
|
|
msg.ShortChannelID.ToUint64())
|
|
|
|
case *lnwire.ChannelAnnouncement:
|
|
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v",
|
|
msg.ChainHash, msg.ShortChannelID.ToUint64())
|
|
|
|
case *lnwire.ChannelUpdate:
|
|
return fmt.Sprintf("chain_hash=%v, short_chan_id=%v, "+
|
|
"mflags=%v, cflags=%v, update_time=%v", msg.ChainHash,
|
|
msg.ShortChannelID.ToUint64(), msg.MessageFlags,
|
|
msg.ChannelFlags, time.Unix(int64(msg.Timestamp), 0))
|
|
|
|
case *lnwire.NodeAnnouncement:
|
|
return fmt.Sprintf("node=%x, update_time=%v",
|
|
msg.NodeID, time.Unix(int64(msg.Timestamp), 0))
|
|
|
|
case *lnwire.Ping:
|
|
return fmt.Sprintf("ping_bytes=%x", msg.PaddingBytes[:])
|
|
|
|
case *lnwire.Pong:
|
|
return fmt.Sprintf("len(pong_bytes)=%d", len(msg.PongBytes[:]))
|
|
|
|
case *lnwire.UpdateFee:
|
|
return fmt.Sprintf("chan_id=%v, fee_update_sat=%v",
|
|
msg.ChanID, int64(msg.FeePerKw))
|
|
|
|
case *lnwire.ChannelReestablish:
|
|
return fmt.Sprintf("chan_id=%v, next_local_height=%v, "+
|
|
"remote_tail_height=%v", msg.ChanID,
|
|
msg.NextLocalCommitHeight, msg.RemoteCommitTailHeight)
|
|
|
|
case *lnwire.ReplyShortChanIDsEnd:
|
|
return fmt.Sprintf("chain_hash=%v, complete=%v", msg.ChainHash,
|
|
msg.Complete)
|
|
|
|
case *lnwire.ReplyChannelRange:
|
|
return fmt.Sprintf("start_height=%v, end_height=%v, "+
|
|
"num_chans=%v, encoding=%v", msg.FirstBlockHeight,
|
|
msg.LastBlockHeight(), len(msg.ShortChanIDs),
|
|
msg.EncodingType)
|
|
|
|
case *lnwire.QueryShortChanIDs:
|
|
return fmt.Sprintf("chain_hash=%v, encoding=%v, num_chans=%v",
|
|
msg.ChainHash, msg.EncodingType, len(msg.ShortChanIDs))
|
|
|
|
case *lnwire.QueryChannelRange:
|
|
return fmt.Sprintf("chain_hash=%v, start_height=%v, "+
|
|
"end_height=%v", msg.ChainHash, msg.FirstBlockHeight,
|
|
msg.LastBlockHeight())
|
|
|
|
case *lnwire.GossipTimestampRange:
|
|
return fmt.Sprintf("chain_hash=%v, first_stamp=%v, "+
|
|
"stamp_range=%v", msg.ChainHash,
|
|
time.Unix(int64(msg.FirstTimestamp), 0),
|
|
msg.TimestampRange)
|
|
|
|
case *lnwire.Custom:
|
|
return fmt.Sprintf("type=%d", msg.Type)
|
|
}
|
|
|
|
return fmt.Sprintf("unknown msg type=%T", msg)
|
|
}
|
|
|
|
// logWireMessage logs the receipt or sending of particular wire message. This
|
|
// function is used rather than just logging the message in order to produce
|
|
// less spammy log messages in trace mode by setting the 'Curve" parameter to
|
|
// nil. Doing this avoids printing out each of the field elements in the curve
|
|
// parameters for secp256k1.
|
|
func (p *Brontide) logWireMessage(msg lnwire.Message, read bool) {
|
|
summaryPrefix := "Received"
|
|
if !read {
|
|
summaryPrefix = "Sending"
|
|
}
|
|
|
|
p.log.Debugf("%v", lnutils.NewLogClosure(func() string {
|
|
// Debug summary of message.
|
|
summary := messageSummary(msg)
|
|
if len(summary) > 0 {
|
|
summary = "(" + summary + ")"
|
|
}
|
|
|
|
preposition := "to"
|
|
if read {
|
|
preposition = "from"
|
|
}
|
|
|
|
var msgType string
|
|
if msg.MsgType() < lnwire.CustomTypeStart {
|
|
msgType = msg.MsgType().String()
|
|
} else {
|
|
msgType = "custom"
|
|
}
|
|
|
|
return fmt.Sprintf("%v %v%s %v %s", summaryPrefix,
|
|
msgType, summary, preposition, p)
|
|
}))
|
|
|
|
prefix := "readMessage from peer"
|
|
if !read {
|
|
prefix = "writeMessage to peer"
|
|
}
|
|
|
|
p.log.Tracef(prefix+": %v", lnutils.SpewLogClosure(msg))
|
|
}
|
|
|
|
// writeMessage writes and flushes the target lnwire.Message to the remote peer.
|
|
// If the passed message is nil, this method will only try to flush an existing
|
|
// message buffered on the connection. It is safe to call this method again
|
|
// with a nil message iff a timeout error is returned. This will continue to
|
|
// flush the pending message to the wire.
|
|
//
|
|
// NOTE:
|
|
// Besides its usage in Start, this function should not be used elsewhere
|
|
// except in writeHandler. If multiple goroutines call writeMessage at the same
|
|
// time, panics can occur because WriteMessage and Flush don't use any locking
|
|
// internally.
|
|
func (p *Brontide) writeMessage(msg lnwire.Message) error {
|
|
// Only log the message on the first attempt.
|
|
if msg != nil {
|
|
p.logWireMessage(msg, false)
|
|
}
|
|
|
|
noiseConn := p.cfg.Conn
|
|
|
|
flushMsg := func() error {
|
|
// Ensure the write deadline is set before we attempt to send
|
|
// the message.
|
|
writeDeadline := time.Now().Add(
|
|
p.scaleTimeout(writeMessageTimeout),
|
|
)
|
|
err := noiseConn.SetWriteDeadline(writeDeadline)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
// Flush the pending message to the wire. If an error is
|
|
// encountered, e.g. write timeout, the number of bytes written
|
|
// so far will be returned.
|
|
n, err := noiseConn.Flush()
|
|
|
|
// Record the number of bytes written on the wire, if any.
|
|
if n > 0 {
|
|
atomic.AddUint64(&p.bytesSent, uint64(n))
|
|
}
|
|
|
|
return err
|
|
}
|
|
|
|
// If the current message has already been serialized, encrypted, and
|
|
// buffered on the underlying connection we will skip straight to
|
|
// flushing it to the wire.
|
|
if msg == nil {
|
|
return flushMsg()
|
|
}
|
|
|
|
// Otherwise, this is a new message. We'll acquire a write buffer to
|
|
// serialize the message and buffer the ciphertext on the connection.
|
|
err := p.cfg.WritePool.Submit(func(buf *bytes.Buffer) error {
|
|
// Using a buffer allocated by the write pool, encode the
|
|
// message directly into the buffer.
|
|
_, writeErr := lnwire.WriteMessage(buf, msg, 0)
|
|
if writeErr != nil {
|
|
return writeErr
|
|
}
|
|
|
|
// Finally, write the message itself in a single swoop. This
|
|
// will buffer the ciphertext on the underlying connection. We
|
|
// will defer flushing the message until the write pool has been
|
|
// released.
|
|
return noiseConn.WriteMessage(buf.Bytes())
|
|
})
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
return flushMsg()
|
|
}
|
|
|
|
// writeHandler is a goroutine dedicated to reading messages off of an incoming
|
|
// queue, and writing them out to the wire. This goroutine coordinates with the
|
|
// queueHandler in order to ensure the incoming message queue is quickly
|
|
// drained.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) writeHandler() {
|
|
// We'll stop the timer after a new messages is sent, and also reset it
|
|
// after we process the next message.
|
|
idleTimer := time.AfterFunc(idleTimeout, func() {
|
|
err := fmt.Errorf("peer %s no write for %s -- disconnecting",
|
|
p, idleTimeout)
|
|
p.Disconnect(err)
|
|
})
|
|
|
|
var exitErr error
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case outMsg := <-p.sendQueue:
|
|
// Record the time at which we first attempt to send the
|
|
// message.
|
|
startTime := time.Now()
|
|
|
|
retry:
|
|
// Write out the message to the socket. If a timeout
|
|
// error is encountered, we will catch this and retry
|
|
// after backing off in case the remote peer is just
|
|
// slow to process messages from the wire.
|
|
err := p.writeMessage(outMsg.msg)
|
|
if nerr, ok := err.(net.Error); ok && nerr.Timeout() {
|
|
p.log.Debugf("Write timeout detected for "+
|
|
"peer, first write for message "+
|
|
"attempted %v ago",
|
|
time.Since(startTime))
|
|
|
|
// If we received a timeout error, this implies
|
|
// that the message was buffered on the
|
|
// connection successfully and that a flush was
|
|
// attempted. We'll set the message to nil so
|
|
// that on a subsequent pass we only try to
|
|
// flush the buffered message, and forgo
|
|
// reserializing or reencrypting it.
|
|
outMsg.msg = nil
|
|
|
|
goto retry
|
|
}
|
|
|
|
// The write succeeded, reset the idle timer to prevent
|
|
// us from disconnecting the peer.
|
|
if !idleTimer.Stop() {
|
|
select {
|
|
case <-idleTimer.C:
|
|
default:
|
|
}
|
|
}
|
|
idleTimer.Reset(idleTimeout)
|
|
|
|
// If the peer requested a synchronous write, respond
|
|
// with the error.
|
|
if outMsg.errChan != nil {
|
|
outMsg.errChan <- err
|
|
}
|
|
|
|
if err != nil {
|
|
exitErr = fmt.Errorf("unable to write "+
|
|
"message: %v", err)
|
|
break out
|
|
}
|
|
|
|
case <-p.quit:
|
|
exitErr = lnpeer.ErrPeerExiting
|
|
break out
|
|
}
|
|
}
|
|
|
|
// Avoid an exit deadlock by ensuring WaitGroups are decremented before
|
|
// disconnect.
