lnd/graph/builder.go
Elle Mouton 7f1be39d45
refactor: move various duties from ChannelRouter to graph.Builder
This commit is a large refactor that moves over various responsibilities
from the ChannelRouter to the graph.Builder. These include all graph
related tasks such as:
- graph pruning
- validation of new network updates & persisting new updates
- notifying topology update clients of any changes.

This is a large commit but:
- many of the files are purely moved from `routing` to `graph`
- the business logic put in the graph Builder is copied exactly as is
  from the ChannelRouter with one exception:
- The ChannelRouter just needs to be able to call the Builder's
  `ApplyChannelUpdate` method. So this is now exported and provided to
the ChannelRouter as a config option.
- The trickiest part was just moving over the test code since quite a
  bit had to be duplicated.
2024-07-15 15:56:33 +02:00

1809 lines
55 KiB
Go

package graph
import (
"bytes"
"fmt"
"runtime"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/batch"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lnutils"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwallet/btcwallet"
"github.com/lightningnetwork/lnd/lnwallet/chanvalidate"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/multimutex"
"github.com/lightningnetwork/lnd/routing/chainview"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/ticker"
)
const (
// DefaultChannelPruneExpiry is the default duration used to determine
// if a channel should be pruned or not.
DefaultChannelPruneExpiry = time.Hour * 24 * 14
// DefaultFirstTimePruneDelay is the time we'll wait after startup
// before attempting to prune the graph for zombie channels. We don't
// do it immediately after startup to allow lnd to start up without
// getting blocked by this job.
DefaultFirstTimePruneDelay = 30 * time.Second
// defaultStatInterval governs how often the router will log non-empty
// stats related to processing new channels, updates, or node
// announcements.
defaultStatInterval = time.Minute
)
var (
// ErrGraphBuilderShuttingDown is returned if the graph builder is in
// the process of shutting down.
ErrGraphBuilderShuttingDown = fmt.Errorf("graph builder shutting down")
)
// Config holds the configuration required by the Builder.
type Config struct {
// SelfNode is the public key of the node that this channel router
// belongs to.
SelfNode route.Vertex
// Graph is the channel graph that the ChannelRouter will use to gather
// metrics from and also to carry out path finding queries.
Graph DB
// Chain is the router's source to the most up-to-date blockchain data.
// All incoming advertised channels will be checked against the chain
// to ensure that the channels advertised are still open.
Chain lnwallet.BlockChainIO
// ChainView is an instance of a FilteredChainView which is used to
// watch the sub-set of the UTXO set (the set of active channels) that
// we need in order to properly maintain the channel graph.
ChainView chainview.FilteredChainView
// Notifier is a reference to the ChainNotifier, used to grab
// the latest blocks if the router is missing any.
Notifier chainntnfs.ChainNotifier
// ChannelPruneExpiry is the duration used to determine if a channel
// should be pruned or not. If the delta between now and when the
// channel was last updated is greater than ChannelPruneExpiry, then
// the channel is marked as a zombie channel eligible for pruning.
ChannelPruneExpiry time.Duration
// GraphPruneInterval is used as an interval to determine how often we
// should examine the channel graph to garbage collect zombie channels.
GraphPruneInterval time.Duration
// FirstTimePruneDelay is the time we'll wait after startup before
// attempting to prune the graph for zombie channels. We don't do it
// immediately after startup to allow lnd to start up without getting
// blocked by this job.
FirstTimePruneDelay time.Duration
// AssumeChannelValid toggles whether the router will check for
// spentness of channel outpoints. For neutrino, this saves long rescans
// from blocking initial usage of the daemon.
AssumeChannelValid bool
// StrictZombiePruning determines if we attempt to prune zombie
// channels according to a stricter criteria. If true, then we'll prune
// a channel if only *one* of the edges is considered a zombie.
// Otherwise, we'll only prune the channel when both edges have a very
// dated last update.
StrictZombiePruning bool
// IsAlias returns whether a passed ShortChannelID is an alias. This is
// only used for our local channels.
IsAlias func(scid lnwire.ShortChannelID) bool
}
// Builder builds and maintains a view of the Lightning Network graph.
type Builder struct {
started atomic.Bool
stopped atomic.Bool
ntfnClientCounter uint64 // To be used atomically.
bestHeight uint32 // To be used atomically.
cfg *Config
// newBlocks is a channel in which new blocks connected to the end of
// the main chain are sent over, and blocks updated after a call to
// UpdateFilter.
newBlocks <-chan *chainview.FilteredBlock
// staleBlocks is a channel in which blocks disconnected from the end
// of our currently known best chain are sent over.
staleBlocks <-chan *chainview.FilteredBlock
// networkUpdates is a channel that carries new topology updates
// messages from outside the Builder to be processed by the
// networkHandler.
networkUpdates chan *routingMsg
// topologyClients maps a client's unique notification ID to a
// topologyClient client that contains its notification dispatch
// channel.
topologyClients *lnutils.SyncMap[uint64, *topologyClient]
// ntfnClientUpdates is a channel that's used to send new updates to
// topology notification clients to the Builder. Updates either
// add a new notification client, or cancel notifications for an
// existing client.
ntfnClientUpdates chan *topologyClientUpdate
// channelEdgeMtx is a mutex we use to make sure we process only one
// ChannelEdgePolicy at a time for a given channelID, to ensure
// consistency between the various database accesses.
channelEdgeMtx *multimutex.Mutex[uint64]
// statTicker is a resumable ticker that logs the router's progress as
// it discovers channels or receives updates.
statTicker ticker.Ticker
// stats tracks newly processed channels, updates, and node
// announcements over a window of defaultStatInterval.
stats *routerStats
quit chan struct{}
wg sync.WaitGroup
}
// A compile time check to ensure Builder implements the
// ChannelGraphSource interface.
var _ ChannelGraphSource = (*Builder)(nil)
// NewBuilder constructs a new Builder.
func NewBuilder(cfg *Config) (*Builder, error) {
return &Builder{
cfg: cfg,
networkUpdates: make(chan *routingMsg),
topologyClients: &lnutils.SyncMap[uint64, *topologyClient]{},
ntfnClientUpdates: make(chan *topologyClientUpdate),
channelEdgeMtx: multimutex.NewMutex[uint64](),
statTicker: ticker.New(defaultStatInterval),
stats: new(routerStats),
quit: make(chan struct{}),
}, nil
}
// Start launches all the goroutines the Builder requires to carry out its
// duties. If the builder has already been started, then this method is a noop.
func (b *Builder) Start() error {
if !b.started.CompareAndSwap(false, true) {
return nil
}
log.Info("Builder starting")
bestHash, bestHeight, err := b.cfg.Chain.GetBestBlock()
if err != nil {
return err
}
// If the graph has never been pruned, or hasn't fully been created yet,
// then we don't treat this as an explicit error.
if _, _, err := b.cfg.Graph.PruneTip(); err != nil {
switch {
case errors.Is(err, channeldb.ErrGraphNeverPruned):
fallthrough
case errors.Is(err, channeldb.ErrGraphNotFound):
// If the graph has never been pruned, then we'll set
// the prune height to the current best height of the
// chain backend.
