lnd/itest/lnd_channel_policy_test.go
feelancer21 dc4ec45423
itest: add more tests related to inbound fees
Add tests for setting inbound fees in channel policies, including tests
where no inbound fees are set in the PolicyUpdateRequest.
2024-05-22 20:48:52 +02:00

865 lines
29 KiB
Go

package itest
import (
"fmt"
"math"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
// testUpdateChannelPolicy tests that policy updates made to a channel
// gets propagated to other nodes in the network.
func testUpdateChannelPolicy(ht *lntest.HarnessTest) {
const (
defaultFeeBase = 1000
defaultFeeRate = 1
defaultTimeLockDelta = chainreg.DefaultBitcoinTimeLockDelta
defaultMinHtlc = 1000
)
defaultMaxHtlc := lntest.CalculateMaxHtlc(funding.MaxBtcFundingAmount)
chanAmt := funding.MaxBtcFundingAmount
pushAmt := chanAmt / 2
alice, bob := ht.Alice, ht.Bob
// Create a channel Alice->Bob.
chanPoint := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// We add all the nodes' update channels to a slice, such that we can
// make sure they all receive the expected updates.
nodes := []*node.HarnessNode{alice, bob}
// Alice and Bob should see each other's ChannelUpdates, advertising the
// default routing policies. We do not currently set any inbound fees.
// The inbound base and inbound fee rate are advertised with a default
// of 0.
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: defaultMinHtlc,
MaxHtlcMsat: defaultMaxHtlc,
}
assertNodesPolicyUpdate(ht, nodes, alice, expectedPolicy, chanPoint)
assertNodesPolicyUpdate(ht, nodes, bob, expectedPolicy, chanPoint)
// They should now know about the default policies.
for _, node := range nodes {
ht.AssertChannelPolicy(
node, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
node, bob.PubKeyStr, expectedPolicy, chanPoint,
)
}
// Create Carol with options to rate limit channel updates up to 2 per
// day, and create a new channel Bob->Carol.
carol := ht.NewNode(
"Carol", []string{
"--gossip.max-channel-update-burst=2",
"--gossip.channel-update-interval=24h",
},
)
ht.ConnectNodes(carol, bob)
nodes = append(nodes, carol)
// Send some coins to Carol that can be used for channel funding.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// Open the channel Carol->Bob with a custom min_htlc value set. Since
// Carol is opening the channel, she will require Bob to not forward
// HTLCs smaller than this value, and hence he should advertise it as
// part of his ChannelUpdate.
const customMinHtlc = 5000
chanPoint2 := ht.OpenChannel(
carol, bob, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
MinHtlc: customMinHtlc,
},
)
expectedPolicyBob := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: customMinHtlc,
MaxHtlcMsat: defaultMaxHtlc,
}
expectedPolicyCarol := &lnrpc.RoutingPolicy{
FeeBaseMsat: defaultFeeBase,
FeeRateMilliMsat: defaultFeeRate,
TimeLockDelta: defaultTimeLockDelta,
MinHtlc: defaultMinHtlc,
MaxHtlcMsat: defaultMaxHtlc,
}
assertNodesPolicyUpdate(ht, nodes, bob, expectedPolicyBob, chanPoint2)
assertNodesPolicyUpdate(
ht, nodes, carol, expectedPolicyCarol, chanPoint2,
)
// Check that all nodes now know about the updated policies.
for _, node := range nodes {
ht.AssertChannelPolicy(
node, bob.PubKeyStr, expectedPolicyBob, chanPoint2,
)
ht.AssertChannelPolicy(
node, carol.PubKeyStr, expectedPolicyCarol, chanPoint2,
)
}
// Make sure Alice and Carol have seen each other's channels.
ht.AssertTopologyChannelOpen(alice, chanPoint2)
ht.AssertTopologyChannelOpen(carol, chanPoint)
// First we'll try to send a payment from Alice to Carol with an amount
// less than the min_htlc value required by Carol. This payment should
// fail, as the channel Bob->Carol cannot carry HTLCs this small.