|
|
p.wg.Done()
|
|
|
|
p.Disconnect(exitErr)
|
|
|
|
p.log.Trace("writeHandler for peer done")
|
|
}
|
|
|
|
// queueHandler is responsible for accepting messages from outside subsystems
|
|
// to be eventually sent out on the wire by the writeHandler.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) queueHandler() {
|
|
defer p.wg.Done()
|
|
|
|
// priorityMsgs holds an in order list of messages deemed high-priority
|
|
// to be added to the sendQueue. This predominately includes messages
|
|
// from the funding manager and htlcswitch.
|
|
priorityMsgs := list.New()
|
|
|
|
// lazyMsgs holds an in order list of messages deemed low-priority to be
|
|
// added to the sendQueue only after all high-priority messages have
|
|
// been queued. This predominately includes messages from the gossiper.
|
|
lazyMsgs := list.New()
|
|
|
|
for {
|
|
// Examine the front of the priority queue, if it is empty check
|
|
// the low priority queue.
|
|
elem := priorityMsgs.Front()
|
|
if elem == nil {
|
|
elem = lazyMsgs.Front()
|
|
}
|
|
|
|
if elem != nil {
|
|
front := elem.Value.(outgoingMsg)
|
|
|
|
// There's an element on the queue, try adding
|
|
// it to the sendQueue. We also watch for
|
|
// messages on the outgoingQueue, in case the
|
|
// writeHandler cannot accept messages on the
|
|
// sendQueue.
|
|
select {
|
|
case p.sendQueue <- front:
|
|
if front.priority {
|
|
priorityMsgs.Remove(elem)
|
|
} else {
|
|
lazyMsgs.Remove(elem)
|
|
}
|
|
case msg := <-p.outgoingQueue:
|
|
if msg.priority {
|
|
priorityMsgs.PushBack(msg)
|
|
} else {
|
|
lazyMsgs.PushBack(msg)
|
|
}
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
} else {
|
|
// If there weren't any messages to send to the
|
|
// writeHandler, then we'll accept a new message
|
|
// into the queue from outside sub-systems.
|
|
select {
|
|
case msg := <-p.outgoingQueue:
|
|
if msg.priority {
|
|
priorityMsgs.PushBack(msg)
|
|
} else {
|
|
lazyMsgs.PushBack(msg)
|
|
}
|
|
case <-p.quit:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// PingTime returns the estimated ping time to the peer in microseconds.
|
|
func (p *Brontide) PingTime() int64 {
|
|
return p.pingManager.GetPingTimeMicroSeconds()
|
|
}
|
|
|
|
// queueMsg adds the lnwire.Message to the back of the high priority send queue.
|
|
// If the errChan is non-nil, an error is sent back if the msg failed to queue
|
|
// or failed to write, and nil otherwise.
|
|
func (p *Brontide) queueMsg(msg lnwire.Message, errChan chan error) {
|
|
p.queue(true, msg, errChan)
|
|
}
|
|
|
|
// queueMsgLazy adds the lnwire.Message to the back of the low priority send
|
|
// queue. If the errChan is non-nil, an error is sent back if the msg failed to
|
|
// queue or failed to write, and nil otherwise.
|
|
func (p *Brontide) queueMsgLazy(msg lnwire.Message, errChan chan error) {
|
|
p.queue(false, msg, errChan)
|
|
}
|
|
|
|
// queue sends a given message to the queueHandler using the passed priority. If
|
|
// the errChan is non-nil, an error is sent back if the msg failed to queue or
|
|
// failed to write, and nil otherwise.
|
|
func (p *Brontide) queue(priority bool, msg lnwire.Message,
|
|
errChan chan error) {
|
|
|
|
select {
|
|
case p.outgoingQueue <- outgoingMsg{priority, msg, errChan}:
|
|
case <-p.quit:
|
|
p.log.Tracef("Peer shutting down, could not enqueue msg: %v.",
|
|
spew.Sdump(msg))
|
|
if errChan != nil {
|
|
errChan <- lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
}
|
|
|
|
// ChannelSnapshots returns a slice of channel snapshots detailing all
|
|
// currently active channels maintained with the remote peer.
|
|
func (p *Brontide) ChannelSnapshots() []*channeldb.ChannelSnapshot {
|
|
snapshots := make(
|
|
[]*channeldb.ChannelSnapshot, 0, p.activeChannels.Len(),
|
|
)
|
|
|
|
p.activeChannels.ForEach(func(_ lnwire.ChannelID,
|
|
activeChan *lnwallet.LightningChannel) error {
|
|
|
|
// If the activeChan is nil, then we skip it as the channel is
|
|
// pending.
|
|
if activeChan == nil {
|
|
return nil
|
|
}
|
|
|
|
// We'll only return a snapshot for channels that are
|
|
// *immediately* available for routing payments over.
|
|
if activeChan.RemoteNextRevocation() == nil {
|
|
return nil
|
|
}
|
|
|
|
snapshot := activeChan.StateSnapshot()
|
|
snapshots = append(snapshots, snapshot)
|
|
|
|
return nil
|
|
})
|
|
|
|
return snapshots
|
|
}
|
|
|
|
// genDeliveryScript returns a new script to be used to send our funds to in
|
|
// the case of a cooperative channel close negotiation.
|
|
func (p *Brontide) genDeliveryScript() ([]byte, error) {
|
|
// We'll send a normal p2wkh address unless we've negotiated the
|
|
// shutdown-any-segwit feature.
|
|
addrType := lnwallet.WitnessPubKey
|
|
if p.taprootShutdownAllowed() {
|
|
addrType = lnwallet.TaprootPubkey
|
|
}
|
|
|
|
deliveryAddr, err := p.cfg.Wallet.NewAddress(
|
|
addrType, false, lnwallet.DefaultAccountName,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
p.log.Infof("Delivery addr for channel close: %v",
|
|
deliveryAddr)
|
|
|
|
return txscript.PayToAddrScript(deliveryAddr)
|
|
}
|
|
|
|
// channelManager is goroutine dedicated to handling all requests/signals
|
|
// pertaining to the opening, cooperative closing, and force closing of all
|
|
// channels maintained with the remote peer.
|
|
//
|
|
// NOTE: This method MUST be run as a goroutine.
|
|
func (p *Brontide) channelManager() {
|
|
defer p.wg.Done()
|
|
|
|
// reenableTimeout will fire once after the configured channel status
|
|
// interval has elapsed. This will trigger us to sign new channel
|
|
// updates and broadcast them with the "disabled" flag unset.
|
|
reenableTimeout := time.After(p.cfg.ChanActiveTimeout)
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
// A new pending channel has arrived which means we are about
|
|
// to complete a funding workflow and is waiting for the final
|
|
// `ChannelReady` messages to be exchanged. We will add this
|
|
// channel to the `activeChannels` with a nil value to indicate
|
|
// this is a pending channel.
|
|
case req := <-p.newPendingChannel:
|
|
p.handleNewPendingChannel(req)
|
|
|
|
// A new channel has arrived which means we've just completed a
|
|
// funding workflow. We'll initialize the necessary local
|
|
// state, and notify the htlc switch of a new link.
|
|
case req := <-p.newActiveChannel:
|
|
p.handleNewActiveChannel(req)
|
|
|
|
// The funding flow for a pending channel is failed, we will
|
|
// remove it from Brontide.
|
|
case req := <-p.removePendingChannel:
|
|
p.handleRemovePendingChannel(req)
|
|
|
|
// We've just received a local request to close an active
|
|
// channel. It will either kick of a cooperative channel
|
|
// closure negotiation, or be a notification of a breached
|
|
// contract that should be abandoned.
|
|
case req := <-p.localCloseChanReqs:
|
|
p.handleLocalCloseReq(req)
|
|
|
|
// We've received a link failure from a link that was added to
|
|
// the switch. This will initiate the teardown of the link, and
|
|
// initiate any on-chain closures if necessary.
|
|
case failure := <-p.linkFailures:
|
|
p.handleLinkFailure(failure)
|
|
|
|
// We've received a new cooperative channel closure related
|
|
// message from the remote peer, we'll use this message to
|
|
// advance the chan closer state machine.
|
|
case closeMsg := <-p.chanCloseMsgs:
|
|
p.handleCloseMsg(closeMsg)
|
|
|
|
// The channel reannounce delay has elapsed, broadcast the
|
|
// reenabled channel updates to the network. This should only
|
|
// fire once, so we set the reenableTimeout channel to nil to
|
|
// mark it for garbage collection. If the peer is torn down
|
|
// before firing, reenabling will not be attempted.
|
|
// TODO(conner): consolidate reenables timers inside chan status
|
|
// manager
|
|
case <-reenableTimeout:
|
|
p.reenableActiveChannels()
|
|
|
|
// Since this channel will never fire again during the
|
|
// lifecycle of the peer, we nil the channel to mark it
|
|
// eligible for garbage collection, and make this
|
|
// explicitly ineligible to receive in future calls to
|
|
// select. This also shaves a few CPU cycles since the
|
|
// select will ignore this case entirely.
|
|
reenableTimeout = nil
|
|
|
|
// Once the reenabling is attempted, we also cancel the
|
|
// channel event subscription to free up the overflow
|
|
// queue used in channel notifier.
|
|
//
|
|
// NOTE: channelEventClient will be nil if the
|
|
// reenableTimeout is greater than 1 minute.
|
|
if p.channelEventClient != nil {
|
|
p.channelEventClient.Cancel()
|
|
}
|
|
|
|
case <-p.quit:
|
|
// As, we've been signalled to exit, we'll reset all
|
|
// our active channel back to their default state.
|
|
p.activeChannels.ForEach(func(_ lnwire.ChannelID,
|
|
lc *lnwallet.LightningChannel) error {
|
|
|
|
// Exit if the channel is nil as it's a pending
|
|
// channel.
|
|
if lc == nil {
|
|
return nil
|
|
}
|
|
|
|
lc.ResetState()
|
|
|
|
return nil
|
|
})
|
|
|
|
break out
|
|
}
|
|
}
|
|
}
|
|
|
|
// reenableActiveChannels searches the index of channels maintained with this
|
|
// peer, and reenables each public, non-pending channel. This is done at the
|
|
// gossip level by broadcasting a new ChannelUpdate with the disabled bit unset.