_, err = b.cfg.Graph.PruneGraph(
nil, bestHash, uint32(bestHeight),
)
if err != nil {
return err
}
default:
return err
}
}
// If AssumeChannelValid is present, then we won't rely on pruning
// channels from the graph based on their spentness, but whether they
// are considered zombies or not. We will start zombie pruning after a
// small delay, to avoid slowing down startup of lnd.
if b.cfg.AssumeChannelValid {
time.AfterFunc(b.cfg.FirstTimePruneDelay, func() {
select {
case <-b.quit:
return
default:
}
log.Info("Initial zombie prune starting")
if err := b.pruneZombieChans(); err != nil {
log.Errorf("Unable to prune zombies: %v", err)
}
})
} else {
// Otherwise, we'll use our filtered chain view to prune
// channels as soon as they are detected as spent on-chain.
if err := b.cfg.ChainView.Start(); err != nil {
return err
}
// Once the instance is active, we'll fetch the channel we'll
// receive notifications over.
b.newBlocks = b.cfg.ChainView.FilteredBlocks()
b.staleBlocks = b.cfg.ChainView.DisconnectedBlocks()
// Before we perform our manual block pruning, we'll construct
// and apply a fresh chain filter to the active
// FilteredChainView instance. We do this before, as otherwise
// we may miss on-chain events as the filter hasn't properly
// been applied.
channelView, err := b.cfg.Graph.ChannelView()
if err != nil && !errors.Is(
err, channeldb.ErrGraphNoEdgesFound,
) {
return err
}
log.Infof("Filtering chain using %v channels active",
len(channelView))
if len(channelView) != 0 {
err = b.cfg.ChainView.UpdateFilter(
channelView, uint32(bestHeight),
)
if err != nil {
return err
}
}
// The graph pruning might have taken a while and there could be
// new blocks available.
_, bestHeight, err = b.cfg.Chain.GetBestBlock()
if err != nil {
return err
}
b.bestHeight = uint32(bestHeight)
// Before we begin normal operation of the router, we first need
// to synchronize the channel graph to the latest state of the
// UTXO set.
if err := b.syncGraphWithChain(); err != nil {
return err
}
// Finally, before we proceed, we'll prune any unconnected nodes
// from the graph in order to ensure we maintain a tight graph
// of "useful" nodes.
err = b.cfg.Graph.PruneGraphNodes()
if err != nil && err != channeldb.ErrGraphNodesNotFound {
return err
}
}
b.wg.Add(1)
go b.networkHandler()
return nil
}
// Stop signals to the Builder that it should halt all routines. This method
// will *block* until all goroutines have excited. If the builder has already
// stopped then this method will return immediately.
func (b *Builder) Stop() error {
if !b.stopped.CompareAndSwap(false, true) {
return nil
}
log.Info("Builder shutting down...")
defer log.Debug("Builder shutdown complete")
// Our filtered chain view could've only been started if
// AssumeChannelValid isn't present.
if !b.cfg.AssumeChannelValid {
if err := b.cfg.ChainView.Stop(); err != nil {
return err
}
}
close(b.quit)
b.wg.Wait()
return nil
}
// syncGraphWithChain attempts to synchronize the current channel graph with
// the latest UTXO set state. This process involves pruning from the channel
// graph any channels which have been closed by spending their funding output
// since we've been down.
func (b *Builder) syncGraphWithChain() error {
// First, we'll need to check to see if we're already in sync with the
// latest state of the UTXO set.
bestHash, bestHeight, err := b.cfg.Chain.GetBestBlock()
if err != nil {
return err
}
b.bestHeight = uint32(bestHeight)
pruneHash, pruneHeight, err := b.cfg.Graph.PruneTip()
if err != nil {
switch {
// If the graph has never been pruned, or hasn't fully been
// created yet, then we don't treat this as an explicit error.
case err == channeldb.ErrGraphNeverPruned:
case err == channeldb.ErrGraphNotFound:
default:
return err
}
}
log.Infof("Prune tip for Channel Graph: height=%v, hash=%v",
pruneHeight, pruneHash)
switch {
// If the graph has never been pruned, then we can exit early as this
// entails it's being created for the first time and hasn't seen any
// block or created channels.
case pruneHeight == 0 || pruneHash == nil:
return nil
// If the block hashes and heights match exactly, then we don't need to
// prune the channel graph as we're already fully in sync.
case bestHash.IsEqual(pruneHash) && uint32(bestHeight) == pruneHeight:
return nil
}
// If the main chain blockhash at prune height is different from the
// prune hash, this might indicate the database is on a stale branch.
mainBlockHash, err := b.cfg.Chain.GetBlockHash(int64(pruneHeight))
if err != nil {
return err
}
// While we are on a stale branch of the chain, walk backwards to find
// first common block.
for !pruneHash.IsEqual(mainBlockHash) {
log.Infof("channel graph is stale. Disconnecting block %v "+
"(hash=%v)", pruneHeight, pruneHash)
// Prune the graph for every channel that was opened at height
// >= pruneHeight.
_, err := b.cfg.Graph.DisconnectBlockAtHeight(pruneHeight)
if err != nil {
return err
}
pruneHash, pruneHeight, err = b.cfg.Graph.PruneTip()
if err != nil {
switch {
// If at this point the graph has never been pruned, we
// can exit as this entails we are back to the point
// where it hasn't seen any block or created channels,
// alas there's nothing left to prune.
case err == channeldb.ErrGraphNeverPruned:
return nil
case err == channeldb.ErrGraphNotFound:
return nil
default:
return err
}
}
mainBlockHash, err = b.cfg.Chain.GetBlockHash(int64(pruneHeight))
if err != nil {
return err
}
}
log.Infof("Syncing channel graph from height=%v (hash=%v) to height=%v "+
"(hash=%v)", pruneHeight, pruneHash, bestHeight, bestHash)
// If we're not yet caught up, then we'll walk forward in the chain
// pruning the channel graph with each new block that hasn't yet been
// consumed by the channel graph.
var spentOutputs []*wire.OutPoint
for nextHeight := pruneHeight + 1; nextHeight <= uint32(bestHeight); nextHeight++ {
// Break out of the rescan early if a shutdown has been
// requested, otherwise long rescans will block the daemon from
// shutting down promptly.
select {
case <-b.quit:
return ErrGraphBuilderShuttingDown
default:
}
// Using the next height, request a manual block pruning from
// the chainview for the particular block hash.