payAmt := btcutil.Amount(4)
invoice := &lnrpc.Invoice{
Memo: "testing",
Value: int64(payAmt),
}
resp := carol.RPC.AddInvoice(invoice)
// Alice knows about the channel policy of Carol and should therefore
// not be able to find a path during routing.
payReq := &routerrpc.SendPaymentRequest{
PaymentRequest: resp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
ht.SendPaymentAssertFail(
alice, payReq,
lnrpc.PaymentFailureReason_FAILURE_REASON_NO_ROUTE,
)
// Now we try to send a payment over the channel with a value too low
// to be accepted. First we query for a route to route a payment of
// 5000 mSAT, as this is accepted.
payAmt = btcutil.Amount(5)
routesReq := &lnrpc.QueryRoutesRequest{
PubKey: carol.PubKeyStr,
Amt: int64(payAmt),
FinalCltvDelta: defaultTimeLockDelta,
}
routes := alice.RPC.QueryRoutes(routesReq)
require.Len(ht, routes.Routes, 1)
// We change the route to carry a payment of 4000 mSAT instead of 5000
// mSAT.
payAmt = btcutil.Amount(4)
amtSat := int64(payAmt)
amtMSat := int64(lnwire.NewMSatFromSatoshis(payAmt))
routes.Routes[0].Hops[0].AmtToForward = amtSat
routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
routes.Routes[0].Hops[1].AmtToForward = amtSat
routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat
// Send the payment with the modified value.
alicePayStream := alice.RPC.SendToRoute()
sendReq := &lnrpc.SendToRouteRequest{
PaymentHash: resp.RHash,
Route: routes.Routes[0],
}
err := alicePayStream.Send(sendReq)
require.NoError(ht, err, "unable to send payment")
// We expect this payment to fail, and that the min_htlc value is
// communicated back to us, since the attempted HTLC value was too low.
sendResp, err := ht.ReceiveSendToRouteUpdate(alicePayStream)
require.NoError(ht, err, "unable to receive payment stream")
// Expected as part of the error message.
substrs := []string{
"AmountBelowMinimum",
"HtlcMinimumMsat: (lnwire.MilliSatoshi) 5000 mSAT",
}
for _, s := range substrs {
require.Contains(ht, sendResp.PaymentError, s)
}
// Make sure sending using the original value succeeds.
payAmt = btcutil.Amount(5)
amtSat = int64(payAmt)
amtMSat = int64(lnwire.NewMSatFromSatoshis(payAmt))
routes.Routes[0].Hops[0].AmtToForward = amtSat
routes.Routes[0].Hops[0].AmtToForwardMsat = amtMSat
routes.Routes[0].Hops[1].AmtToForward = amtSat
routes.Routes[0].Hops[1].AmtToForwardMsat = amtMSat
// Manually set the MPP payload a new for each payment since
// the payment addr will change with each invoice, although we
// can re-use the route itself.
route := routes.Routes[0]
route.Hops[len(route.Hops)-1].TlvPayload = true
route.Hops[len(route.Hops)-1].MppRecord = &lnrpc.MPPRecord{
PaymentAddr: resp.PaymentAddr,
TotalAmtMsat: amtMSat,
}
sendReq = &lnrpc.SendToRouteRequest{
PaymentHash: resp.RHash,
Route: route,
}
err = alicePayStream.Send(sendReq)
require.NoError(ht, err, "unable to send payment")
sendResp, err = ht.ReceiveSendToRouteUpdate(alicePayStream)
require.NoError(ht, err, "unable to receive payment stream")
require.Empty(ht, sendResp.PaymentError, "expected payment to succeed")
// With our little cluster set up, we'll update the outbound fees and
// the max htlc size for the Bob side of the Alice->Bob channel, and
// make sure all nodes learn about it. Inbound fees remain at 0.