|
|
// No message will be sent if the channel is already enabled.
|
|
func (p *Brontide) reenableActiveChannels() {
|
|
// First, filter all known channels with this peer for ones that are
|
|
// both public and not pending.
|
|
activePublicChans := p.filterChannelsToEnable()
|
|
|
|
// Create a map to hold channels that needs to be retried.
|
|
retryChans := make(map[wire.OutPoint]struct{}, len(activePublicChans))
|
|
|
|
// For each of the public, non-pending channels, set the channel
|
|
// disabled bit to false and send out a new ChannelUpdate. If this
|
|
// channel is already active, the update won't be sent.
|
|
for _, chanPoint := range activePublicChans {
|
|
err := p.cfg.ChanStatusMgr.RequestEnable(chanPoint, false)
|
|
|
|
switch {
|
|
// No error occurred, continue to request the next channel.
|
|
case err == nil:
|
|
continue
|
|
|
|
// Cannot auto enable a manually disabled channel so we do
|
|
// nothing but proceed to the next channel.
|
|
case errors.Is(err, netann.ErrEnableManuallyDisabledChan):
|
|
p.log.Debugf("Channel(%v) was manually disabled, "+
|
|
"ignoring automatic enable request", chanPoint)
|
|
|
|
continue
|
|
|
|
// If the channel is reported as inactive, we will give it
|
|
// another chance. When handling the request, ChanStatusManager
|
|
// will check whether the link is active or not. One of the
|
|
// conditions is whether the link has been marked as
|
|
// reestablished, which happens inside a goroutine(htlcManager)
|
|
// after the link is started. And we may get a false negative
|
|
// saying the link is not active because that goroutine hasn't
|
|
// reached the line to mark the reestablishment. Thus we give
|
|
// it a second chance to send the request.
|
|
case errors.Is(err, netann.ErrEnableInactiveChan):
|
|
// If we don't have a client created, it means we
|
|
// shouldn't retry enabling the channel.
|
|
if p.channelEventClient == nil {
|
|
p.log.Errorf("Channel(%v) request enabling "+
|
|
"failed due to inactive link",
|
|
chanPoint)
|
|
|
|
continue
|
|
}
|
|
|
|
p.log.Warnf("Channel(%v) cannot be enabled as " +
|
|
"ChanStatusManager reported inactive, retrying")
|
|
|
|
// Add the channel to the retry map.
|
|
retryChans[chanPoint] = struct{}{}
|
|
}
|
|
}
|
|
|
|
// Retry the channels if we have any.
|
|
if len(retryChans) != 0 {
|
|
p.retryRequestEnable(retryChans)
|
|
}
|
|
}
|
|
|
|
// fetchActiveChanCloser attempts to fetch the active chan closer state machine
|
|
// for the target channel ID. If the channel isn't active an error is returned.
|
|
// Otherwise, either an existing state machine will be returned, or a new one
|
|
// will be created.
|
|
func (p *Brontide) fetchActiveChanCloser(chanID lnwire.ChannelID) (
|
|
*chancloser.ChanCloser, error) {
|
|
|
|
chanCloser, found := p.activeChanCloses[chanID]
|
|
if found {
|
|
// An entry will only be found if the closer has already been
|
|
// created for a non-pending channel or for a channel that had
|
|
// previously started the shutdown process but the connection
|
|
// was restarted.
|
|
return chanCloser, nil
|
|
}
|
|
|
|
// First, we'll ensure that we actually know of the target channel. If
|
|
// not, we'll ignore this message.
|
|
channel, ok := p.activeChannels.Load(chanID)
|
|
|
|
// If the channel isn't in the map or the channel is nil, return
|
|
// ErrChannelNotFound as the channel is pending.
|
|
if !ok || channel == nil {
|
|
return nil, ErrChannelNotFound
|
|
}
|
|
|
|
// We'll create a valid closing state machine in order to respond to
|
|
// the initiated cooperative channel closure. First, we set the
|
|
// delivery script that our funds will be paid out to. If an upfront
|
|
// shutdown script was set, we will use it. Otherwise, we get a fresh
|
|
// delivery script.
|
|
//
|
|
// TODO: Expose option to allow upfront shutdown script from watch-only
|
|
// accounts.
|
|
deliveryScript := channel.LocalUpfrontShutdownScript()
|
|
if len(deliveryScript) == 0 {
|
|
var err error
|
|
deliveryScript, err = p.genDeliveryScript()
|
|
if err != nil {
|
|
p.log.Errorf("unable to gen delivery script: %v",
|
|
err)
|
|
return nil, fmt.Errorf("close addr unavailable")
|
|
}
|
|
}
|
|
|
|
// In order to begin fee negotiations, we'll first compute our target
|
|
// ideal fee-per-kw.
|
|
feePerKw, err := p.cfg.FeeEstimator.EstimateFeePerKW(
|
|
p.cfg.CoopCloseTargetConfs,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("unable to query fee estimator: %v", err)
|
|
return nil, fmt.Errorf("unable to estimate fee")
|
|
}
|
|
|
|
chanCloser, err = p.createChanCloser(
|
|
channel, deliveryScript, feePerKw, nil, false,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("unable to create chan closer: %v", err)
|
|
return nil, fmt.Errorf("unable to create chan closer")
|
|
}
|
|
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
|
|
return chanCloser, nil
|
|
}
|
|
|
|
// filterChannelsToEnable filters a list of channels to be enabled upon start.
|
|
// The filtered channels are active channels that's neither private nor
|
|
// pending.
|
|
func (p *Brontide) filterChannelsToEnable() []wire.OutPoint {
|
|
var activePublicChans []wire.OutPoint
|
|
|
|
p.activeChannels.Range(func(chanID lnwire.ChannelID,
|
|
lnChan *lnwallet.LightningChannel) bool {
|
|
|
|
// If the lnChan is nil, continue as this is a pending channel.
|
|
if lnChan == nil {
|
|
return true
|
|
}
|
|
|
|
dbChan := lnChan.State()
|
|
isPublic := dbChan.ChannelFlags&lnwire.FFAnnounceChannel != 0
|
|
if !isPublic || dbChan.IsPending {
|
|
return true
|
|
}
|
|
|
|
// We'll also skip any channels added during this peer's
|
|
// lifecycle since they haven't waited out the timeout. Their
|
|
// first announcement will be enabled, and the chan status
|
|
// manager will begin monitoring them passively since they exist
|
|
// in the database.
|
|
if _, ok := p.addedChannels.Load(chanID); ok {
|
|
return true
|
|
}
|
|
|
|
activePublicChans = append(
|
|
activePublicChans, dbChan.FundingOutpoint,
|
|
)
|
|
|
|
return true
|
|
})
|
|
|
|
return activePublicChans
|
|
}
|
|
|
|
// retryRequestEnable takes a map of channel outpoints and a channel event
|
|
// client. It listens to the channel events and removes a channel from the map
|
|
// if it's matched to the event. Upon receiving an active channel event, it
|
|
// will send the enabling request again.
|
|
func (p *Brontide) retryRequestEnable(activeChans map[wire.OutPoint]struct{}) {
|
|
p.log.Debugf("Retry enabling %v channels", len(activeChans))
|
|
|
|
// retryEnable is a helper closure that sends an enable request and
|
|
// removes the channel from the map if it's matched.
|
|
retryEnable := func(chanPoint wire.OutPoint) error {
|
|
// If this is an active channel event, check whether it's in
|
|
// our targeted channels map.
|
|
_, found := activeChans[chanPoint]
|
|
|
|
// If this channel is irrelevant, return nil so the loop can
|
|
// jump to next iteration.
|
|
if !found {
|
|
return nil
|
|
}
|
|
|
|
// Otherwise we've just received an active signal for a channel
|
|
// that's previously failed to be enabled, we send the request
|
|
// again.
|
|
//
|
|
// We only give the channel one more shot, so we delete it from
|
|
// our map first to keep it from being attempted again.
|
|
delete(activeChans, chanPoint)
|
|
|
|
// Send the request.
|
|
err := p.cfg.ChanStatusMgr.RequestEnable(chanPoint, false)
|
|
if err != nil {
|
|
return fmt.Errorf("request enabling channel %v "+
|
|
"failed: %w", chanPoint, err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
for {
|
|
// If activeChans is empty, we've done processing all the
|
|
// channels.
|
|
if len(activeChans) == 0 {
|
|
p.log.Debug("Finished retry enabling channels")
|
|
return
|
|
}
|
|
|
|
select {
|
|
// A new event has been sent by the ChannelNotifier. We now
|
|
// check whether it's an active or inactive channel event.
|
|
case e := <-p.channelEventClient.Updates():
|
|
// If this is an active channel event, try enable the
|
|
// channel then jump to the next iteration.
|
|
active, ok := e.(channelnotifier.ActiveChannelEvent)
|
|
if ok {
|
|
chanPoint := *active.ChannelPoint
|
|
|
|
// If we received an error for this particular
|
|
// channel, we log an error and won't quit as
|
|
// we still want to retry other channels.
|
|
if err := retryEnable(chanPoint); err != nil {
|
|
p.log.Errorf("Retry failed: %v", err)
|
|
}
|
|
|
|
continue
|
|
}
|
|
|
|
// Otherwise check for inactive link event, and jump to
|
|
// next iteration if it's not.
|
|
inactive, ok := e.(channelnotifier.InactiveLinkEvent)
|
|
if !ok {
|
|
continue
|
|
}
|
|
|
|
// Found an inactive link event, if this is our
|
|
// targeted channel, remove it from our map.
|
|
chanPoint := *inactive.ChannelPoint
|
|
_, found := activeChans[chanPoint]
|
|
if !found {
|
|
continue
|
|
}
|
|
|
|
delete(activeChans, chanPoint)
|
|
p.log.Warnf("Re-enable channel %v failed, received "+
|
|
"inactive link event", chanPoint)
|
|
|
|
case <-p.quit:
|
|
p.log.Debugf("Peer shutdown during retry enabling")
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// chooseDeliveryScript takes two optionally set shutdown scripts and returns
|
|
// a suitable script to close out to. This may be nil if neither script is
|
|
// set. If both scripts are set, this function will error if they do not match.