log.Infof("Filtering block for closed channels, at height: %v",
int64(nextHeight))
nextHash, err := b.cfg.Chain.GetBlockHash(int64(nextHeight))
if err != nil {
return err
}
log.Tracef("Running block filter on block with hash: %v",
nextHash)
filterBlock, err := b.cfg.ChainView.FilterBlock(nextHash)
if err != nil {
return err
}
// We're only interested in all prior outputs that have been
// spent in the block, so collate all the referenced previous
// outpoints within each tx and input.
for _, tx := range filterBlock.Transactions {
for _, txIn := range tx.TxIn {
spentOutputs = append(spentOutputs,
&txIn.PreviousOutPoint)
}
}
}
// With the spent outputs gathered, attempt to prune the channel graph,
// also passing in the best hash+height so the prune tip can be updated.
closedChans, err := b.cfg.Graph.PruneGraph(
spentOutputs, bestHash, uint32(bestHeight),
)
if err != nil {
return err
}
log.Infof("Graph pruning complete: %v channels were closed since "+
"height %v", len(closedChans), pruneHeight)
return nil
}
// isZombieChannel takes two edge policy updates and determines if the
// corresponding channel should be considered a zombie. The first boolean is
// true if the policy update from node 1 is considered a zombie, the second
// boolean is that of node 2, and the final boolean is true if the channel
// is considered a zombie.
func (b *Builder) isZombieChannel(e1,
e2 *models.ChannelEdgePolicy) (bool, bool, bool) {
chanExpiry := b.cfg.ChannelPruneExpiry
e1Zombie := e1 == nil || time.Since(e1.LastUpdate) >= chanExpiry
e2Zombie := e2 == nil || time.Since(e2.LastUpdate) >= chanExpiry
var e1Time, e2Time time.Time
if e1 != nil {
e1Time = e1.LastUpdate
}
if e2 != nil {
e2Time = e2.LastUpdate
}
return e1Zombie, e2Zombie, b.IsZombieChannel(e1Time, e2Time)
}
// IsZombieChannel takes the timestamps of the latest channel updates for a
// channel and returns true if the channel should be considered a zombie based
// on these timestamps.
func (b *Builder) IsZombieChannel(updateTime1,
updateTime2 time.Time) bool {
chanExpiry := b.cfg.ChannelPruneExpiry
e1Zombie := updateTime1.IsZero() ||
time.Since(updateTime1) >= chanExpiry
e2Zombie := updateTime2.IsZero() ||
time.Since(updateTime2) >= chanExpiry
// If we're using strict zombie pruning, then a channel is only
// considered live if both edges have a recent update we know of.
if b.cfg.StrictZombiePruning {
return e1Zombie || e2Zombie
}
// Otherwise, if we're using the less strict variant, then a channel is
// considered live if either of the edges have a recent update.
return e1Zombie && e2Zombie
}
// pruneZombieChans is a method that will be called periodically to prune out
// any "zombie" channels. We consider channels zombies if *both* edges haven't
// been updated since our zombie horizon. If AssumeChannelValid is present,
// we'll also consider channels zombies if *both* edges are disabled. This
// usually signals that a channel has been closed on-chain. We do this
// periodically to keep a healthy, lively routing table.
func (b *Builder) pruneZombieChans() error {
chansToPrune := make(map[uint64]struct{})
chanExpiry := b.cfg.ChannelPruneExpiry
log.Infof("Examining channel graph for zombie channels")
// A helper method to detect if the channel belongs to this node
isSelfChannelEdge := func(info *models.ChannelEdgeInfo) bool {
return info.NodeKey1Bytes == b.cfg.SelfNode ||
info.NodeKey2Bytes == b.cfg.SelfNode
}
// First, we'll collect all the channels which are eligible for garbage
// collection due to being zombies.
filterPruneChans := func(info *models.ChannelEdgeInfo,
e1, e2 *models.ChannelEdgePolicy) error {
// Exit early in case this channel is already marked to be
// pruned
_, markedToPrune := chansToPrune[info.ChannelID]
if markedToPrune {
return nil
}
// We'll ensure that we don't attempt to prune our *own*
// channels from the graph, as in any case this should be
// re-advertised by the sub-system above us.
if isSelfChannelEdge(info) {
return nil
}
e1Zombie, e2Zombie, isZombieChan := b.isZombieChannel(e1, e2)
if e1Zombie {
log.Tracef("Node1 pubkey=%x of chan_id=%v is zombie",
info.NodeKey1Bytes, info.ChannelID)
}
if e2Zombie {
log.Tracef("Node2 pubkey=%x of chan_id=%v is zombie",
info.NodeKey2Bytes, info.ChannelID)
}
// If either edge hasn't been updated for a period of
// chanExpiry, then we'll mark the channel itself as eligible
// for graph pruning.
if !isZombieChan {
return nil
}
log.Debugf("ChannelID(%v) is a zombie, collecting to prune",
info.ChannelID)
// TODO(roasbeef): add ability to delete single directional edge
chansToPrune[info.ChannelID] = struct{}{}
return nil
}
// If AssumeChannelValid is present we'll look at the disabled bit for
// both edges. If they're both disabled, then we can interpret this as
// the channel being closed and can prune it from our graph.
if b.cfg.AssumeChannelValid {
disabledChanIDs, err := b.cfg.Graph.DisabledChannelIDs()
if err != nil {
return fmt.Errorf("unable to get disabled channels "+
"ids chans: %v", err)
}
disabledEdges, err := b.cfg.Graph.FetchChanInfos(
disabledChanIDs,
)
if err != nil {
return fmt.Errorf("unable to fetch disabled channels "+
"edges chans: %v", err)
}
// Ensuring we won't prune our own channel from the graph.
for _, disabledEdge := range disabledEdges {
if !isSelfChannelEdge(disabledEdge.Info) {
chansToPrune[disabledEdge.Info.ChannelID] =
struct{}{}
}
}
}
startTime := time.Unix(0, 0)
endTime := time.Now().Add(-1 * chanExpiry)
oldEdges, err := b.cfg.Graph.ChanUpdatesInHorizon(startTime, endTime)
if err != nil {
return fmt.Errorf("unable to fetch expired channel updates "+
"chans: %v", err)
}
for _, u := range oldEdges {
filterPruneChans(u.Info, u.Policy1, u.Policy2)
}
log.Infof("Pruning %v zombie channels", len(chansToPrune))
if len(chansToPrune) == 0 {
return nil
}
// With the set of zombie-like channels obtained, we'll do another pass
// to delete them from the channel graph.
toPrune := make([]uint64, 0, len(chansToPrune))
for chanID := range chansToPrune {
toPrune = append(toPrune, chanID)
log.Tracef("Pruning zombie channel with ChannelID(%v)", chanID)
}
err = b.cfg.Graph.DeleteChannelEdges(
b.cfg.StrictZombiePruning, true, toPrune...,
)
if err != nil {
return fmt.Errorf("unable to delete zombie channels: %w", err)
}
// With the channels pruned, we'll also attempt to prune any nodes that
// were a part of them.
err = b.cfg.Graph.PruneGraphNodes()
if err != nil && err != channeldb.ErrGraphNodesNotFound {
return fmt.Errorf("unable to prune graph nodes: %w", err)
}
return nil
}
// handleNetworkUpdate is responsible for processing the update message and
// notifies topology changes, if any.
