mirror of
https://github.com/lightningnetwork/lnd.git
synced 2024-11-19 18:10:34 +01:00
414 lines
13 KiB
Go
414 lines
13 KiB
Go
package sweep
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"sort"
|
|
"strings"
|
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/btcutil"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/lightningnetwork/lnd/input"
|
|
"github.com/lightningnetwork/lnd/lnwallet"
|
|
"github.com/lightningnetwork/lnd/lnwallet/chainfee"
|
|
)
|
|
|
|
var (
|
|
// DefaultMaxInputsPerTx specifies the default maximum number of inputs
|
|
// allowed in a single sweep tx. If more need to be swept, multiple txes
|
|
// are created and published.
|
|
DefaultMaxInputsPerTx = 100
|
|
)
|
|
|
|
// txInput is an interface that provides the input data required for tx
|
|
// generation.
|
|
type txInput interface {
|
|
input.Input
|
|
parameters() Params
|
|
}
|
|
|
|
// inputSet is a set of inputs that can be used as the basis to generate a tx
|
|
// on.
|
|
type inputSet []input.Input
|
|
|
|
// generateInputPartitionings goes through all given inputs and constructs sets
|
|
// of inputs that can be used to generate a sensible transaction. Each set
|
|
// contains up to the configured maximum number of inputs. Negative yield
|
|
// inputs are skipped. No input sets with a total value after fees below the
|
|
// dust limit are returned.
|
|
func generateInputPartitionings(sweepableInputs []txInput,
|
|
feePerKW chainfee.SatPerKWeight, maxInputsPerTx int,
|
|
wallet Wallet) ([]inputSet, error) {
|
|
|
|
// Sort input by yield. We will start constructing input sets starting
|
|
// with the highest yield inputs. This is to prevent the construction
|
|
// of a set with an output below the dust limit, causing the sweep
|
|
// process to stop, while there are still higher value inputs
|
|
// available. It also allows us to stop evaluating more inputs when the
|
|
// first input in this ordering is encountered with a negative yield.
|
|
//
|
|
// Yield is calculated as the difference between value and added fee
|
|
// for this input. The fee calculation excludes fee components that are
|
|
// common to all inputs, as those wouldn't influence the order. The
|
|
// single component that is differentiating is witness size.
|
|
//
|
|
// For witness size, the upper limit is taken. The actual size depends
|
|
// on the signature length, which is not known yet at this point.
|
|
yields := make(map[wire.OutPoint]int64)
|
|
for _, input := range sweepableInputs {
|
|
size, _, err := input.WitnessType().SizeUpperBound()
|
|
if err != nil {
|
|
return nil, fmt.Errorf(
|
|
"failed adding input weight: %v", err)
|
|
}
|
|
|
|
yields[*input.OutPoint()] = input.SignDesc().Output.Value -
|
|
int64(feePerKW.FeeForWeight(int64(size)))
|
|
}
|
|
|
|
sort.Slice(sweepableInputs, func(i, j int) bool {
|
|
// Because of the specific ordering and termination condition
|
|
// that is described above, we place force sweeps at the start
|
|
// of the list. Otherwise we can't be sure that they will be
|
|
// included in an input set.
|
|
if sweepableInputs[i].parameters().Force {
|
|
return true
|
|
}
|
|
|
|
return yields[*sweepableInputs[i].OutPoint()] >
|
|
yields[*sweepableInputs[j].OutPoint()]
|
|
})
|
|
|
|
// Select blocks of inputs up to the configured maximum number.
|
|
var sets []inputSet
|
|
for len(sweepableInputs) > 0 {
|
|
// Start building a set of positive-yield tx inputs under the
|
|
// condition that the tx will be published with the specified
|
|
// fee rate.
|
|
txInputs := newTxInputSet(wallet, feePerKW, maxInputsPerTx)
|
|
|
|
// From the set of sweepable inputs, keep adding inputs to the
|
|
// input set until the tx output value no longer goes up or the
|
|
// maximum number of inputs is reached.
|
|
txInputs.addPositiveYieldInputs(sweepableInputs)
|
|
|
|
// If there are no positive yield inputs, we can stop here.