|
|
func chooseDeliveryScript(upfront,
|
|
requested lnwire.DeliveryAddress) (lnwire.DeliveryAddress, error) {
|
|
|
|
// If no upfront shutdown script was provided, return the user
|
|
// requested address (which may be nil).
|
|
if len(upfront) == 0 {
|
|
return requested, nil
|
|
}
|
|
|
|
// If an upfront shutdown script was provided, and the user did not
|
|
// request a custom shutdown script, return the upfront address.
|
|
if len(requested) == 0 {
|
|
return upfront, nil
|
|
}
|
|
|
|
// If both an upfront shutdown script and a custom close script were
|
|
// provided, error if the user provided shutdown script does not match
|
|
// the upfront shutdown script (because closing out to a different
|
|
// script would violate upfront shutdown).
|
|
if !bytes.Equal(upfront, requested) {
|
|
return nil, chancloser.ErrUpfrontShutdownScriptMismatch
|
|
}
|
|
|
|
// The user requested script matches the upfront shutdown script, so we
|
|
// can return it without error.
|
|
return upfront, nil
|
|
}
|
|
|
|
// restartCoopClose checks whether we need to restart the cooperative close
|
|
// process for a given channel.
|
|
func (p *Brontide) restartCoopClose(lnChan *lnwallet.LightningChannel) (
|
|
*lnwire.Shutdown, error) {
|
|
|
|
// If this channel has status ChanStatusCoopBroadcasted and does not
|
|
// have a closing transaction, then the cooperative close process was
|
|
// started but never finished. We'll re-create the chanCloser state
|
|
// machine and resend Shutdown. BOLT#2 requires that we retransmit
|
|
// Shutdown exactly, but doing so would mean persisting the RPC
|
|
// provided close script. Instead use the LocalUpfrontShutdownScript
|
|
// or generate a script.
|
|
c := lnChan.State()
|
|
_, err := c.BroadcastedCooperative()
|
|
if err != nil && err != channeldb.ErrNoCloseTx {
|
|
// An error other than ErrNoCloseTx was encountered.
|
|
return nil, err
|
|
} else if err == nil {
|
|
// This channel has already completed the coop close
|
|
// negotiation.
|
|
return nil, nil
|
|
}
|
|
|
|
var deliveryScript []byte
|
|
|
|
shutdownInfo, err := c.ShutdownInfo()
|
|
switch {
|
|
// We have previously stored the delivery script that we need to use
|
|
// in the shutdown message. Re-use this script.
|
|
case err == nil:
|
|
shutdownInfo.WhenSome(func(info channeldb.ShutdownInfo) {
|
|
deliveryScript = info.DeliveryScript.Val
|
|
})
|
|
|
|
// An error other than ErrNoShutdownInfo was returned
|
|
case !errors.Is(err, channeldb.ErrNoShutdownInfo):
|
|
return nil, err
|
|
|
|
case errors.Is(err, channeldb.ErrNoShutdownInfo):
|
|
deliveryScript = c.LocalShutdownScript
|
|
if len(deliveryScript) == 0 {
|
|
var err error
|
|
deliveryScript, err = p.genDeliveryScript()
|
|
if err != nil {
|
|
p.log.Errorf("unable to gen delivery script: "+
|
|
"%v", err)
|
|
|
|
return nil, fmt.Errorf("close addr unavailable")
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute an ideal fee.
|
|
feePerKw, err := p.cfg.FeeEstimator.EstimateFeePerKW(
|
|
p.cfg.CoopCloseTargetConfs,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("unable to query fee estimator: %v", err)
|
|
return nil, fmt.Errorf("unable to estimate fee")
|
|
}
|
|
|
|
// Determine whether we or the peer are the initiator of the coop
|
|
// close attempt by looking at the channel's status.
|
|
locallyInitiated := c.HasChanStatus(
|
|
channeldb.ChanStatusLocalCloseInitiator,
|
|
)
|
|
|
|
chanCloser, err := p.createChanCloser(
|
|
lnChan, deliveryScript, feePerKw, nil, locallyInitiated,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("unable to create chan closer: %v", err)
|
|
return nil, fmt.Errorf("unable to create chan closer")
|
|
}
|
|
|
|
// This does not need a mutex even though it is in a different
|
|
// goroutine since this is done before the channelManager goroutine is
|
|
// created.
|
|
chanID := lnwire.NewChanIDFromOutPoint(c.FundingOutpoint)
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
|
|
// Create the Shutdown message.
|
|
shutdownMsg, err := chanCloser.ShutdownChan()
|
|
if err != nil {
|
|
p.log.Errorf("unable to create shutdown message: %v", err)
|
|
delete(p.activeChanCloses, chanID)
|
|
return nil, err
|
|
}
|
|
|
|
return shutdownMsg, nil
|
|
}
|
|
|
|
// createChanCloser constructs a ChanCloser from the passed parameters and is
|
|
// used to de-duplicate code.
|
|
func (p *Brontide) createChanCloser(channel *lnwallet.LightningChannel,
|
|
deliveryScript lnwire.DeliveryAddress, fee chainfee.SatPerKWeight,
|
|
req *htlcswitch.ChanClose,
|
|
locallyInitiated bool) (*chancloser.ChanCloser, error) {
|
|
|
|
_, startingHeight, err := p.cfg.ChainIO.GetBestBlock()
|
|
if err != nil {
|
|
p.log.Errorf("unable to obtain best block: %v", err)
|
|
return nil, fmt.Errorf("cannot obtain best block")
|
|
}
|
|
|
|
// The req will only be set if we initiated the co-op closing flow.
|
|
var maxFee chainfee.SatPerKWeight
|
|
if req != nil {
|
|
maxFee = req.MaxFee
|
|
}
|
|
|
|
chanCloser := chancloser.NewChanCloser(
|
|
chancloser.ChanCloseCfg{
|
|
Channel: channel,
|
|
MusigSession: NewMusigChanCloser(channel),
|
|
FeeEstimator: &chancloser.SimpleCoopFeeEstimator{},
|
|
BroadcastTx: p.cfg.Wallet.PublishTransaction,
|
|
DisableChannel: func(op wire.OutPoint) error {
|
|
return p.cfg.ChanStatusMgr.RequestDisable(
|
|
op, false,
|
|
)
|
|
},
|
|
MaxFee: maxFee,
|
|
Disconnect: func() error {
|
|
return p.cfg.DisconnectPeer(p.IdentityKey())
|
|
},
|
|
ChainParams: &p.cfg.Wallet.Cfg.NetParams,
|
|
Quit: p.quit,
|
|
},
|
|
deliveryScript,
|
|
fee,
|
|
uint32(startingHeight),
|
|
req,
|
|
locallyInitiated,
|
|
)
|
|
|
|
return chanCloser, nil
|
|
}
|
|
|
|
// handleLocalCloseReq kicks-off the workflow to execute a cooperative or
|
|
// forced unilateral closure of the channel initiated by a local subsystem.
|
|
func (p *Brontide) handleLocalCloseReq(req *htlcswitch.ChanClose) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(*req.ChanPoint)
|
|
|
|
channel, ok := p.activeChannels.Load(chanID)
|
|
|
|
// Though this function can't be called for pending channels, we still
|
|
// check whether channel is nil for safety.
|
|
if !ok || channel == nil {
|
|
err := fmt.Errorf("unable to close channel, ChannelID(%v) is "+
|
|
"unknown", chanID)
|
|
p.log.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
switch req.CloseType {
|
|
// A type of CloseRegular indicates that the user has opted to close
|
|
// out this channel on-chain, so we execute the cooperative channel
|
|
// closure workflow.
|
|
case contractcourt.CloseRegular:
|
|
// First, we'll choose a delivery address that we'll use to send the
|
|
// funds to in the case of a successful negotiation.
|
|
|
|
// An upfront shutdown and user provided script are both optional,
|
|
// but must be equal if both set (because we cannot serve a request
|
|
// to close out to a script which violates upfront shutdown). Get the
|
|
// appropriate address to close out to (which may be nil if neither
|
|
// are set) and error if they are both set and do not match.
|
|
deliveryScript, err := chooseDeliveryScript(
|
|
channel.LocalUpfrontShutdownScript(), req.DeliveryScript,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("cannot close channel %v: %v", req.ChanPoint, err)
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
// If neither an upfront address or a user set address was
|
|
// provided, generate a fresh script.
|
|
if len(deliveryScript) == 0 {
|
|
deliveryScript, err = p.genDeliveryScript()
|
|
if err != nil {
|
|
p.log.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
}
|
|
|
|
chanCloser, err := p.createChanCloser(
|
|
channel, deliveryScript, req.TargetFeePerKw, req, true,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf(err.Error())
|
|
req.Err <- err
|
|
return
|
|
}
|
|
|
|
p.activeChanCloses[chanID] = chanCloser
|
|
|
|
// Finally, we'll initiate the channel shutdown within the
|
|
// chanCloser, and send the shutdown message to the remote
|
|
// party to kick things off.
|
|
shutdownMsg, err := chanCloser.ShutdownChan()
|
|
if err != nil {
|
|
p.log.Errorf(err.Error())
|
|
req.Err <- err
|
|
delete(p.activeChanCloses, chanID)
|
|
|
|
// As we were unable to shutdown the channel, we'll
|
|
// return it back to its normal state.
|
|
channel.ResetState()
|
|
return
|
|
}
|
|
|
|
link := p.fetchLinkFromKeyAndCid(chanID)
|
|
if link == nil {
|
|
// If the link is nil then it means it was already
|
|
// removed from the switch or it never existed in the
|
|
// first place. The latter case is handled at the
|
|
// beginning of this function, so in the case where it
|
|
// has already been removed, we can skip adding the
|
|
// commit hook to queue a Shutdown message.
|
|
p.log.Warnf("link not found during attempted closure: "+
|
|
"%v", chanID)
|
|
return
|
|
}
|
|
|
|
if !link.DisableAdds(htlcswitch.Outgoing) {
|
|
p.log.Warnf("Outgoing link adds already "+
|
|
"disabled: %v", link.ChanID())
|
|
}
|
|
|
|
link.OnCommitOnce(htlcswitch.Outgoing, func() {
|
|
p.queueMsg(shutdownMsg, nil)
|
|
})
|
|
|
|
// A type of CloseBreach indicates that the counterparty has breached
|
|
// the channel therefore we need to clean up our local state.