//
// NOTE: must be run inside goroutine.
func (b *Builder) handleNetworkUpdate(vb *ValidationBarrier,
update *routingMsg) {
defer b.wg.Done()
defer vb.CompleteJob()
// If this message has an existing dependency, then we'll wait until
// that has been fully validated before we proceed.
err := vb.WaitForDependants(update.msg)
if err != nil {
switch {
case IsError(err, ErrVBarrierShuttingDown):
update.err <- err
case IsError(err, ErrParentValidationFailed):
update.err <- newErrf(ErrIgnored, err.Error())
default:
log.Warnf("unexpected error during validation "+
"barrier shutdown: %v", err)
update.err <- err
}
return
}
// Process the routing update to determine if this is either a new
// update from our PoV or an update to a prior vertex/edge we
// previously accepted.
err = b.processUpdate(update.msg, update.op...)
update.err <- err
// If this message had any dependencies, then we can now signal them to
// continue.
allowDependents := err == nil || IsError(err, ErrIgnored, ErrOutdated)
vb.SignalDependants(update.msg, allowDependents)
// If the error is not nil here, there's no need to send topology
// change.
if err != nil {
// We now decide to log an error or not. If allowDependents is
// false, it means there is an error and the error is neither
// ErrIgnored or ErrOutdated. In this case, we'll log an error.
// Otherwise, we'll add debug log only.
if allowDependents {
log.Debugf("process network updates got: %v", err)
} else {
log.Errorf("process network updates got: %v", err)
}
return
}
// Otherwise, we'll send off a new notification for the newly accepted
// update, if any.
topChange := &TopologyChange{}
err = addToTopologyChange(b.cfg.Graph, topChange, update.msg)
if err != nil {
log.Errorf("unable to update topology change notification: %v",
err)
return
}
if !topChange.isEmpty() {
b.notifyTopologyChange(topChange)
}
}
// networkHandler is the primary goroutine for the Builder. The roles of
// this goroutine include answering queries related to the state of the
// network, pruning the graph on new block notification, applying network
// updates, and registering new topology clients.
//
// NOTE: This MUST be run as a goroutine.
func (b *Builder) networkHandler() {
defer b.wg.Done()
graphPruneTicker := time.NewTicker(b.cfg.GraphPruneInterval)
defer graphPruneTicker.Stop()
defer b.statTicker.Stop()
b.stats.Reset()
// We'll use this validation barrier to ensure that we process all jobs
// in the proper order during parallel validation.
//
// NOTE: For AssumeChannelValid, we bump up the maximum number of
// concurrent validation requests since there are no blocks being
// fetched. This significantly increases the performance of IGD for
// neutrino nodes.
//
// However, we dial back to use multiple of the number of cores when
// fully validating, to avoid fetching up to 1000 blocks from the
// backend. On bitcoind, this will empirically cause massive latency
// spikes when executing this many concurrent RPC calls. Critical
// subsystems or basic rpc calls that rely on calls such as GetBestBlock
// will hang due to excessive load.
//
// See https://github.com/lightningnetwork/lnd/issues/4892.
var validationBarrier *ValidationBarrier
if b.cfg.AssumeChannelValid {
validationBarrier = NewValidationBarrier(1000, b.quit)
} else {
validationBarrier = NewValidationBarrier(
4*runtime.NumCPU(), b.quit,
)
}
for {
// If there are stats, resume the statTicker.
if !b.stats.Empty() {
b.statTicker.Resume()
}
select {
// A new fully validated network update has just arrived. As a
// result we'll modify the channel graph accordingly depending
// on the exact type of the message.
case update := <-b.networkUpdates:
// We'll set up any dependants, and wait until a free
// slot for this job opens up, this allows us to not
// have thousands of goroutines active.
validationBarrier.InitJobDependencies(update.msg)
b.wg.Add(1)
go b.handleNetworkUpdate(validationBarrier, update)
// TODO(roasbeef): remove all unconnected vertexes
// after N blocks pass with no corresponding
// announcements.
case chainUpdate, ok := <-b.staleBlocks:
// If the channel has been closed, then this indicates
// the daemon is shutting down, so we exit ourselves.
if !ok {
return
}
// Since this block is stale, we update our best height
// to the previous block.
blockHeight := uint32(chainUpdate.Height)
atomic.StoreUint32(&b.bestHeight, blockHeight-1)
// Update the channel graph to reflect that this block
// was disconnected.
_, err := b.cfg.Graph.DisconnectBlockAtHeight(blockHeight)
if err != nil {
log.Errorf("unable to prune graph with stale "+
"block: %v", err)
continue
}
// TODO(halseth): notify client about the reorg?
// A new block has arrived, so we can prune the channel graph
// of any channels which were closed in the block.
case chainUpdate, ok := <-b.newBlocks:
// If the channel has been closed, then this indicates
// the daemon is shutting down, so we exit ourselves.
if !ok {
return
}
// We'll ensure that any new blocks received attach
// directly to the end of our main chain. If not, then
// we've somehow missed some blocks. Here we'll catch
// up the chain with the latest blocks.
currentHeight := atomic.LoadUint32(&b.bestHeight)
switch {
case chainUpdate.Height == currentHeight+1:
err := b.updateGraphWithClosedChannels(
chainUpdate,
)
if err != nil {
log.Errorf("unable to prune graph "+
"with closed channels: %v", err)
}
case chainUpdate.Height > currentHeight+1:
log.Errorf("out of order block: expecting "+
"height=%v, got height=%v",
currentHeight+1, chainUpdate.Height)
err := b.getMissingBlocks(currentHeight, chainUpdate)
if err != nil {
log.Errorf("unable to retrieve missing"+
"blocks: %v", err)
}
case chainUpdate.Height < currentHeight+1:
log.Errorf("out of order block: expecting "+
"height=%v, got height=%v",
currentHeight+1, chainUpdate.Height)
log.Infof("Skipping channel pruning since "+
"received block height %v was already"+
" processed.", chainUpdate.Height)
}
// A new notification client update has arrived. We're either
// gaining a new client, or cancelling notifications for an
// existing client.