|
|
inputCount := len(txInputs.inputs)
|
|
if inputCount == 0 {
|
|
return sets, nil
|
|
}
|
|
|
|
// Check the current output value and add wallet utxos if
|
|
// needed to push the output value to the lower limit.
|
|
if err := txInputs.tryAddWalletInputsIfNeeded(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// If the output value of this block of inputs does not reach
|
|
// the dust limit, stop sweeping. Because of the sorting,
|
|
// continuing with the remaining inputs will only lead to sets
|
|
// with an even lower output value.
|
|
if !txInputs.enoughInput() {
|
|
// The change output is always a p2tr here.
|
|
dl := lnwallet.DustLimitForSize(input.P2TRSize)
|
|
log.Debugf("Set value %v (r=%v, c=%v) below dust "+
|
|
"limit of %v", txInputs.totalOutput(),
|
|
txInputs.requiredOutput, txInputs.changeOutput,
|
|
dl)
|
|
return sets, nil
|
|
}
|
|
|
|
log.Infof("Candidate sweep set of size=%v (+%v wallet inputs), "+
|
|
"has yield=%v, weight=%v",
|
|
inputCount, len(txInputs.inputs)-inputCount,
|
|
txInputs.totalOutput()-txInputs.walletInputTotal,
|
|
txInputs.weightEstimate(true).weight())
|
|
|
|
sets = append(sets, txInputs.inputs)
|
|
sweepableInputs = sweepableInputs[inputCount:]
|
|
}
|
|
|
|
return sets, nil
|
|
}
|
|
|
|
// createSweepTx builds a signed tx spending the inputs to the given outputs,
|
|
// sending any leftover change to the change script.
|
|
func createSweepTx(inputs []input.Input, outputs []*wire.TxOut,
|
|
changePkScript []byte, currentBlockHeight uint32,
|
|
feePerKw chainfee.SatPerKWeight, signer input.Signer) (*wire.MsgTx,
|
|
error) {
|
|
|
|
inputs, estimator, err := getWeightEstimate(
|
|
inputs, outputs, feePerKw, changePkScript,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
txFee := estimator.fee()
|
|
|
|
var (
|
|
// Create the sweep transaction that we will be building. We
|
|
// use version 2 as it is required for CSV.
|
|
sweepTx = wire.NewMsgTx(2)
|
|
|
|
// Track whether any of the inputs require a certain locktime.
|
|
locktime = int32(-1)
|
|
|
|
// We keep track of total input amount, and required output
|
|
// amount to use for calculating the change amount below.
|
|
totalInput btcutil.Amount
|
|
requiredOutput btcutil.Amount
|
|
|
|
// We'll add the inputs as we go so we know the final ordering
|
|
// of inputs to sign.
|
|
idxs []input.Input
|
|
)
|
|
|
|
// We start by adding all inputs that commit to an output. We do this
|
|
// since the input and output index must stay the same for the
|
|
// signatures to be valid.
|
|
for _, o := range inputs {
|
|
if o.RequiredTxOut() == nil {
|
|
continue
|
|
}
|
|
|
|
idxs = append(idxs, o)
|
|
sweepTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: *o.OutPoint(),
|
|
Sequence: o.BlocksToMaturity(),
|
|
})
|
|
sweepTx.AddTxOut(o.RequiredTxOut())
|
|
|
|
if lt, ok := o.RequiredLockTime(); ok {
|
|
// If another input commits to a different locktime,
|
|
// they cannot be combined in the same transcation.
|
|
if locktime != -1 && locktime != int32(lt) {
|
|
return nil, fmt.Errorf("incompatible locktime")
|
|
}
|
|
|
|
locktime = int32(lt)
|
|
}
|
|
|
|
totalInput += btcutil.Amount(o.SignDesc().Output.Value)
|
|
requiredOutput += btcutil.Amount(o.RequiredTxOut().Value)
|
|
}
|
|
|
|
// Sum up the value contained in the remaining inputs, and add them to
|
|
// the sweep transaction.