|
|
case contractcourt.CloseBreach:
|
|
// TODO(roasbeef): no longer need with newer beach logic?
|
|
p.log.Infof("ChannelPoint(%v) has been breached, wiping "+
|
|
"channel", req.ChanPoint)
|
|
p.WipeChannel(req.ChanPoint)
|
|
}
|
|
}
|
|
|
|
// linkFailureReport is sent to the channelManager whenever a link reports a
|
|
// link failure, and is forced to exit. The report houses the necessary
|
|
// information to clean up the channel state, send back the error message, and
|
|
// force close if necessary.
|
|
type linkFailureReport struct {
|
|
chanPoint wire.OutPoint
|
|
chanID lnwire.ChannelID
|
|
shortChanID lnwire.ShortChannelID
|
|
linkErr htlcswitch.LinkFailureError
|
|
}
|
|
|
|
// handleLinkFailure processes a link failure report when a link in the switch
|
|
// fails. It facilitates the removal of all channel state within the peer,
|
|
// force closing the channel depending on severity, and sending the error
|
|
// message back to the remote party.
|
|
func (p *Brontide) handleLinkFailure(failure linkFailureReport) {
|
|
// Retrieve the channel from the map of active channels. We do this to
|
|
// have access to it even after WipeChannel remove it from the map.
|
|
chanID := lnwire.NewChanIDFromOutPoint(failure.chanPoint)
|
|
lnChan, _ := p.activeChannels.Load(chanID)
|
|
|
|
// We begin by wiping the link, which will remove it from the switch,
|
|
// such that it won't be attempted used for any more updates.
|
|
//
|
|
// TODO(halseth): should introduce a way to atomically stop/pause the
|
|
// link and cancel back any adds in its mailboxes such that we can
|
|
// safely force close without the link being added again and updates
|
|
// being applied.
|
|
p.WipeChannel(&failure.chanPoint)
|
|
|
|
// If the error encountered was severe enough, we'll now force close
|
|
// the channel to prevent reading it to the switch in the future.
|
|
if failure.linkErr.FailureAction == htlcswitch.LinkFailureForceClose {
|
|
p.log.Warnf("Force closing link(%v)", failure.shortChanID)
|
|
|
|
closeTx, err := p.cfg.ChainArb.ForceCloseContract(
|
|
failure.chanPoint,
|
|
)
|
|
if err != nil {
|
|
p.log.Errorf("unable to force close "+
|
|
"link(%v): %v", failure.shortChanID, err)
|
|
} else {
|
|
p.log.Infof("channel(%v) force "+
|
|
"closed with txid %v",
|
|
failure.shortChanID, closeTx.TxHash())
|
|
}
|
|
}
|
|
|
|
// If this is a permanent failure, we will mark the channel borked.
|
|
if failure.linkErr.PermanentFailure && lnChan != nil {
|
|
p.log.Warnf("Marking link(%v) borked due to permanent "+
|
|
"failure", failure.shortChanID)
|
|
|
|
if err := lnChan.State().MarkBorked(); err != nil {
|
|
p.log.Errorf("Unable to mark channel %v borked: %v",
|
|
failure.shortChanID, err)
|
|
}
|
|
}
|
|
|
|
// Send an error to the peer, why we failed the channel.
|
|
if failure.linkErr.ShouldSendToPeer() {
|
|
// If SendData is set, send it to the peer. If not, we'll use
|
|
// the standard error messages in the payload. We only include
|
|
// sendData in the cases where the error data does not contain
|
|
// sensitive information.
|
|
data := []byte(failure.linkErr.Error())
|
|
if failure.linkErr.SendData != nil {
|
|
data = failure.linkErr.SendData
|
|
}
|
|
|
|
var networkMsg lnwire.Message
|
|
if failure.linkErr.Warning {
|
|
networkMsg = &lnwire.Warning{
|
|
ChanID: failure.chanID,
|
|
Data: data,
|
|
}
|
|
} else {
|
|
networkMsg = &lnwire.Error{
|
|
ChanID: failure.chanID,
|
|
Data: data,
|
|
}
|
|
}
|
|
|
|
err := p.SendMessage(true, networkMsg)
|
|
if err != nil {
|
|
p.log.Errorf("unable to send msg to "+
|
|
"remote peer: %v", err)
|
|
}
|
|
}
|
|
|
|
// If the failure action is disconnect, then we'll execute that now. If
|
|
// we had to send an error above, it was a sync call, so we expect the
|
|
// message to be flushed on the wire by now.
|
|
if failure.linkErr.FailureAction == htlcswitch.LinkFailureDisconnect {
|
|
p.Disconnect(fmt.Errorf("link requested disconnect"))
|
|
}
|
|
}
|
|
|
|
// fetchLinkFromKeyAndCid fetches a link from the switch via the remote's
|
|
// public key and the channel id.
|
|
func (p *Brontide) fetchLinkFromKeyAndCid(
|
|
cid lnwire.ChannelID) htlcswitch.ChannelUpdateHandler {
|
|
|
|
var chanLink htlcswitch.ChannelUpdateHandler
|
|
|
|
// We don't need to check the error here, and can instead just loop
|
|
// over the slice and return nil.
|
|
links, _ := p.cfg.Switch.GetLinksByInterface(p.cfg.PubKeyBytes)
|
|
for _, link := range links {
|
|
if link.ChanID() == cid {
|
|
chanLink = link
|
|
break
|
|
}
|
|
}
|
|
|
|
return chanLink
|
|
}
|
|
|
|
// finalizeChanClosure performs the final clean up steps once the cooperative
|
|
// closure transaction has been fully broadcast. The finalized closing state
|
|
// machine should be passed in. Once the transaction has been sufficiently
|
|
// confirmed, the channel will be marked as fully closed within the database,
|
|
// and any clients will be notified of updates to the closing state.
|
|
func (p *Brontide) finalizeChanClosure(chanCloser *chancloser.ChanCloser) {
|
|
closeReq := chanCloser.CloseRequest()
|
|
|
|
// First, we'll clear all indexes related to the channel in question.
|
|
chanPoint := chanCloser.Channel().ChannelPoint()
|
|
p.WipeChannel(&chanPoint)
|
|
|
|
// Also clear the activeChanCloses map of this channel.
|
|
cid := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
delete(p.activeChanCloses, cid)
|
|
|
|
// Next, we'll launch a goroutine which will request to be notified by
|
|
// the ChainNotifier once the closure transaction obtains a single
|
|
// confirmation.
|
|
notifier := p.cfg.ChainNotifier
|
|
|
|
// If any error happens during waitForChanToClose, forward it to
|
|
// closeReq. If this channel closure is not locally initiated, closeReq
|
|
// will be nil, so just ignore the error.
|
|
errChan := make(chan error, 1)
|
|
if closeReq != nil {
|
|
errChan = closeReq.Err
|
|
}
|
|
|
|
closingTx, err := chanCloser.ClosingTx()
|
|
if err != nil {
|
|
if closeReq != nil {
|
|
p.log.Error(err)
|
|
closeReq.Err <- err
|
|
}
|
|
}
|
|
|
|
closingTxid := closingTx.TxHash()
|
|
|
|
// If this is a locally requested shutdown, update the caller with a
|
|
// new event detailing the current pending state of this request.
|
|
if closeReq != nil {
|
|
closeReq.Updates <- &PendingUpdate{
|
|
Txid: closingTxid[:],
|
|
}
|
|
}
|
|
|
|
go WaitForChanToClose(chanCloser.NegotiationHeight(), notifier, errChan,
|
|
&chanPoint, &closingTxid, closingTx.TxOut[0].PkScript, func() {
|
|
// Respond to the local subsystem which requested the
|
|
// channel closure.
|
|
if closeReq != nil {
|
|
closeReq.Updates <- &ChannelCloseUpdate{
|
|
ClosingTxid: closingTxid[:],
|
|
Success: true,
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
// WaitForChanToClose uses the passed notifier to wait until the channel has
|
|
// been detected as closed on chain and then concludes by executing the
|
|
// following actions: the channel point will be sent over the settleChan, and
|
|
// finally the callback will be executed. If any error is encountered within
|
|
// the function, then it will be sent over the errChan.
|
|
func WaitForChanToClose(bestHeight uint32, notifier chainntnfs.ChainNotifier,
|
|
errChan chan error, chanPoint *wire.OutPoint,
|
|
closingTxID *chainhash.Hash, closeScript []byte, cb func()) {
|
|
|
|
peerLog.Infof("Waiting for confirmation of close of ChannelPoint(%v) "+
|
|
"with txid: %v", chanPoint, closingTxID)
|
|
|
|
// TODO(roasbeef): add param for num needed confs
|
|
confNtfn, err := notifier.RegisterConfirmationsNtfn(
|
|
closingTxID, closeScript, 1, bestHeight,
|
|
)
|
|
if err != nil {
|
|
if errChan != nil {
|
|
errChan <- err
|
|
}
|
|
return
|
|
}
|
|
|
|
// In the case that the ChainNotifier is shutting down, all subscriber
|
|
// notification channels will be closed, generating a nil receive.
|
|
height, ok := <-confNtfn.Confirmed
|
|
if !ok {
|
|
return
|
|
}
|
|
|
|
// The channel has been closed, remove it from any active indexes, and
|
|
// the database state.
|
|
peerLog.Infof("ChannelPoint(%v) is now closed at "+
|
|
"height %v", chanPoint, height.BlockHeight)
|
|
|
|
// Finally, execute the closure call back to mark the confirmation of
|
|
// the transaction closing the contract.
|
|
cb()
|
|
}
|
|
|
|
// WipeChannel removes the passed channel point from all indexes associated with
|
|
// the peer and the switch.
|
|
func (p *Brontide) WipeChannel(chanPoint *wire.OutPoint) {
|
|
chanID := lnwire.NewChanIDFromOutPoint(*chanPoint)
|
|
|
|
p.activeChannels.Delete(chanID)
|
|
|
|
// Instruct the HtlcSwitch to close this link as the channel is no
|
|
// longer active.