case ntfnUpdate := <-b.ntfnClientUpdates:
clientID := ntfnUpdate.clientID
if ntfnUpdate.cancel {
client, ok := b.topologyClients.LoadAndDelete(
clientID,
)
if ok {
close(client.exit)
client.wg.Wait()
close(client.ntfnChan)
}
continue
}
b.topologyClients.Store(clientID, &topologyClient{
ntfnChan: ntfnUpdate.ntfnChan,
exit: make(chan struct{}),
})
// The graph prune ticker has ticked, so we'll examine the
// state of the known graph to filter out any zombie channels
// for pruning.
case <-graphPruneTicker.C:
if err := b.pruneZombieChans(); err != nil {
log.Errorf("Unable to prune zombies: %v", err)
}
// Log any stats if we've processed a non-empty number of
// channels, updates, or nodes. We'll only pause the ticker if
// the last window contained no updates to avoid resuming and
// pausing while consecutive windows contain new info.
case <-b.statTicker.Ticks():
if !b.stats.Empty() {
log.Infof(b.stats.String())
} else {
b.statTicker.Pause()
}
b.stats.Reset()
// The router has been signalled to exit, to we exit our main
// loop so the wait group can be decremented.
case <-b.quit:
return
}
}
}
// getMissingBlocks walks through all missing blocks and updates the graph
// closed channels accordingly.
func (b *Builder) getMissingBlocks(currentHeight uint32,
chainUpdate *chainview.FilteredBlock) error {
outdatedHash, err := b.cfg.Chain.GetBlockHash(int64(currentHeight))
if err != nil {
return err
}
outdatedBlock := &chainntnfs.BlockEpoch{
Height: int32(currentHeight),
Hash: outdatedHash,
}
epochClient, err := b.cfg.Notifier.RegisterBlockEpochNtfn(
outdatedBlock,
)
if err != nil {
return err
}
defer epochClient.Cancel()
blockDifference := int(chainUpdate.Height - currentHeight)
// We'll walk through all the outdated blocks and make sure we're able
// to update the graph with any closed channels from them.
for i := 0; i < blockDifference; i++ {
var (
missingBlock *chainntnfs.BlockEpoch
ok bool
)
select {
case missingBlock, ok = <-epochClient.Epochs:
if !ok {
return nil
}
case <-b.quit:
return nil
}
filteredBlock, err := b.cfg.ChainView.FilterBlock(
missingBlock.Hash,
)
if err != nil {
return err
}
err = b.updateGraphWithClosedChannels(
filteredBlock,
)
if err != nil {
return err
}
}
return nil
}
// updateGraphWithClosedChannels prunes the channel graph of closed channels
// that are no longer needed.
func (b *Builder) updateGraphWithClosedChannels(
chainUpdate *chainview.FilteredBlock) error {
// Once a new block arrives, we update our running track of the height
// of the chain tip.
blockHeight := chainUpdate.Height
atomic.StoreUint32(&b.bestHeight, blockHeight)
log.Infof("Pruning channel graph using block %v (height=%v)",
chainUpdate.Hash, blockHeight)
// We're only interested in all prior outputs that have been spent in
// the block, so collate all the referenced previous outpoints within
// each tx and input.
var spentOutputs []*wire.OutPoint
for _, tx := range chainUpdate.Transactions {
for _, txIn := range tx.TxIn {
spentOutputs = append(spentOutputs,
&txIn.PreviousOutPoint)
}
}
// With the spent outputs gathered, attempt to prune the channel graph,
// also passing in the hash+height of the block being pruned so the
// prune tip can be updated.
chansClosed, err := b.cfg.Graph.PruneGraph(spentOutputs,
&chainUpdate.Hash, chainUpdate.Height)
if err != nil {
log.Errorf("unable to prune routing table: %v", err)
return err
}
log.Infof("Block %v (height=%v) closed %v channels", chainUpdate.Hash,
blockHeight, len(chansClosed))
if len(chansClosed) == 0 {
return err
}
// Notify all currently registered clients of the newly closed channels.
closeSummaries := createCloseSummaries(blockHeight, chansClosed...)
b.notifyTopologyChange(&TopologyChange{
ClosedChannels: closeSummaries,
})
return nil
}
// assertNodeAnnFreshness returns a non-nil error if we have an announcement in
// the database for the passed node with a timestamp newer than the passed
// timestamp. ErrIgnored will be returned if we already have the node, and
// ErrOutdated will be returned if we have a timestamp that's after the new
// timestamp.
func (b *Builder) assertNodeAnnFreshness(node route.Vertex,
msgTimestamp time.Time) error {
// If we are not already aware of this node, it means that we don't
// know about any channel using this node. To avoid a DoS attack by
// node announcements, we will ignore such nodes. If we do know about
// this node, check that this update brings info newer than what we
// already have.
lastUpdate, exists, err := b.cfg.Graph.HasLightningNode(node)
if err != nil {
return errors.Errorf("unable to query for the "+
"existence of node: %v", err)
}
if !exists {
return newErrf(ErrIgnored, "Ignoring node announcement"+
" for node not found in channel graph (%x)",
node[:])
}
// If we've reached this point then we're aware of the vertex being
// advertised. So we now check if the new message has a new time stamp,
// if not then we won't accept the new data as it would override newer
// data.
if !lastUpdate.Before(msgTimestamp) {
return newErrf(ErrOutdated, "Ignoring outdated "+
"announcement for %x", node[:])
}
return nil
}
// addZombieEdge adds a channel that failed complete validation into the zombie
// index so we can avoid having to re-validate it in the future.
func (b *Builder) addZombieEdge(chanID uint64) error {
// If the edge fails validation we'll mark the edge itself as a zombie
// so we don't continue to request it. We use the "zero key" for both
// node pubkeys so this edge can't be resurrected.
var zeroKey [33]byte
err := b.cfg.Graph.MarkEdgeZombie(chanID, zeroKey, zeroKey)
if err != nil {
return fmt.Errorf("unable to mark spent chan(id=%v) as a "+
"zombie: %w", chanID, err)
}
return nil
}
// makeFundingScript is used to make the funding script for both segwit v0 and
// segwit v1 (taproot) channels.