baseFee := int64(1500)
feeRate := int64(12)
timeLockDelta := uint32(66)
maxHtlc := uint64(500000)
expectedPolicy = &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: testFeeBase * feeRate,
TimeLockDelta: timeLockDelta,
MinHtlc: defaultMinHtlc,
MaxHtlcMsat: maxHtlc,
}
req := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
MaxHtlcMsat: maxHtlc,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPoint,
},
}
bob.RPC.UpdateChannelPolicy(req)
// Wait for all nodes to have seen the policy update done by Bob.
assertNodesPolicyUpdate(ht, nodes, bob, expectedPolicy, chanPoint)
// Check that all nodes now know about Bob's updated policy.
for _, node := range nodes {
ht.AssertChannelPolicy(
node, bob.PubKeyStr, expectedPolicy, chanPoint,
)
}
// Now that all nodes have received the new channel update, we'll try
// to send a payment from Alice to Carol to ensure that Alice has
// internalized this fee update. This shouldn't affect the route that
// Alice takes though: we updated the Alice -> Bob channel and she
// doesn't pay for transit over that channel as it's direct.
// Note that the payment amount is >= the min_htlc value for the
// channel Bob->Carol, so it should successfully be forwarded.
payAmt = btcutil.Amount(5)
invoice = &lnrpc.Invoice{
Memo: "testing",
Value: int64(payAmt),
}
resp = carol.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(alice, []string{resp.PaymentRequest})
// We'll now open a channel from Alice directly to Carol.
ht.ConnectNodes(alice, carol)
chanPoint3 := ht.OpenChannel(
alice, carol, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// Make sure Bob knows this channel.
ht.AssertTopologyChannelOpen(bob, chanPoint3)
// Make a global update, and check that both channels' new policies get
// propagated.
baseFee = int64(800)
feeRate = int64(123)
timeLockDelta = uint32(22)
maxHtlc *= 2
inboundBaseFee := int32(-400)
inboundFeeRatePpm := int32(-60)
expectedPolicy.FeeBaseMsat = baseFee
expectedPolicy.FeeRateMilliMsat = testFeeBase * feeRate
expectedPolicy.TimeLockDelta = timeLockDelta
expectedPolicy.MaxHtlcMsat = maxHtlc
expectedPolicy.InboundFeeBaseMsat = inboundBaseFee
expectedPolicy.InboundFeeRateMilliMsat = inboundFeeRatePpm
req = &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: float64(feeRate),
TimeLockDelta: timeLockDelta,
MaxHtlcMsat: maxHtlc,
InboundFee: &lnrpc.InboundFee{
BaseFeeMsat: inboundBaseFee,
FeeRatePpm: inboundFeeRatePpm,
},
}
req.Scope = &lnrpc.PolicyUpdateRequest_Global{}
alice.RPC.UpdateChannelPolicy(req)
// Wait for all nodes to have seen the policy updates for both of
// Alice's channels.
assertNodesPolicyUpdate(ht, nodes, alice, expectedPolicy, chanPoint)
assertNodesPolicyUpdate(ht, nodes, alice, expectedPolicy, chanPoint3)
// And finally check that all nodes remembers the policy update they
// received.
for _, node := range nodes {
ht.AssertChannelPolicy(
node, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
node, alice.PubKeyStr, expectedPolicy, chanPoint3,
)
}
// Now, to test that Carol is properly rate limiting incoming updates,
// we'll send two more update from Alice. Carol should accept the first,
// but not the second, as she only allows two updates per day and a day
// has yet to elapse from the previous update.