|
|
for _, o := range inputs {
|
|
if o.RequiredTxOut() != nil {
|
|
continue
|
|
}
|
|
|
|
idxs = append(idxs, o)
|
|
sweepTx.AddTxIn(&wire.TxIn{
|
|
PreviousOutPoint: *o.OutPoint(),
|
|
Sequence: o.BlocksToMaturity(),
|
|
})
|
|
|
|
if lt, ok := o.RequiredLockTime(); ok {
|
|
if locktime != -1 && locktime != int32(lt) {
|
|
return nil, fmt.Errorf("incompatible locktime")
|
|
}
|
|
|
|
locktime = int32(lt)
|
|
}
|
|
|
|
totalInput += btcutil.Amount(o.SignDesc().Output.Value)
|
|
}
|
|
|
|
// Add the outputs given, if any.
|
|
for _, o := range outputs {
|
|
sweepTx.AddTxOut(o)
|
|
requiredOutput += btcutil.Amount(o.Value)
|
|
}
|
|
|
|
if requiredOutput+txFee > totalInput {
|
|
return nil, fmt.Errorf("insufficient input to create sweep "+
|
|
"tx: input_sum=%v, output_sum=%v", totalInput,
|
|
requiredOutput+txFee)
|
|
}
|
|
|
|
// The value remaining after the required output and fees, go to
|
|
// change. Not that this fee is what we would have to pay in case the
|
|
// sweep tx has a change output.
|
|
changeAmt := totalInput - requiredOutput - txFee
|
|
|
|
// We'll calculate the dust limit for the given changePkScript since it
|
|
// is variable.
|
|
changeLimit := lnwallet.DustLimitForSize(len(changePkScript))
|
|
|
|
// The txn will sweep the amount after fees to the pkscript generated
|
|
// above.
|
|
if changeAmt >= changeLimit {
|
|
sweepTx.AddTxOut(&wire.TxOut{
|
|
PkScript: changePkScript,
|
|
Value: int64(changeAmt),
|
|
})
|
|
} else {
|
|
log.Infof("Change amt %v below dustlimit %v, not adding "+
|
|
"change output", changeAmt, changeLimit)
|
|
}
|
|
|
|
// We'll default to using the current block height as locktime, if none
|
|
// of the inputs commits to a different locktime.
|
|
sweepTx.LockTime = currentBlockHeight
|
|
if locktime != -1 {
|
|
sweepTx.LockTime = uint32(locktime)
|
|
}
|
|
|
|
// Before signing the transaction, check to ensure that it meets some
|
|
// basic validity requirements.
|
|
//
|
|
// TODO(conner): add more control to sanity checks, allowing us to
|
|
// delay spending "problem" outputs, e.g. possibly batching with other
|
|
// classes if fees are too low.
|
|
btx := btcutil.NewTx(sweepTx)
|
|
if err := blockchain.CheckTransactionSanity(btx); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
prevInputFetcher, err := input.MultiPrevOutFetcher(inputs)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("error creating prev input fetcher "+
|
|
"for hash cache: %v", err)
|
|
}
|
|
hashCache := txscript.NewTxSigHashes(sweepTx, prevInputFetcher)
|
|
|
|
// With all the inputs in place, use each output's unique input script
|
|
// function to generate the final witness required for spending.
|
|
addInputScript := func(idx int, tso input.Input) error {
|
|
inputScript, err := tso.CraftInputScript(
|
|
signer, sweepTx, hashCache, prevInputFetcher, idx,
|
|
)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
sweepTx.TxIn[idx].Witness = inputScript.Witness
|
|
|
|
if len(inputScript.SigScript) != 0 {
|
|
sweepTx.TxIn[idx].SignatureScript = inputScript.SigScript
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
for idx, inp := range idxs {
|
|
if err := addInputScript(idx, inp); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
log.Infof("Creating sweep transaction %v for %v inputs (%s) "+
|
|
"using %v sat/kw, tx_weight=%v, tx_fee=%v, parents_count=%v, "+
|
|
"parents_fee=%v, parents_weight=%v",
|
|
sweepTx.TxHash(), len(inputs),
|
|
inputTypeSummary(inputs), int64(feePerKw),
|
|
estimator.weight(), txFee,
|
|
len(estimator.parents), estimator.parentsFee,
|
|
estimator.parentsWeight,
|
|
)
|
|
|
|
return sweepTx, nil
|
|
}
|
|
|
|
// getWeightEstimate returns a weight estimate for the given inputs.