//
// TODO(roasbeef: export and use elsewhere?
func makeFundingScript(bitcoinKey1, bitcoinKey2 []byte,
chanFeatures []byte) ([]byte, error) {
legacyFundingScript := func() ([]byte, error) {
witnessScript, err := input.GenMultiSigScript(
bitcoinKey1, bitcoinKey2,
)
if err != nil {
return nil, err
}
pkScript, err := input.WitnessScriptHash(witnessScript)
if err != nil {
return nil, err
}
return pkScript, nil
}
if len(chanFeatures) == 0 {
return legacyFundingScript()
}
// In order to make the correct funding script, we'll need to parse the
// chanFeatures bytes into a feature vector we can interact with.
rawFeatures := lnwire.NewRawFeatureVector()
err := rawFeatures.Decode(bytes.NewReader(chanFeatures))
if err != nil {
return nil, fmt.Errorf("unable to parse chan feature "+
"bits: %w", err)
}
chanFeatureBits := lnwire.NewFeatureVector(
rawFeatures, lnwire.Features,
)
if chanFeatureBits.HasFeature(
lnwire.SimpleTaprootChannelsOptionalStaging,
) {
pubKey1, err := btcec.ParsePubKey(bitcoinKey1)
if err != nil {
return nil, err
}
pubKey2, err := btcec.ParsePubKey(bitcoinKey2)
if err != nil {
return nil, err
}
fundingScript, _, err := input.GenTaprootFundingScript(
pubKey1, pubKey2, 0,
)
if err != nil {
return nil, err
}
return fundingScript, nil
}
return legacyFundingScript()
}
// processUpdate processes a new relate authenticated channel/edge, node or
// channel/edge update network update. If the update didn't affect the internal
// state of the draft due to either being out of date, invalid, or redundant,
// then error is returned.
func (b *Builder) processUpdate(msg interface{},
op ...batch.SchedulerOption) error {
switch msg := msg.(type) {
case *channeldb.LightningNode:
// Before we add the node to the database, we'll check to see
// if the announcement is "fresh" or not. If it isn't, then
// we'll return an error.
err := b.assertNodeAnnFreshness(msg.PubKeyBytes, msg.LastUpdate)
if err != nil {
return err
}
if err := b.cfg.Graph.AddLightningNode(msg, op...); err != nil {
return errors.Errorf("unable to add node %x to the "+
"graph: %v", msg.PubKeyBytes, err)
}
log.Tracef("Updated vertex data for node=%x", msg.PubKeyBytes)
b.stats.incNumNodeUpdates()
case *models.ChannelEdgeInfo:
log.Debugf("Received ChannelEdgeInfo for channel %v",
msg.ChannelID)
// Prior to processing the announcement we first check if we
// already know of this channel, if so, then we can exit early.
_, _, exists, isZombie, err := b.cfg.Graph.HasChannelEdge(
msg.ChannelID,
)
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return errors.Errorf("unable to check for edge "+
"existence: %v", err)
}
if isZombie {
return newErrf(ErrIgnored, "ignoring msg for zombie "+
"chan_id=%v", msg.ChannelID)
}
if exists {
return newErrf(ErrIgnored, "ignoring msg for known "+
"chan_id=%v", msg.ChannelID)
}
// If AssumeChannelValid is present, then we are unable to
// perform any of the expensive checks below, so we'll
// short-circuit our path straight to adding the edge to our
// graph. If the passed ShortChannelID is an alias, then we'll
// skip validation as it will not map to a legitimate tx. This
// is not a DoS vector as only we can add an alias
// ChannelAnnouncement from the gossiper.
scid := lnwire.NewShortChanIDFromInt(msg.ChannelID)
if b.cfg.AssumeChannelValid || b.cfg.IsAlias(scid) {
if err := b.cfg.Graph.AddChannelEdge(msg, op...); err != nil {
return fmt.Errorf("unable to add edge: %w", err)
}
log.Tracef("New channel discovered! Link "+
"connects %x and %x with ChannelID(%v)",
msg.NodeKey1Bytes, msg.NodeKey2Bytes,
msg.ChannelID)
b.stats.incNumEdgesDiscovered()
break
}
// Before we can add the channel to the channel graph, we need
// to obtain the full funding outpoint that's encoded within
// the channel ID.
channelID := lnwire.NewShortChanIDFromInt(msg.ChannelID)
fundingTx, err := b.fetchFundingTxWrapper(&channelID)
if err != nil {
// In order to ensure we don't erroneously mark a
// channel as a zombie due to an RPC failure, we'll
// attempt to string match for the relevant errors.
//
// * btcd:
// * https://github.com/btcsuite/btcd/blob/master/rpcserver.go#L1316
// * https://github.com/btcsuite/btcd/blob/master/rpcserver.go#L1086
// * bitcoind:
// * https://github.com/bitcoin/bitcoin/blob/7fcf53f7b4524572d1d0c9a5fdc388e87eb02416/src/rpc/blockchain.cpp#L770
// * https://github.com/bitcoin/bitcoin/blob/7fcf53f7b4524572d1d0c9a5fdc388e87eb02416/src/rpc/blockchain.cpp#L954
switch {
case strings.Contains(err.Error(), "not found"):
fallthrough
case strings.Contains(err.Error(), "out of range"):
// If the funding transaction isn't found at
// all, then we'll mark the edge itself as a
// zombie so we don't continue to request it.
// We use the "zero key" for both node pubkeys
// so this edge can't be resurrected.
zErr := b.addZombieEdge(msg.ChannelID)
if zErr != nil {
return zErr
}
default:
}
return newErrf(ErrNoFundingTransaction, "unable to "+
"locate funding tx: %v", err)
}
// Recreate witness output to be sure that declared in channel
// edge bitcoin keys and channel value corresponds to the
// reality.
fundingPkScript, err := makeFundingScript(
msg.BitcoinKey1Bytes[:], msg.BitcoinKey2Bytes[:],
msg.Features,
)
if err != nil {
return err
}
// Next we'll validate that this channel is actually well
// formed. If this check fails, then this channel either
// doesn't exist, or isn't the one that was meant to be created
// according to the passed channel proofs.
fundingPoint, err := chanvalidate.Validate(&chanvalidate.Context{
Locator: &chanvalidate.ShortChanIDChanLocator{
ID: channelID,
},
MultiSigPkScript: fundingPkScript,
FundingTx: fundingTx,
})
if err != nil {
// Mark the edge as a zombie so we won't try to
// re-validate it on start up.
if err := b.addZombieEdge(msg.ChannelID); err != nil {
return err
}
return newErrf(ErrInvalidFundingOutput, "output "+
"failed validation: %w", err)
}
// Now that we have the funding outpoint of the channel, ensure
// that it hasn't yet been spent. If so, then this channel has
// been closed so we'll ignore it.
chanUtxo, err := b.cfg.Chain.GetUtxo(
fundingPoint, fundingPkScript, channelID.BlockHeight,
b.quit,
)
if err != nil {
if errors.Is(err, btcwallet.ErrOutputSpent) {
zErr := b.addZombieEdge(msg.ChannelID)
if zErr != nil {
return zErr
}
}
return newErrf(ErrChannelSpent, "unable to fetch utxo "+
"for chan_id=%v, chan_point=%v: %v",
msg.ChannelID, fundingPoint, err)
}
// TODO(roasbeef): this is a hack, needs to be removed
// after commitment fees are dynamic.