|
|
p.cfg.Switch.RemoveLink(chanID)
|
|
}
|
|
|
|
// handleInitMsg handles the incoming init message which contains global and
|
|
// local feature vectors. If feature vectors are incompatible then disconnect.
|
|
func (p *Brontide) handleInitMsg(msg *lnwire.Init) error {
|
|
// First, merge any features from the legacy global features field into
|
|
// those presented in the local features fields.
|
|
err := msg.Features.Merge(msg.GlobalFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to merge legacy global features: %w",
|
|
err)
|
|
}
|
|
|
|
// Then, finalize the remote feature vector providing the flattened
|
|
// feature bit namespace.
|
|
p.remoteFeatures = lnwire.NewFeatureVector(
|
|
msg.Features, lnwire.Features,
|
|
)
|
|
|
|
// Now that we have their features loaded, we'll ensure that they
|
|
// didn't set any required bits that we don't know of.
|
|
err = feature.ValidateRequired(p.remoteFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid remote features: %w", err)
|
|
}
|
|
|
|
// Ensure the remote party's feature vector contains all transitive
|
|
// dependencies. We know ours are correct since they are validated
|
|
// during the feature manager's instantiation.
|
|
err = feature.ValidateDeps(p.remoteFeatures)
|
|
if err != nil {
|
|
return fmt.Errorf("invalid remote features: %w", err)
|
|
}
|
|
|
|
// Now that we know we understand their requirements, we'll check to
|
|
// see if they don't support anything that we deem to be mandatory.
|
|
if !p.remoteFeatures.HasFeature(lnwire.DataLossProtectRequired) {
|
|
return fmt.Errorf("data loss protection required")
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// LocalFeatures returns the set of global features that has been advertised by
|
|
// the local node. This allows sub-systems that use this interface to gate their
|
|
// behavior off the set of negotiated feature bits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) LocalFeatures() *lnwire.FeatureVector {
|
|
return p.cfg.Features
|
|
}
|
|
|
|
// RemoteFeatures returns the set of global features that has been advertised by
|
|
// the remote node. This allows sub-systems that use this interface to gate
|
|
// their behavior off the set of negotiated feature bits.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) RemoteFeatures() *lnwire.FeatureVector {
|
|
return p.remoteFeatures
|
|
}
|
|
|
|
// hasNegotiatedScidAlias returns true if we've negotiated the
|
|
// option-scid-alias feature bit with the peer.
|
|
func (p *Brontide) hasNegotiatedScidAlias() bool {
|
|
peerHas := p.remoteFeatures.HasFeature(lnwire.ScidAliasOptional)
|
|
localHas := p.cfg.Features.HasFeature(lnwire.ScidAliasOptional)
|
|
return peerHas && localHas
|
|
}
|
|
|
|
// sendInitMsg sends the Init message to the remote peer. This message contains
|
|
// our currently supported local and global features.
|
|
func (p *Brontide) sendInitMsg(legacyChan bool) error {
|
|
features := p.cfg.Features.Clone()
|
|
legacyFeatures := p.cfg.LegacyFeatures.Clone()
|
|
|
|
// If we have a legacy channel open with a peer, we downgrade static
|
|
// remote required to optional in case the peer does not understand the
|
|
// required feature bit. If we do not do this, the peer will reject our
|
|
// connection because it does not understand a required feature bit, and
|
|
// our channel will be unusable.
|
|
if legacyChan && features.RequiresFeature(lnwire.StaticRemoteKeyRequired) {
|
|
p.log.Infof("Legacy channel open with peer, " +
|
|
"downgrading static remote required feature bit to " +
|
|
"optional")
|
|
|
|
// Unset and set in both the local and global features to
|
|
// ensure both sets are consistent and merge able by old and
|
|
// new nodes.
|
|
features.Unset(lnwire.StaticRemoteKeyRequired)
|
|
legacyFeatures.Unset(lnwire.StaticRemoteKeyRequired)
|
|
|
|
features.Set(lnwire.StaticRemoteKeyOptional)
|
|
legacyFeatures.Set(lnwire.StaticRemoteKeyOptional)
|
|
}
|
|
|
|
msg := lnwire.NewInitMessage(
|
|
legacyFeatures.RawFeatureVector,
|
|
features.RawFeatureVector,
|
|
)
|
|
|
|
return p.writeMessage(msg)
|
|
}
|
|
|
|
// resendChanSyncMsg will attempt to find a channel sync message for the closed
|
|
// channel and resend it to our peer.
|
|
func (p *Brontide) resendChanSyncMsg(cid lnwire.ChannelID) error {
|
|
// If we already re-sent the mssage for this channel, we won't do it
|
|
// again.
|
|
if _, ok := p.resentChanSyncMsg[cid]; ok {
|
|
return nil
|
|
}
|
|
|
|
// Check if we have any channel sync messages stored for this channel.
|
|
c, err := p.cfg.ChannelDB.FetchClosedChannelForID(cid)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to fetch channel sync messages for "+
|
|
"peer %v: %v", p, err)
|
|
}
|
|
|
|
if c.LastChanSyncMsg == nil {
|
|
return fmt.Errorf("no chan sync message stored for channel %v",
|
|
cid)
|
|
}
|
|
|
|
if !c.RemotePub.IsEqual(p.IdentityKey()) {
|
|
return fmt.Errorf("ignoring channel reestablish from "+
|
|
"peer=%x", p.IdentityKey().SerializeCompressed())
|
|
}
|
|
|
|
p.log.Debugf("Re-sending channel sync message for channel %v to "+
|
|
"peer", cid)
|
|
|
|
if err := p.SendMessage(true, c.LastChanSyncMsg); err != nil {
|
|
return fmt.Errorf("failed resending channel sync "+
|
|
"message to peer %v: %v", p, err)
|
|
}
|
|
|
|
p.log.Debugf("Re-sent channel sync message for channel %v to peer ",
|
|
cid)
|
|
|
|
// Note down that we sent the message, so we won't resend it again for
|
|
// this connection.
|
|
p.resentChanSyncMsg[cid] = struct{}{}
|
|
|
|
return nil
|
|
}
|
|
|
|
// SendMessage sends a variadic number of high-priority messages to the remote
|
|
// peer. The first argument denotes if the method should block until the
|
|
// messages have been sent to the remote peer or an error is returned,
|
|
// otherwise it returns immediately after queuing.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) SendMessage(sync bool, msgs ...lnwire.Message) error {
|
|
return p.sendMessage(sync, true, msgs...)
|
|
}
|
|
|
|
// SendMessageLazy sends a variadic number of low-priority messages to the
|
|
// remote peer. The first argument denotes if the method should block until
|
|
// the messages have been sent to the remote peer or an error is returned,
|
|
// otherwise it returns immediately after queueing.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) SendMessageLazy(sync bool, msgs ...lnwire.Message) error {
|
|
return p.sendMessage(sync, false, msgs...)
|
|
}
|
|
|
|
// sendMessage queues a variadic number of messages using the passed priority
|
|
// to the remote peer. If sync is true, this method will block until the
|
|
// messages have been sent to the remote peer or an error is returned, otherwise
|
|
// it returns immediately after queueing.
|
|
func (p *Brontide) sendMessage(sync, priority bool, msgs ...lnwire.Message) error {
|
|
// Add all incoming messages to the outgoing queue. A list of error
|
|
// chans is populated for each message if the caller requested a sync
|
|
// send.
|
|
var errChans []chan error
|
|
if sync {
|
|
errChans = make([]chan error, 0, len(msgs))
|
|
}
|
|
for _, msg := range msgs {
|
|
// If a sync send was requested, create an error chan to listen
|
|
// for an ack from the writeHandler.
|
|
var errChan chan error
|
|
if sync {
|
|
errChan = make(chan error, 1)
|
|
errChans = append(errChans, errChan)
|
|
}
|
|
|
|
if priority {
|
|
p.queueMsg(msg, errChan)
|
|
} else {
|
|
p.queueMsgLazy(msg, errChan)
|
|
}
|
|
}
|
|
|
|
// Wait for all replies from the writeHandler. For async sends, this
|
|
// will be a NOP as the list of error chans is nil.
|
|
for _, errChan := range errChans {
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
case <-p.cfg.Quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// PubKey returns the pubkey of the peer in compressed serialized format.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) PubKey() [33]byte {
|
|
return p.cfg.PubKeyBytes
|
|
}
|
|
|
|
// IdentityKey returns the public key of the remote peer.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) IdentityKey() *btcec.PublicKey {
|
|
return p.cfg.Addr.IdentityKey
|
|
}
|
|
|
|
// Address returns the network address of the remote peer.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) Address() net.Addr {
|
|
return p.cfg.Addr.Address
|
|
}
|
|
|
|
// AddNewChannel adds a new channel to the peer. The channel should fail to be
|
|
// added if the cancel channel is closed.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) AddNewChannel(newChan *lnpeer.NewChannel,
|
|
cancel <-chan struct{}) error {
|
|
|
|
errChan := make(chan error, 1)
|
|
newChanMsg := &newChannelMsg{
|
|
channel: newChan,
|
|
err: errChan,
|
|
}
|
|
|
|
select {
|
|
case p.newActiveChannel <- newChanMsg:
|
|
case <-cancel:
|
|
return errors.New("canceled adding new channel")
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
|
|
// We pause here to wait for the peer to recognize the new channel
|
|
// before we close the channel barrier corresponding to the channel.
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
// AddPendingChannel adds a pending open channel to the peer. The channel
|
|
// should fail to be added if the cancel channel is closed.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) AddPendingChannel(cid lnwire.ChannelID,
|
|
cancel <-chan struct{}) error {
|
|
|
|
errChan := make(chan error, 1)
|
|
newChanMsg := &newChannelMsg{
|
|
channelID: cid,
|
|
err: errChan,
|
|
}
|
|
|
|
select {
|
|
case p.newPendingChannel <- newChanMsg:
|
|
|
|
case <-cancel:
|
|
return errors.New("canceled adding pending channel")
|
|
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
|
|
// We pause here to wait for the peer to recognize the new pending
|
|
// channel before we close the channel barrier corresponding to the
|
|
// channel.