// assertAliceAndBob is a helper closure which updates Alice's policy
// and asserts that both Alice and Bob have heard and updated the
// policy in their graph.
assertAliceAndBob := func(req *lnrpc.PolicyUpdateRequest,
expectedPolicy *lnrpc.RoutingPolicy) {
alice.RPC.UpdateChannelPolicy(req)
// Wait for all nodes to have seen the policy updates for both
// of Alice's channels. Carol will not see the last update as
// the limit has been reached.
assertNodesPolicyUpdate(
ht, []*node.HarnessNode{alice, bob},
alice, expectedPolicy, chanPoint,
)
assertNodesPolicyUpdate(
ht, []*node.HarnessNode{alice, bob},
alice, expectedPolicy, chanPoint3,
)
// Check that all nodes remember the policy update
// they received.
ht.AssertChannelPolicy(
alice, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
alice, alice.PubKeyStr, expectedPolicy, chanPoint3,
)
ht.AssertChannelPolicy(
bob, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
bob, alice.PubKeyStr, expectedPolicy, chanPoint3,
)
}
// Double the base fee and attach to the policy. Moreover, we set the
// inbound fee to nil and test that it does not change the propagated
// inbound fee.
baseFee1 := baseFee * 2
expectedPolicy.FeeBaseMsat = baseFee1
req.BaseFeeMsat = baseFee1
req.InboundFee = nil
assertAliceAndBob(req, expectedPolicy)
// Check that Carol has both heard the policy and updated it in her
// graph.
assertNodesPolicyUpdate(
ht, []*node.HarnessNode{carol},
alice, expectedPolicy, chanPoint,
)
assertNodesPolicyUpdate(
ht, []*node.HarnessNode{carol},
alice, expectedPolicy, chanPoint3,
)
ht.AssertChannelPolicy(
carol, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
carol, alice.PubKeyStr, expectedPolicy, chanPoint3,
)
// Double the base fee and attach to the policy.
baseFee2 := baseFee1 * 2
expectedPolicy.FeeBaseMsat = baseFee2
req.BaseFeeMsat = baseFee2
assertAliceAndBob(req, expectedPolicy)
// Since Carol didn't receive the last update, she still has Alice's
// old policy. We validate this by checking the base fee is the older
// one.
expectedPolicy.FeeBaseMsat = baseFee1
ht.AssertChannelPolicy(
carol, alice.PubKeyStr, expectedPolicy, chanPoint,
)
ht.AssertChannelPolicy(
carol, alice.PubKeyStr, expectedPolicy, chanPoint3,
)
// Close all channels.
ht.CloseChannel(alice, chanPoint)
ht.CloseChannel(bob, chanPoint2)
ht.CloseChannel(alice, chanPoint3)
}
// testSendUpdateDisableChannel ensures that a channel update with the disable
// flag set is sent once a channel has been either unilaterally or cooperatively
// closed.
//
// NOTE: this test can be flaky as we are testing the chan-enable-timeout and
// chan-disable-timeout flags here. For instance, if some operations take more
// than 6 seconds to finish, the channel will be marked as disabled, thus a
// following operation will fail if it relies on the channel being enabled.
func testSendUpdateDisableChannel(ht *lntest.HarnessTest) {
const chanAmt = 100000
alice, bob := ht.Alice, ht.Bob
// Create a new node Eve, which will be restarted later with a config
// that has an inactive channel timeout of just 6 seconds (down from
// the default 20m). It will be used to test channel updates for
// channels going inactive.
//
// NOTE: we don't create Eve with the chan-disable-timeout here because
// the following channel openings might take longer than that timeout
// value, which will cause the channel Eve=>Carol being marked as
// disabled.
eve := ht.NewNode("Eve", nil)
// Create a new node Carol, which will later be restarted with the same
// config as Eve's.
carol := ht.NewNode("Carol", nil)
// Launch a node for Dave which will connect to Bob in order to receive
// graph updates from. This will ensure that the channel updates are
// propagated throughout the network.