msg.Capacity = btcutil.Amount(chanUtxo.Value)
msg.ChannelPoint = *fundingPoint
if err := b.cfg.Graph.AddChannelEdge(msg, op...); err != nil {
return errors.Errorf("unable to add edge: %v", err)
}
log.Debugf("New channel discovered! Link "+
"connects %x and %x with ChannelPoint(%v): "+
"chan_id=%v, capacity=%v",
msg.NodeKey1Bytes, msg.NodeKey2Bytes,
fundingPoint, msg.ChannelID, msg.Capacity)
b.stats.incNumEdgesDiscovered()
// As a new edge has been added to the channel graph, we'll
// update the current UTXO filter within our active
// FilteredChainView so we are notified if/when this channel is
// closed.
filterUpdate := []channeldb.EdgePoint{
{
FundingPkScript: fundingPkScript,
OutPoint: *fundingPoint,
},
}
err = b.cfg.ChainView.UpdateFilter(
filterUpdate, atomic.LoadUint32(&b.bestHeight),
)
if err != nil {
return errors.Errorf("unable to update chain "+
"view: %v", err)
}
case *models.ChannelEdgePolicy:
log.Debugf("Received ChannelEdgePolicy for channel %v",
msg.ChannelID)
// We make sure to hold the mutex for this channel ID,
// such that no other goroutine is concurrently doing
// database accesses for the same channel ID.
b.channelEdgeMtx.Lock(msg.ChannelID)
defer b.channelEdgeMtx.Unlock(msg.ChannelID)
edge1Timestamp, edge2Timestamp, exists, isZombie, err :=
b.cfg.Graph.HasChannelEdge(msg.ChannelID)
if err != nil && err != channeldb.ErrGraphNoEdgesFound {
return errors.Errorf("unable to check for edge "+
"existence: %v", err)
}
// If the channel is marked as a zombie in our database, and
// we consider this a stale update, then we should not apply the
// policy.
isStaleUpdate := time.Since(msg.LastUpdate) > b.cfg.ChannelPruneExpiry
if isZombie && isStaleUpdate {
return newErrf(ErrIgnored, "ignoring stale update "+
"(flags=%v|%v) for zombie chan_id=%v",
msg.MessageFlags, msg.ChannelFlags,
msg.ChannelID)
}
// If the channel doesn't exist in our database, we cannot
// apply the updated policy.
if !exists {
return newErrf(ErrIgnored, "ignoring update "+
"(flags=%v|%v) for unknown chan_id=%v",
msg.MessageFlags, msg.ChannelFlags,
msg.ChannelID)
}
// As edges are directional edge node has a unique policy for
// the direction of the edge they control. Therefore, we first
// check if we already have the most up-to-date information for
// that edge. If this message has a timestamp not strictly
// newer than what we already know of we can exit early.
switch {
// A flag set of 0 indicates this is an announcement for the
// "first" node in the channel.
case msg.ChannelFlags&lnwire.ChanUpdateDirection == 0:
// Ignore outdated message.
if !edge1Timestamp.Before(msg.LastUpdate) {
return newErrf(ErrOutdated, "Ignoring "+
"outdated update (flags=%v|%v) for "+
"known chan_id=%v", msg.MessageFlags,
msg.ChannelFlags, msg.ChannelID)
}
// Similarly, a flag set of 1 indicates this is an announcement
// for the "second" node in the channel.
case msg.ChannelFlags&lnwire.ChanUpdateDirection == 1:
// Ignore outdated message.
if !edge2Timestamp.Before(msg.LastUpdate) {
return newErrf(ErrOutdated, "Ignoring "+
"outdated update (flags=%v|%v) for "+
"known chan_id=%v", msg.MessageFlags,
msg.ChannelFlags, msg.ChannelID)
}
}
// Now that we know this isn't a stale update, we'll apply the
// new edge policy to the proper directional edge within the
// channel graph.
if err = b.cfg.Graph.UpdateEdgePolicy(msg, op...); err != nil {
err := errors.Errorf("unable to add channel: %v", err)
log.Error(err)
return err
}
log.Tracef("New channel update applied: %v",
newLogClosure(func() string { return spew.Sdump(msg) }))
b.stats.incNumChannelUpdates()
default:
return errors.Errorf("wrong routing update message type")
}
return nil
}
// fetchFundingTxWrapper is a wrapper around fetchFundingTx, except that it
// will exit if the router has stopped.
func (b *Builder) fetchFundingTxWrapper(chanID *lnwire.ShortChannelID) (
*wire.MsgTx, error) {
txChan := make(chan *wire.MsgTx, 1)
errChan := make(chan error, 1)
go func() {
tx, err := b.fetchFundingTx(chanID)
if err != nil {
errChan <- err
return
}
txChan <- tx
}()
select {
case tx := <-txChan:
return tx, nil
case err := <-errChan:
return nil, err
case <-b.quit:
return nil, ErrGraphBuilderShuttingDown
}
}
// fetchFundingTx returns the funding transaction identified by the passed
// short channel ID.
//
// TODO(roasbeef): replace with call to GetBlockTransaction? (would allow to
// later use getblocktxn)
func (b *Builder) fetchFundingTx(
chanID *lnwire.ShortChannelID) (*wire.MsgTx, error) {
// First fetch the block hash by the block number encoded, then use
// that hash to fetch the block itself.
blockNum := int64(chanID.BlockHeight)
blockHash, err := b.cfg.Chain.GetBlockHash(blockNum)
if err != nil {
return nil, err
}
fundingBlock, err := b.cfg.Chain.GetBlock(blockHash)
if err != nil {
return nil, err
}
// As a sanity check, ensure that the advertised transaction index is
// within the bounds of the total number of transactions within a
// block.
numTxns := uint32(len(fundingBlock.Transactions))
if chanID.TxIndex > numTxns-1 {
return nil, fmt.Errorf("tx_index=#%v "+
"is out of range (max_index=%v), network_chan_id=%v",
chanID.TxIndex, numTxns-1, chanID)
}
return fundingBlock.Transactions[chanID.TxIndex].Copy(), nil
}
// routingMsg couples a routing related routing topology update to the
// error channel.
type routingMsg struct {
msg interface{}
op []batch.SchedulerOption
err chan error
}
// ApplyChannelUpdate validates a channel update and if valid, applies it to the
// database. It returns a bool indicating whether the updates were successful.
func (b *Builder) ApplyChannelUpdate(msg *lnwire.ChannelUpdate) bool {
ch, _, _, err := b.GetChannelByID(msg.ShortChannelID)
if err != nil {
log.Errorf("Unable to retrieve channel by id: %v", err)
return false
}
var pubKey *btcec.PublicKey
switch msg.ChannelFlags & lnwire.ChanUpdateDirection {
case 0:
pubKey, _ = ch.NodeKey1()
case 1:
pubKey, _ = ch.NodeKey2()
}
// Exit early if the pubkey cannot be decided.