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
|
|
case <-cancel:
|
|
return errors.New("canceled adding pending channel")
|
|
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
// RemovePendingChannel removes a pending open channel from the peer.
|
|
//
|
|
// NOTE: Part of the lnpeer.Peer interface.
|
|
func (p *Brontide) RemovePendingChannel(cid lnwire.ChannelID) error {
|
|
errChan := make(chan error, 1)
|
|
newChanMsg := &newChannelMsg{
|
|
channelID: cid,
|
|
err: errChan,
|
|
}
|
|
|
|
select {
|
|
case p.removePendingChannel <- newChanMsg:
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
|
|
// We pause here to wait for the peer to respond to the cancellation of
|
|
// the pending channel before we close the channel barrier
|
|
// corresponding to the channel.
|
|
select {
|
|
case err := <-errChan:
|
|
return err
|
|
|
|
case <-p.quit:
|
|
return lnpeer.ErrPeerExiting
|
|
}
|
|
}
|
|
|
|
// StartTime returns the time at which the connection was established if the
|
|
// peer started successfully, and zero otherwise.
|
|
func (p *Brontide) StartTime() time.Time {
|
|
return p.startTime
|
|
}
|
|
|
|
// handleCloseMsg is called when a new cooperative channel closure related
|
|
// message is received from the remote peer. We'll use this message to advance
|
|
// the chan closer state machine.
|
|
func (p *Brontide) handleCloseMsg(msg *closeMsg) {
|
|
link := p.fetchLinkFromKeyAndCid(msg.cid)
|
|
|
|
// We'll now fetch the matching closing state machine in order to continue,
|
|
// or finalize the channel closure process.
|
|
chanCloser, err := p.fetchActiveChanCloser(msg.cid)
|
|
if err != nil {
|
|
// If the channel is not known to us, we'll simply ignore this message.
|
|
if err == ErrChannelNotFound {
|
|
return
|
|
}
|
|
|
|
p.log.Errorf("Unable to respond to remote close msg: %v", err)
|
|
|
|
errMsg := &lnwire.Error{
|
|
ChanID: msg.cid,
|
|
Data: lnwire.ErrorData(err.Error()),
|
|
}
|
|
p.queueMsg(errMsg, nil)
|
|
return
|
|
}
|
|
|
|
handleErr := func(err error) {
|
|
err = fmt.Errorf("unable to process close msg: %w", err)
|
|
p.log.Error(err)
|
|
|
|
// As the negotiations failed, we'll reset the channel state machine to
|
|
// ensure we act to on-chain events as normal.
|
|
chanCloser.Channel().ResetState()
|
|
|
|
if chanCloser.CloseRequest() != nil {
|
|
chanCloser.CloseRequest().Err <- err
|
|
}
|
|
delete(p.activeChanCloses, msg.cid)
|
|
|
|
p.Disconnect(err)
|
|
}
|
|
|
|
// Next, we'll process the next message using the target state machine.
|
|
// We'll either continue negotiation, or halt.
|
|
switch typed := msg.msg.(type) {
|
|
case *lnwire.Shutdown:
|
|
// Disable incoming adds immediately.
|
|
if link != nil && !link.DisableAdds(htlcswitch.Incoming) {
|
|
p.log.Warnf("Incoming link adds already disabled: %v",
|
|
link.ChanID())
|
|
}
|
|
|
|
oShutdown, err := chanCloser.ReceiveShutdown(*typed)
|
|
if err != nil {
|
|
handleErr(err)
|
|
return
|
|
}
|
|
|
|
oShutdown.WhenSome(func(msg lnwire.Shutdown) {
|
|
// If the link is nil it means we can immediately queue
|
|
// the Shutdown message since we don't have to wait for
|
|
// commitment transaction synchronization.
|
|
if link == nil {
|
|
p.queueMsg(&msg, nil)
|
|
return
|
|
}
|
|
|
|
// Immediately disallow any new HTLC's from being added
|
|
// in the outgoing direction.
|
|
if !link.DisableAdds(htlcswitch.Outgoing) {
|
|
p.log.Warnf("Outgoing link adds already "+
|
|
"disabled: %v", link.ChanID())
|
|
}
|
|
|
|
// When we have a Shutdown to send, we defer it till the
|
|
// next time we send a CommitSig to remain spec
|
|
// compliant.
|
|
link.OnCommitOnce(htlcswitch.Outgoing, func() {
|
|
p.queueMsg(&msg, nil)
|
|
})
|
|
})
|
|
|
|
beginNegotiation := func() {
|
|
oClosingSigned, err := chanCloser.BeginNegotiation()
|
|
if err != nil {
|
|
handleErr(err)
|
|
return
|
|
}
|
|
|
|
oClosingSigned.WhenSome(func(msg lnwire.ClosingSigned) {
|
|
p.queueMsg(&msg, nil)
|
|
})
|
|
}
|
|
|
|
if link == nil {
|
|
beginNegotiation()
|
|
} else {
|
|
// Now we register a flush hook to advance the
|
|
// ChanCloser and possibly send out a ClosingSigned
|
|
// when the link finishes draining.
|
|
link.OnFlushedOnce(func() {
|
|
// Remove link in goroutine to prevent deadlock.
|
|
go p.cfg.Switch.RemoveLink(msg.cid)
|
|
beginNegotiation()
|
|
})
|
|
}
|
|
|
|
case *lnwire.ClosingSigned:
|
|
oClosingSigned, err := chanCloser.ReceiveClosingSigned(*typed)
|
|
if err != nil {
|
|
handleErr(err)
|
|
return
|
|
}
|
|
|
|
oClosingSigned.WhenSome(func(msg lnwire.ClosingSigned) {
|
|
p.queueMsg(&msg, nil)
|
|
})
|
|
|
|
default:
|
|
panic("impossible closeMsg type")
|
|
}
|
|
|
|
// If we haven't finished close negotiations, then we'll continue as we
|
|
// can't yet finalize the closure.
|
|
if _, err := chanCloser.ClosingTx(); err != nil {
|
|
return
|
|
}
|
|
|
|
// Otherwise, we've agreed on a closing fee! In this case, we'll wrap up
|
|
// the channel closure by notifying relevant sub-systems and launching a
|
|
// goroutine to wait for close tx conf.
|
|
p.finalizeChanClosure(chanCloser)
|
|
}
|
|
|
|
// HandleLocalCloseChanReqs accepts a *htlcswitch.ChanClose and passes it onto
|
|
// the channelManager goroutine, which will shut down the link and possibly
|
|
// close the channel.
|
|
func (p *Brontide) HandleLocalCloseChanReqs(req *htlcswitch.ChanClose) {
|
|
select {
|
|
case p.localCloseChanReqs <- req:
|
|
p.log.Info("Local close channel request is going to be " +
|
|
"delivered to the peer")
|
|
case <-p.quit:
|
|
p.log.Info("Unable to deliver local close channel request " +
|
|
"to peer")
|
|
}
|
|
}
|
|
|
|
// NetAddress returns the network of the remote peer as an lnwire.NetAddress.
|
|
func (p *Brontide) NetAddress() *lnwire.NetAddress {
|
|
return p.cfg.Addr
|
|
}
|
|
|
|
// Inbound is a getter for the Brontide's Inbound boolean in cfg.
|
|
func (p *Brontide) Inbound() bool {
|
|
return p.cfg.Inbound
|
|
}
|
|
|
|
// ConnReq is a getter for the Brontide's connReq in cfg.
|
|
func (p *Brontide) ConnReq() *connmgr.ConnReq {
|
|
return p.cfg.ConnReq
|
|
}
|
|
|
|
// ErrorBuffer is a getter for the Brontide's errorBuffer in cfg.
|
|
func (p *Brontide) ErrorBuffer() *queue.CircularBuffer {
|
|
return p.cfg.ErrorBuffer
|
|
}
|
|
|
|
// SetAddress sets the remote peer's address given an address.
|
|
func (p *Brontide) SetAddress(address net.Addr) {
|
|
p.cfg.Addr.Address = address
|
|
}
|
|
|
|
// ActiveSignal returns the peer's active signal.
|
|
func (p *Brontide) ActiveSignal() chan struct{} {
|
|
return p.activeSignal
|
|
}
|
|
|
|
// Conn returns a pointer to the peer's connection struct.
|
|
func (p *Brontide) Conn() net.Conn {
|
|
return p.cfg.Conn
|
|
}
|
|
|
|
// BytesReceived returns the number of bytes received from the peer.
|
|
func (p *Brontide) BytesReceived() uint64 {
|
|
return atomic.LoadUint64(&p.bytesReceived)
|
|
}
|
|
|
|
// BytesSent returns the number of bytes sent to the peer.
|
|
func (p *Brontide) BytesSent() uint64 {
|
|
return atomic.LoadUint64(&p.bytesSent)
|
|
}
|
|
|
|
// LastRemotePingPayload returns the last payload the remote party sent as part
|
|
// of their ping.
|
|
func (p *Brontide) LastRemotePingPayload() []byte {
|
|
pingPayload := p.lastPingPayload.Load()
|
|
if pingPayload == nil {
|
|
return []byte{}
|
|
}
|
|
|
|
pingBytes, ok := pingPayload.(lnwire.PingPayload)
|
|
if !ok {
|
|
return nil
|
|
}
|
|
|
|
return pingBytes
|
|
}
|
|
|
|
// attachChannelEventSubscription creates a channel event subscription and
|
|
// attaches to client to Brontide if the reenableTimeout is no greater than 1
|
|
// minute.
|
|
func (p *Brontide) attachChannelEventSubscription() error {
|
|
// If the timeout is greater than 1 minute, it's unlikely that the link
|
|
// hasn't yet finished its reestablishment. Return a nil without
|
|
// creating the client to specify that we don't want to retry.
|
|
if p.cfg.ChanActiveTimeout > 1*time.Minute {
|
|
return nil
|
|
}
|
|
|
|
// When the reenable timeout is less than 1 minute, it's likely the
|
|
// channel link hasn't finished its reestablishment yet. In that case,
|
|
// we'll give it a second chance by subscribing to the channel update
|
|
// events. Upon receiving the `ActiveLinkEvent`, we'll then request
|
|
// enabling the channel again.