|
|
// Additionally, it returns counts for the number of csv and cltv inputs.
|
|
func getWeightEstimate(inputs []input.Input, outputs []*wire.TxOut,
|
|
feeRate chainfee.SatPerKWeight, outputPkScript []byte) ([]input.Input,
|
|
*weightEstimator, error) {
|
|
|
|
// We initialize a weight estimator so we can accurately asses the
|
|
// amount of fees we need to pay for this sweep transaction.
|
|
//
|
|
// TODO(roasbeef): can be more intelligent about buffering outputs to
|
|
// be more efficient on-chain.
|
|
weightEstimate := newWeightEstimator(feeRate)
|
|
|
|
// Our sweep transaction will always pay to the given set of outputs.
|
|
for _, o := range outputs {
|
|
weightEstimate.addOutput(o)
|
|
}
|
|
|
|
// If there is any leftover change after paying to the given outputs
|
|
// and required outputs, it will go to a single segwit p2wkh or p2tr
|
|
// address. This will be our change address, so ensure it contributes to
|
|
// our weight estimate. Note that if we have other outputs, we might end
|
|
// up creating a sweep tx without a change output. It is okay to add the
|
|
// change output to the weight estimate regardless, since the estimated
|
|
// fee will just be subtracted from this already dust output, and
|
|
// trimmed.
|
|
switch {
|
|
case txscript.IsPayToTaproot(outputPkScript):
|
|
weightEstimate.addP2TROutput()
|
|
|
|
case txscript.IsPayToWitnessScriptHash(outputPkScript):
|
|
weightEstimate.addP2WSHOutput()
|
|
|
|
case txscript.IsPayToWitnessPubKeyHash(outputPkScript):
|
|
weightEstimate.addP2WKHOutput()
|
|
|
|
case txscript.IsPayToPubKeyHash(outputPkScript):
|
|
weightEstimate.estimator.AddP2PKHOutput()
|
|
|
|
case txscript.IsPayToScriptHash(outputPkScript):
|
|
weightEstimate.estimator.AddP2SHOutput()
|
|
|
|
default:
|
|
// Unknown script type.
|
|
return nil, nil, errors.New("unknown script type")
|
|
}
|
|
|
|
// For each output, use its witness type to determine the estimate
|
|
// weight of its witness, and add it to the proper set of spendable
|
|
// outputs.
|
|
var sweepInputs []input.Input
|
|
for i := range inputs {
|
|
inp := inputs[i]
|
|
|
|
err := weightEstimate.add(inp)
|
|
if err != nil {
|
|
log.Warn(err)
|
|
|
|
// Skip inputs for which no weight estimate can be
|
|
// given.
|
|
continue
|
|
}
|
|
|
|
// If this input comes with a committed output, add that as
|
|
// well.
|
|
if inp.RequiredTxOut() != nil {
|
|
weightEstimate.addOutput(inp.RequiredTxOut())
|
|
}
|
|
|
|
sweepInputs = append(sweepInputs, inp)
|
|
}
|
|
|
|
return sweepInputs, weightEstimate, nil
|
|
}
|
|
|
|
// inputSummary returns a string containing a human readable summary about the
|
|
// witness types of a list of inputs.
|
|
func inputTypeSummary(inputs []input.Input) string {
|
|
// Sort inputs by witness type.
|
|
sortedInputs := make([]input.Input, len(inputs))
|
|
copy(sortedInputs, inputs)
|
|
sort.Slice(sortedInputs, func(i, j int) bool {
|
|
return sortedInputs[i].WitnessType().String() <
|
|
sortedInputs[j].WitnessType().String()
|
|
})
|
|
|
|
var parts []string
|
|
for _, i := range sortedInputs {
|
|
part := fmt.Sprintf("%v (%v)",
|
|
*i.OutPoint(), i.WitnessType())
|
|
|
|
parts = append(parts, part)
|
|
}
|
|
return strings.Join(parts, ", ")
|
|
}
|