dave := ht.NewNode("Dave", nil)
// We will start our test by creating the following topology,
// Alice --- Bob --- Dave
// | |
// Carol --- Eve
ht.EnsureConnected(alice, bob)
ht.ConnectNodes(alice, carol)
ht.ConnectNodes(bob, dave)
ht.ConnectNodes(eve, carol)
// Connect Eve and Bob using a persistent connection. Later after Eve
// is restarted, they will connect again automatically.
ht.ConnectNodesPerm(bob, eve)
// Give Eve some coins.
ht.FundCoins(btcutil.SatoshiPerBitcoin, eve)
// We now proceed to open channels: Alice=>Bob, Alice=>Carol and
// Eve=>Carol.
p := lntest.OpenChannelParams{Amt: chanAmt}
reqs := []*lntest.OpenChannelRequest{
{Local: alice, Remote: bob, Param: p},
{Local: alice, Remote: carol, Param: p},
{Local: eve, Remote: carol, Param: p},
}
resp := ht.OpenMultiChannelsAsync(reqs)
// Extract channel points from the response.
chanPointAliceBob := resp[0]
chanPointAliceCarol := resp[1]
chanPointEveCarol := resp[2]
// We will use 10 seconds as the disable timeout.
chanDisableTimeout := 10
chanEnableTimeout := 5
// waitChanDisabled is a helper closure to wait the chanDisableTimeout
// seconds such that the channel disable logic is taking effect.
waitChanDisabled := func() {
time.Sleep(time.Duration(chanDisableTimeout) * time.Second)
}
// With the channels open, we now restart Carol and Eve to use
// customized timeout values.
nodeCfg := []string{
"--minbackoff=60s",
fmt.Sprintf("--chan-enable-timeout=%ds", chanEnableTimeout),
fmt.Sprintf("--chan-disable-timeout=%ds", chanDisableTimeout),
"--chan-status-sample-interval=.5s",
}
ht.RestartNodeWithExtraArgs(carol, nodeCfg)
ht.RestartNodeWithExtraArgs(eve, nodeCfg)
// Dave should know all the channels.
ht.AssertTopologyChannelOpen(dave, chanPointAliceBob)
ht.AssertTopologyChannelOpen(dave, chanPointAliceCarol)
ht.AssertTopologyChannelOpen(dave, chanPointEveCarol)
// We should expect to see a channel update with the default routing
// policy, except that it should indicate the channel is disabled.
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: int64(chainreg.DefaultBitcoinBaseFeeMSat),
FeeRateMilliMsat: int64(chainreg.DefaultBitcoinFeeRate),
TimeLockDelta: chainreg.DefaultBitcoinTimeLockDelta,
MinHtlc: 1000, // default value
MaxHtlcMsat: lntest.CalculateMaxHtlc(chanAmt),
Disabled: true,
}
// assertPolicyUpdate checks that the required policy update has
// happened on the given node.
assertPolicyUpdate := func(node *node.HarnessNode,
policy *lnrpc.RoutingPolicy, chanPoint *lnrpc.ChannelPoint,
numUpdates int) {
ht.AssertNumPolicyUpdates(dave, chanPoint, node, numUpdates)
ht.AssertChannelPolicyUpdate(
dave, node, policy, chanPoint, false,
)
}
// Let Carol go offline. Since Eve has an inactive timeout of 6s, we
// expect her to send an update disabling the channel.
restartCarol := ht.SuspendNode(carol)
// We expect to see a total of 2 channel policy updates from the
// channel Carol <-> Eve and advertised by Eve using the route
// Eve->Bob->Dave.
waitChanDisabled()
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 2)
// We restart Carol. Since the channel now becomes active again, Eve
// should send a ChannelUpdate setting the channel no longer disabled.
require.NoError(ht, restartCarol(), "unable to restart carol")
expectedPolicy.Disabled = false
// We expect to see a total of 3 channel policy updates from the
// channel Carol <-> Eve and advertised by Eve using the route
// Eve->Bob->Dave.