|
|
sub, err := p.cfg.ChannelNotifier.SubscribeChannelEvents()
|
|
if err != nil {
|
|
return fmt.Errorf("SubscribeChannelEvents failed: %w", err)
|
|
}
|
|
|
|
p.channelEventClient = sub
|
|
|
|
return nil
|
|
}
|
|
|
|
// updateNextRevocation updates the existing channel's next revocation if it's
|
|
// nil.
|
|
func (p *Brontide) updateNextRevocation(c *channeldb.OpenChannel) error {
|
|
chanPoint := c.FundingOutpoint
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
// Read the current channel.
|
|
currentChan, loaded := p.activeChannels.Load(chanID)
|
|
|
|
// currentChan should exist, but we perform a check anyway to avoid nil
|
|
// pointer dereference.
|
|
if !loaded {
|
|
return fmt.Errorf("missing active channel with chanID=%v",
|
|
chanID)
|
|
}
|
|
|
|
// currentChan should not be nil, but we perform a check anyway to
|
|
// avoid nil pointer dereference.
|
|
if currentChan == nil {
|
|
return fmt.Errorf("found nil active channel with chanID=%v",
|
|
chanID)
|
|
}
|
|
|
|
// If we're being sent a new channel, and our existing channel doesn't
|
|
// have the next revocation, then we need to update the current
|
|
// existing channel.
|
|
if currentChan.RemoteNextRevocation() != nil {
|
|
return nil
|
|
}
|
|
|
|
p.log.Infof("Processing retransmitted ChannelReady for "+
|
|
"ChannelPoint(%v)", chanPoint)
|
|
|
|
nextRevoke := c.RemoteNextRevocation
|
|
|
|
err := currentChan.InitNextRevocation(nextRevoke)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to init next revocation: %w", err)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// addActiveChannel adds a new active channel to the `activeChannels` map. It
|
|
// takes a `channeldb.OpenChannel`, creates a `lnwallet.LightningChannel` from
|
|
// it and assembles it with a channel link.
|
|
func (p *Brontide) addActiveChannel(c *lnpeer.NewChannel) error {
|
|
chanPoint := c.FundingOutpoint
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
// If we've reached this point, there are two possible scenarios. If
|
|
// the channel was in the active channels map as nil, then it was
|
|
// loaded from disk and we need to send reestablish. Else, it was not
|
|
// loaded from disk and we don't need to send reestablish as this is a
|
|
// fresh channel.
|
|
shouldReestablish := p.isLoadedFromDisk(chanID)
|
|
|
|
chanOpts := c.ChanOpts
|
|
if shouldReestablish {
|
|
// If we have to do the reestablish dance for this channel,
|
|
// ensure that we don't try to call InitRemoteMusigNonces twice
|
|
// by calling SkipNonceInit.
|
|
chanOpts = append(chanOpts, lnwallet.WithSkipNonceInit())
|
|
}
|
|
|
|
// If not already active, we'll add this channel to the set of active
|
|
// channels, so we can look it up later easily according to its channel
|
|
// ID.
|
|
lnChan, err := lnwallet.NewLightningChannel(
|
|
p.cfg.Signer, c.OpenChannel, p.cfg.SigPool, chanOpts...,
|
|
)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to create LightningChannel: %w", err)
|
|
}
|
|
|
|
// Store the channel in the activeChannels map.
|
|
p.activeChannels.Store(chanID, lnChan)
|
|
|
|
p.log.Infof("New channel active ChannelPoint(%v) with peer", chanPoint)
|
|
|
|
// Next, we'll assemble a ChannelLink along with the necessary items it
|
|
// needs to function.
|
|
chainEvents, err := p.cfg.ChainArb.SubscribeChannelEvents(chanPoint)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to subscribe to chain events: %w",
|
|
err)
|
|
}
|
|
|
|
// We'll query the channel DB for the new channel's initial forwarding
|
|
// policies to determine the policy we start out with.
|
|
initialPolicy, err := p.cfg.ChannelDB.GetInitialForwardingPolicy(chanID)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to query for initial forwarding "+
|
|
"policy: %v", err)
|
|
}
|
|
|
|
// Create the link and add it to the switch.
|
|
err = p.addLink(
|
|
&chanPoint, lnChan, initialPolicy, chainEvents,
|
|
shouldReestablish, fn.None[lnwire.Shutdown](),
|
|
)
|
|
if err != nil {
|
|
return fmt.Errorf("can't register new channel link(%v) with "+
|
|
"peer", chanPoint)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// handleNewActiveChannel handles a `newChannelMsg` request. Depending on we
|
|
// know this channel ID or not, we'll either add it to the `activeChannels` map
|
|
// or init the next revocation for it.
|
|
func (p *Brontide) handleNewActiveChannel(req *newChannelMsg) {
|
|
newChan := req.channel
|
|
chanPoint := newChan.FundingOutpoint
|
|
chanID := lnwire.NewChanIDFromOutPoint(chanPoint)
|
|
|
|
// Only update RemoteNextRevocation if the channel is in the
|
|
// activeChannels map and if we added the link to the switch. Only
|
|
// active channels will be added to the switch.
|
|
if p.isActiveChannel(chanID) {
|
|
p.log.Infof("Already have ChannelPoint(%v), ignoring",
|
|
chanPoint)
|
|
|
|
// Handle it and close the err chan on the request.
|
|
close(req.err)
|
|
|
|
// Update the next revocation point.
|
|
err := p.updateNextRevocation(newChan.OpenChannel)
|
|
if err != nil {
|
|
p.log.Errorf(err.Error())
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// This is a new channel, we now add it to the map.
|
|
if err := p.addActiveChannel(req.channel); err != nil {
|
|
// Log and send back the error to the request.
|
|
p.log.Errorf(err.Error())
|
|
req.err <- err
|
|
|
|
return
|
|
}
|
|
|
|
// Close the err chan if everything went fine.
|
|
close(req.err)
|
|
}
|
|
|
|
// handleNewPendingChannel takes a `newChannelMsg` request and add it to
|
|
// `activeChannels` map with nil value. This pending channel will be saved as
|
|
// it may become active in the future. Once active, the funding manager will
|
|
// send it again via `AddNewChannel`, and we'd handle the link creation there.
|
|
func (p *Brontide) handleNewPendingChannel(req *newChannelMsg) {
|
|
defer close(req.err)
|
|
|
|
chanID := req.channelID
|
|
|
|
// If we already have this channel, something is wrong with the funding
|
|
// flow as it will only be marked as active after `ChannelReady` is
|
|
// handled. In this case, we will do nothing but log an error, just in
|
|
// case this is a legit channel.
|
|
if p.isActiveChannel(chanID) {
|
|
p.log.Errorf("Channel(%v) is already active, ignoring "+
|
|
"pending channel request", chanID)
|
|
|
|
return
|
|
}
|
|
|
|
// The channel has already been added, we will do nothing and return.
|
|
if p.isPendingChannel(chanID) {
|
|
p.log.Infof("Channel(%v) is already added, ignoring "+
|
|
"pending channel request", chanID)
|
|
|
|
return
|
|
}
|
|
|
|
// This is a new channel, we now add it to the map `activeChannels`
|
|
// with nil value and mark it as a newly added channel in
|
|
// `addedChannels`.
|
|
p.activeChannels.Store(chanID, nil)
|
|
p.addedChannels.Store(chanID, struct{}{})
|
|
}
|
|
|
|
// handleRemovePendingChannel takes a `newChannelMsg` request and removes it
|
|
// from `activeChannels` map. The request will be ignored if the channel is
|
|
// considered active by Brontide. Noop if the channel ID cannot be found.
|
|
func (p *Brontide) handleRemovePendingChannel(req *newChannelMsg) {
|
|
defer close(req.err)
|
|
|
|
chanID := req.channelID
|
|
|
|
// If we already have this channel, something is wrong with the funding
|
|
// flow as it will only be marked as active after `ChannelReady` is
|
|
// handled. In this case, we will log an error and exit.
|
|
if p.isActiveChannel(chanID) {
|
|
p.log.Errorf("Channel(%v) is active, ignoring remove request",
|
|
chanID)
|
|
return
|
|
}
|
|
|
|
// The channel has not been added yet, we will log a warning as there
|
|
// is an unexpected call from funding manager.
|
|
if !p.isPendingChannel(chanID) {
|
|
p.log.Warnf("Channel(%v) not found, removing it anyway", chanID)
|
|
}
|
|
|
|
// Remove the record of this pending channel.
|
|
p.activeChannels.Delete(chanID)
|
|
p.addedChannels.Delete(chanID)
|
|
}
|
|
|
|
// sendLinkUpdateMsg sends a message that updates the channel to the
|
|
// channel's message stream.
|
|
func (p *Brontide) sendLinkUpdateMsg(cid lnwire.ChannelID, msg lnwire.Message) {
|
|
p.log.Tracef("Sending link update msg=%v", msg.MsgType())
|
|
|
|
chanStream, ok := p.activeMsgStreams[cid]
|
|
if !ok {
|
|
// If a stream hasn't yet been created, then we'll do so, add
|
|
// it to the map, and finally start it.
|
|
chanStream = newChanMsgStream(p, cid)
|
|
p.activeMsgStreams[cid] = chanStream
|
|
chanStream.Start()
|
|
|
|
// Stop the stream when quit.
|
|
go func() {
|
|
<-p.quit
|
|
chanStream.Stop()
|
|
}()
|
|
}
|
|
|
|
// With the stream obtained, add the message to the stream so we can
|
|
// continue processing message.
|
|
chanStream.AddMsg(msg)
|
|
}
|
|
|
|
// scaleTimeout multiplies the argument duration by a constant factor depending
|
|
// on variious heuristics. Currently this is only used to check whether our peer
|
|
// appears to be connected over Tor and relaxes the timout deadline. However,
|
|
// this is subject to change and should be treated as opaque.
|
|
func (p *Brontide) scaleTimeout(timeout time.Duration) time.Duration {
|
|
if p.isTorConnection {
|
|
return timeout * time.Duration(torTimeoutMultiplier)
|
|
}
|
|
|
|
return timeout
|
|
}
|