mirror of
https://github.com/lightningnetwork/lnd.git
synced 2024-11-20 02:27:21 +01:00
8dcfeeaef5
In this commit, we move to explicitly storing a bit more information within the invoice. Currently this information is already stored in the payment request, but by storing it at this level, callers that may not be in the state to fully decode a payment request can obtain this data. We avoid a database migration by appending this data to the end of an invoice. When decoding, we'll try to read out this extra information, and simply return what we have if it isn't found.
161 lines
4.6 KiB
Go
161 lines
4.6 KiB
Go
package channeldb
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"crypto/sha256"
|
|
prand "math/rand"
|
|
"reflect"
|
|
"testing"
|
|
"time"
|
|
|
|
"github.com/davecgh/go-spew/spew"
|
|
"github.com/lightningnetwork/lnd/lnwire"
|
|
)
|
|
|
|
func randInvoice(value lnwire.MilliSatoshi) (*Invoice, error) {
|
|
var pre [32]byte
|
|
if _, err := rand.Read(pre[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
i := &Invoice{
|
|
// Use single second precision to avoid false positive test
|
|
// failures due to the monotonic time component.
|
|
CreationDate: time.Unix(time.Now().Unix(), 0),
|
|
Terms: ContractTerm{
|
|
PaymentPreimage: pre,
|
|
Value: value,
|
|
FinalCltvDelta: uint16(prand.Int31()),
|
|
},
|
|
}
|
|
i.Memo = []byte("memo")
|
|
i.Receipt = []byte("receipt")
|
|
|
|
// Create a random byte slice of MaxPaymentRequestSize bytes to be used
|
|
// as a dummy paymentrequest, and determine if it should be set based
|
|
// on one of the random bytes.
|
|
var r [MaxPaymentRequestSize]byte
|
|
if _, err := rand.Read(r[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
if r[0]&1 == 0 {
|
|
i.PaymentRequest = r[:]
|
|
} else {
|
|
i.PaymentRequest = []byte("")
|
|
}
|
|
|
|
return i, nil
|
|
}
|
|
|
|
func TestInvoiceWorkflow(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
db, cleanUp, err := makeTestDB()
|
|
defer cleanUp()
|
|
if err != nil {
|
|
t.Fatalf("unable to make test db: %v", err)
|
|
}
|
|
|
|
// Create a fake invoice which we'll use several times in the tests
|
|
// below.
|
|
fakeInvoice := &Invoice{
|
|
// Use single second precision to avoid false positive test
|
|
// failures due to the monotonic time component.
|
|
CreationDate: time.Unix(time.Now().Unix(), 0),
|
|
}
|
|
fakeInvoice.Memo = []byte("memo")
|
|
fakeInvoice.Receipt = []byte("receipt")
|
|
fakeInvoice.PaymentRequest = []byte("")
|
|
copy(fakeInvoice.Terms.PaymentPreimage[:], rev[:])
|
|
fakeInvoice.Terms.Value = lnwire.NewMSatFromSatoshis(10000)
|
|
fakeInvoice.Terms.FinalCltvDelta = uint16(prand.Int31())
|
|
|
|
// Add the invoice to the database, this should succeed as there aren't
|
|
// any existing invoices within the database with the same payment
|
|
// hash.
|
|
if err := db.AddInvoice(fakeInvoice); err != nil {
|
|
t.Fatalf("unable to find invoice: %v", err)
|
|
}
|
|
|
|
// Attempt to retrieve the invoice which was just added to the
|
|
// database. It should be found, and the invoice returned should be
|
|
// identical to the one created above.
|
|
paymentHash := sha256.Sum256(fakeInvoice.Terms.PaymentPreimage[:])
|
|
dbInvoice, err := db.LookupInvoice(paymentHash)
|
|
if err != nil {
|
|
t.Fatalf("unable to find invoice: %v", err)
|
|
}
|
|
if !reflect.DeepEqual(fakeInvoice, dbInvoice) {
|
|
t.Fatalf("invoice fetched from db doesn't match original %v vs %v",
|
|
spew.Sdump(fakeInvoice), spew.Sdump(dbInvoice))
|
|
}
|
|
|
|
// Settle the invoice, the version retrieved from the database should
|
|
// now have the settled bit toggle to true and a non-default
|
|
// SettledDate
|
|
if err := db.SettleInvoice(paymentHash); err != nil {
|
|
t.Fatalf("unable to settle invoice: %v", err)
|
|
}
|
|
dbInvoice2, err := db.LookupInvoice(paymentHash)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch invoice: %v", err)
|
|
}
|
|
if !dbInvoice2.Terms.Settled {
|
|
t.Fatalf("invoice should now be settled but isn't")
|
|
}
|
|
|
|
if dbInvoice2.SettleDate.IsZero() {
|
|
t.Fatalf("invoice should have non-zero SettledDate but isn't")
|
|
}
|
|
|
|
// Attempt to insert generated above again, this should fail as
|
|
// duplicates are rejected by the processing logic.
|
|
if err := db.AddInvoice(fakeInvoice); err != ErrDuplicateInvoice {
|
|
t.Fatalf("invoice insertion should fail due to duplication, "+
|
|
"instead %v", err)
|
|
}
|
|
|
|
// Attempt to look up a non-existent invoice, this should also fail but
|
|
// with a "not found" error.
|
|
var fakeHash [32]byte
|
|
if _, err := db.LookupInvoice(fakeHash); err != ErrInvoiceNotFound {
|
|
t.Fatalf("lookup should have failed, instead %v", err)
|
|
}
|
|
|
|
// Add 100 random invoices.
|
|
const numInvoices = 10
|
|
amt := lnwire.NewMSatFromSatoshis(1000)
|
|
invoices := make([]*Invoice, numInvoices+1)
|
|
invoices[0] = dbInvoice2
|
|
for i := 1; i < len(invoices)-1; i++ {
|
|
invoice, err := randInvoice(amt)
|
|
if err != nil {
|
|
t.Fatalf("unable to create invoice: %v", err)
|
|
}
|
|
|
|
if err := db.AddInvoice(invoice); err != nil {
|
|
t.Fatalf("unable to add invoice %v", err)
|
|
}
|
|
|
|
invoices[i] = invoice
|
|
}
|
|
|
|
// Perform a scan to collect all the active invoices.
|
|
dbInvoices, err := db.FetchAllInvoices(false)
|
|
if err != nil {
|
|
t.Fatalf("unable to fetch all invoices: %v", err)
|
|
}
|
|
|
|
// The retrieve list of invoices should be identical as since we're
|
|
// using big endian, the invoices should be retrieved in ascending
|
|
// order (and the primary key should be incremented with each
|
|
// insertion).
|
|
for i := 0; i < len(invoices)-1; i++ {
|
|
if !reflect.DeepEqual(invoices[i], dbInvoices[i]) {
|
|
t.Fatalf("retrieved invoices don't match %v vs %v",
|
|
spew.Sdump(invoices[i]),
|
|
spew.Sdump(dbInvoices[i]))
|
|
}
|
|
}
|
|
}
|