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 3)
// Wait until Carol and Eve are reconnected before we disconnect them
// again.
ht.EnsureConnected(eve, carol)
// Now we'll test a long disconnection. Disconnect Carol and Eve and
// ensure they both detect each other as disabled. Their min backoffs
// are high enough to not interfere with disabling logic.
ht.DisconnectNodes(carol, eve)
// Wait for a disable from both Carol and Eve to come through.
expectedPolicy.Disabled = true
// We expect to see a total of 4 channel policy updates from the
// channel Carol <-> Eve and advertised by Eve using the route
// Eve->Bob->Dave.
waitChanDisabled()
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 4)
// Because Carol has restarted twice before, depending on how much time
// it has taken, she might mark the channel disabled and enable it
// multiple times. Thus we could see a total of 2 or 4 or 6 channel
// policy updates from the channel Carol <-> Eve and advertised by
// Carol using the route Carol->Alice->Bob->Dave.
//
// Assume there are 2 channel policy updates from Carol, and update it
// if more has found
numCarol := 2
op := ht.OutPointFromChannelPoint(chanPointEveCarol)
policyMap := dave.Watcher.GetPolicyUpdates(op)
nodePolicy, ok := policyMap[carol.PubKeyStr]
switch {
case !ok:
break
case len(nodePolicy) > 2:
numCarol = 4
case len(nodePolicy) > 4:
numCarol = 6
}
assertPolicyUpdate(carol, expectedPolicy, chanPointEveCarol, numCarol)
// Reconnect Carol and Eve, this should cause them to reenable the
// channel from both ends after a short delay.
ht.EnsureConnected(carol, eve)
expectedPolicy.Disabled = false
// We expect to see a total of 5 channel policy updates from the
// channel Carol <-> Eve and advertised by Eve using the route
// Eve->Bob->Dave.
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 5)
// We expect to see a total of 3 or 5 channel policy updates from the
// channel Carol <-> Eve and advertised by Carol using the route
// Carol->Alice->Bob->Dave.
numCarol++
assertPolicyUpdate(carol, expectedPolicy, chanPointEveCarol, numCarol)
// Now we'll test a short disconnection. Disconnect Carol and Eve, then
// reconnect them after one second so that their scheduled disables are
// aborted. One second is twice the status sample interval, so this
// should allow for the disconnect to be detected, but still leave time
// to cancel the announcement before the 6 second inactive timeout is
// hit.
ht.DisconnectNodes(carol, eve)
time.Sleep(time.Second)
ht.EnsureConnected(eve, carol)
// Since the disable should have been canceled by both Carol and Eve,
// we expect no channel updates to appear on the network, which means
// we expect the polices stay unchanged(Disable == false).
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 5)
assertPolicyUpdate(carol, expectedPolicy, chanPointEveCarol, numCarol)
// Close Alice's channels with Bob and Carol cooperatively and
// unilaterally respectively. Note that the CloseChannel will mine a
// block and check that the closing transaction can be found in both
// the mempool and the block.
ht.CloseChannel(alice, chanPointAliceBob)
ht.ForceCloseChannel(alice, chanPointAliceCarol)
// Now that the channel close processes have been started, we should
// receive an update marking each as disabled.
expectedPolicy.Disabled = true
// We expect to see a total of 2 channel policy updates from the
// channel Alice <-> Bob and advertised by Alice using the route
// Alice->Bob->Dave.
assertPolicyUpdate(alice, expectedPolicy, chanPointAliceBob, 2)
// We expect to see a total of 2 channel policy updates from the
// channel Alice <-> Carol and advertised by Alice using the route
// Alice->Bob->Dave.
assertPolicyUpdate(alice, expectedPolicy, chanPointAliceCarol, 2)
// Also do this check for Eve's channel with Carol.
ht.CloseChannel(eve, chanPointEveCarol)
// We expect to see a total of 5 channel policy updates from the
// channel Carol <-> Eve and advertised by Eve using the route
// Eve->Bob->Dave.
assertPolicyUpdate(eve, expectedPolicy, chanPointEveCarol, 6)
}
// testUpdateChannelPolicyForPrivateChannel tests when a private channel
// updates its channel edge policy, we will use the updated policy to send our
// payment.
// The topology is created as: Alice -> Bob -> Carol, where Alice -> Bob is
// public and Bob -> Carol is private. After an invoice is created by Carol,
// Bob will update the base fee via UpdateChannelPolicy, we will test that
// Alice will not fail the payment and send it using the updated channel
// policy.
func testUpdateChannelPolicyForPrivateChannel(ht *lntest.HarnessTest) {
const (
chanAmt = btcutil.Amount(100000)
paymentAmt = 20000
baseFeeMSat = 33000
)
// We'll create the following topology first,
// Alice <--public:100k--> Bob <--private:100k--> Carol
alice, bob := ht.Alice, ht.Bob
// Open a channel with 100k satoshis between Alice and Bob.
chanPointAliceBob := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create a new node Carol.
carol := ht.NewNode("Carol", nil)
// Connect Carol to Bob.
ht.ConnectNodes(carol, bob)
// Open a channel with 100k satoshis between Bob and Carol.
chanPointBobCarol := ht.OpenChannel(
bob, carol, lntest.OpenChannelParams{
Amt: chanAmt,
Private: true,
},
)
// Carol should be aware of the channel between Alice and Bob.
ht.AssertTopologyChannelOpen(carol, chanPointAliceBob)
// We should have the following topology now,
// Alice <--public:100k--> Bob <--private:100k--> Carol
//
// Now we will create an invoice for Carol.
invoice := &lnrpc.Invoice{
Memo: "routing hints",
Value: paymentAmt,
Private: true,
}
resp := carol.RPC.AddInvoice(invoice)
// Bob now updates the channel edge policy for the private channel.
timeLockDelta := uint32(chainreg.DefaultBitcoinTimeLockDelta)
updateFeeReq := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFeeMSat,
TimeLockDelta: timeLockDelta,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPointBobCarol,
},
}
bob.RPC.UpdateChannelPolicy(updateFeeReq)
// Alice pays the invoices. She will use the updated baseFeeMSat in the
// payment
//
// TODO(yy): we may get a flake saying the timeout checking the
// payment's state, which is due to slow round of HTLC settlement. An
// example log is shown below, where Alice sent RevokeAndAck to Bob,
// but it took Bob 7 seconds to reply back the final UpdateFulfillHTLC.
//
// 2022-11-14 06:23:59.774 PEER: Peer(Bob): Sending UpdateAddHTLC
// 2022-11-14 06:24:00.635 PEER: Peer(Bob): Sending CommitSig
// 2022-11-14 06:24:01.784 PEER: Peer(Bob): Sending RevokeAndAck
// 2022-11-14 06:24:08.464 PEER: Peer(Bob): Received UpdateFulfillHTLC
//
// 7 seconds is too long for a local test and this needs more
// investigation.
payReqs := []string{resp.PaymentRequest}
ht.CompletePaymentRequests(alice, payReqs)
// Check that Alice did make the payment with two HTLCs, one failed and
// one succeeded.
payment := ht.AssertNumPayments(alice, 1)[0]
htlcs := payment.Htlcs
require.Equal(ht, 2, len(htlcs), "expected to have 2 HTLCs")
require.Equal(ht, lnrpc.HTLCAttempt_FAILED, htlcs[0].Status,
"the first HTLC attempt should fail")
require.Equal(ht, lnrpc.HTLCAttempt_SUCCEEDED, htlcs[1].Status,
"the second HTLC attempt should succeed")
// Carol should have received 20k satoshis from Bob.
ht.AssertAmountPaid("Carol(remote) [<=private] Bob(local)",
carol, chanPointBobCarol, 0, paymentAmt)
// Bob should have sent 20k satoshis to Carol.
ht.AssertAmountPaid("Bob(local) [private=>] Carol(remote)",
bob, chanPointBobCarol, paymentAmt, 0)
// Calculate the amount in satoshis.
amtExpected := int64(paymentAmt + baseFeeMSat/1000)
// Bob should have received 20k satoshis + fee from Alice.
ht.AssertAmountPaid("Bob(remote) <= Alice(local)",
bob, chanPointAliceBob, 0, amtExpected)
// Alice should have sent 20k satoshis + fee to Bob.
ht.AssertAmountPaid("Alice(local) => Bob(remote)",
alice, chanPointAliceBob, amtExpected, 0)
// Finally, close the channels.
ht.CloseChannel(alice, chanPointAliceBob)
ht.CloseChannel(bob, chanPointBobCarol)
}
// testUpdateChannelPolicyFeeRateAccuracy tests that updating the channel policy
// rounds fee rate values correctly as well as setting fee rate with ppm works
// as expected.
func testUpdateChannelPolicyFeeRateAccuracy(ht *lntest.HarnessTest) {
chanAmt := funding.MaxBtcFundingAmount
pushAmt := chanAmt / 2
// Create a channel Alice -> Bob.
alice, bob := ht.Alice, ht.Bob
chanPoint := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// Nodes that we need to make sure receive the channel updates.
nodes := []*node.HarnessNode{alice, bob}
baseFee := int64(1500)
timeLockDelta := uint32(66)
maxHtlc := uint64(500000)
defaultMinHtlc := int64(1000)
// Originally LND did not properly round up fee rates which caused
// inaccuracy where fee rates were simply rounded down due to the
// integer conversion.
//
// We'll use a fee rate of 0.031337 which without rounding up would
// have resulted in a fee rate ppm of 31336.
feeRate := 0.031337
// Expected fee rate will be rounded up.
expectedFeeRateMilliMsat := int64(math.Round(testFeeBase * feeRate))
expectedPolicy := &lnrpc.RoutingPolicy{
FeeBaseMsat: baseFee,
FeeRateMilliMsat: expectedFeeRateMilliMsat,
TimeLockDelta: timeLockDelta,
MinHtlc: defaultMinHtlc,
MaxHtlcMsat: maxHtlc,
}
req := &lnrpc.PolicyUpdateRequest{
BaseFeeMsat: baseFee,
FeeRate: feeRate,
TimeLockDelta: timeLockDelta,
MaxHtlcMsat: maxHtlc,
Scope: &lnrpc.PolicyUpdateRequest_ChanPoint{
ChanPoint: chanPoint,
},
}
alice.RPC.UpdateChannelPolicy(req)
// Make sure that both Alice and Bob sees the same policy after update.
assertNodesPolicyUpdate(ht, nodes, alice, expectedPolicy, chanPoint)
// Now use the new PPM feerate field and make sure that the feerate is
// correctly set.
feeRatePPM := uint32(32337)
req.FeeRate = 0 // Can't set both at the same time.
req.FeeRatePpm = feeRatePPM
expectedPolicy.FeeRateMilliMsat = int64(feeRatePPM)
alice.RPC.UpdateChannelPolicy(req)
// Make sure that both Alice and Bob sees the same policy after update.
assertNodesPolicyUpdate(ht, nodes, alice, expectedPolicy, chanPoint)
ht.CloseChannel(alice, chanPoint)
}
// assertNodesPolicyUpdate checks that a given policy update has been received
// by a list of given nodes.
func assertNodesPolicyUpdate(ht *lntest.HarnessTest, nodes []*node.HarnessNode,
advertisingNode *node.HarnessNode, policy *lnrpc.RoutingPolicy,
chanPoint *lnrpc.ChannelPoint) {
for _, node := range nodes {
ht.AssertChannelPolicyUpdate(
node, advertisingNode, policy, chanPoint, false,
)
}
}