if pubKey == nil {
log.Errorf("Unable to decide pubkey with ChannelFlags=%v",
msg.ChannelFlags)
return false
}
err = ValidateChannelUpdateAnn(pubKey, ch.Capacity, msg)
if err != nil {
log.Errorf("Unable to validate channel update: %v", err)
return false
}
err = b.UpdateEdge(&models.ChannelEdgePolicy{
SigBytes: msg.Signature.ToSignatureBytes(),
ChannelID: msg.ShortChannelID.ToUint64(),
LastUpdate: time.Unix(int64(msg.Timestamp), 0),
MessageFlags: msg.MessageFlags,
ChannelFlags: msg.ChannelFlags,
TimeLockDelta: msg.TimeLockDelta,
MinHTLC: msg.HtlcMinimumMsat,
MaxHTLC: msg.HtlcMaximumMsat,
FeeBaseMSat: lnwire.MilliSatoshi(msg.BaseFee),
FeeProportionalMillionths: lnwire.MilliSatoshi(msg.FeeRate),
ExtraOpaqueData: msg.ExtraOpaqueData,
})
if err != nil && !IsError(err, ErrIgnored, ErrOutdated) {
log.Errorf("Unable to apply channel update: %v", err)
return false
}
return true
}
// AddNode is used to add information about a node to the router database. If
// the node with this pubkey is not present in an existing channel, it will
// be ignored.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) AddNode(node *channeldb.LightningNode,
op ...batch.SchedulerOption) error {
rMsg := &routingMsg{
msg: node,
op: op,
err: make(chan error, 1),
}
select {
case b.networkUpdates <- rMsg:
select {
case err := <-rMsg.err:
return err
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
}
// AddEdge is used to add edge/channel to the topology of the router, after all
// information about channel will be gathered this edge/channel might be used
// in construction of payment path.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) AddEdge(edge *models.ChannelEdgeInfo,
op ...batch.SchedulerOption) error {
rMsg := &routingMsg{
msg: edge,
op: op,
err: make(chan error, 1),
}
select {
case b.networkUpdates <- rMsg:
select {
case err := <-rMsg.err:
return err
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
}
// UpdateEdge is used to update edge information, without this message edge
// considered as not fully constructed.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) UpdateEdge(update *models.ChannelEdgePolicy,
op ...batch.SchedulerOption) error {
rMsg := &routingMsg{
msg: update,
op: op,
err: make(chan error, 1),
}
select {
case b.networkUpdates <- rMsg:
select {
case err := <-rMsg.err:
return err
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
case <-b.quit:
return ErrGraphBuilderShuttingDown
}
}
// CurrentBlockHeight returns the block height from POV of the router subsystem.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) CurrentBlockHeight() (uint32, error) {
_, height, err := b.cfg.Chain.GetBestBlock()
return uint32(height), err
}
// SyncedHeight returns the block height to which the router subsystem currently
// is synced to. This can differ from the above chain height if the goroutine
// responsible for processing the blocks isn't yet up to speed.
func (b *Builder) SyncedHeight() uint32 {
return atomic.LoadUint32(&b.bestHeight)
}
// GetChannelByID return the channel by the channel id.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) GetChannelByID(chanID lnwire.ShortChannelID) (
*models.ChannelEdgeInfo,
*models.ChannelEdgePolicy,
*models.ChannelEdgePolicy, error) {
return b.cfg.Graph.FetchChannelEdgesByID(chanID.ToUint64())
}
// FetchLightningNode attempts to look up a target node by its identity public
// key. channeldb.ErrGraphNodeNotFound is returned if the node doesn't exist
// within the graph.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) FetchLightningNode(
node route.Vertex) (*channeldb.LightningNode, error) {
return b.cfg.Graph.FetchLightningNode(node)
}
// ForEachNode is used to iterate over every node in router topology.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) ForEachNode(
cb func(*channeldb.LightningNode) error) error {
return b.cfg.Graph.ForEachNode(
func(_ kvdb.RTx, n *channeldb.LightningNode) error {
return cb(n)
})
}
// ForAllOutgoingChannels is used to iterate over all outgoing channels owned by
// the router.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) ForAllOutgoingChannels(cb func(kvdb.RTx,
*models.ChannelEdgeInfo, *models.ChannelEdgePolicy) error) error {
return b.cfg.Graph.ForEachNodeChannel(b.cfg.SelfNode,
func(tx kvdb.RTx, c *models.ChannelEdgeInfo,
e *models.ChannelEdgePolicy,
_ *models.ChannelEdgePolicy) error {
if e == nil {
return fmt.Errorf("channel from self node " +
"has no policy")
}
return cb(tx, c, e)
},
)
}
// AddProof updates the channel edge info with proof which is needed to
// properly announce the edge to the rest of the network.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) AddProof(chanID lnwire.ShortChannelID,
proof *models.ChannelAuthProof) error {
info, _, _, err := b.cfg.Graph.FetchChannelEdgesByID(chanID.ToUint64())
if err != nil {
return err
}
info.AuthProof = proof
return b.cfg.Graph.UpdateChannelEdge(info)
}
// IsStaleNode returns true if the graph source has a node announcement for the
// target node with a more recent timestamp.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) IsStaleNode(node route.Vertex,
timestamp time.Time) bool {
// If our attempt to assert that the node announcement is fresh fails,
// then we know that this is actually a stale announcement.
err := b.assertNodeAnnFreshness(node, timestamp)
if err != nil {
log.Debugf("Checking stale node %x got %v", node, err)
return true
}
return false
}
// IsPublicNode determines whether the given vertex is seen as a public node in
// the graph from the graph's source node's point of view.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) IsPublicNode(node route.Vertex) (bool, error) {
return b.cfg.Graph.IsPublicNode(node)
}
// IsKnownEdge returns true if the graph source already knows of the passed
// channel ID either as a live or zombie edge.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) IsKnownEdge(chanID lnwire.ShortChannelID) bool {
_, _, exists, isZombie, _ := b.cfg.Graph.HasChannelEdge(
chanID.ToUint64(),
)
return exists || isZombie
}
// IsStaleEdgePolicy returns true if the graph source has a channel edge for
// the passed channel ID (and flags) that have a more recent timestamp.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) IsStaleEdgePolicy(chanID lnwire.ShortChannelID,
timestamp time.Time, flags lnwire.ChanUpdateChanFlags) bool {
edge1Timestamp, edge2Timestamp, exists, isZombie, err :=
b.cfg.Graph.HasChannelEdge(chanID.ToUint64())
if err != nil {
log.Debugf("Check stale edge policy got error: %v", err)
return false
}
// If we know of the edge as a zombie, then we'll make some additional
// checks to determine if the new policy is fresh.
if isZombie {
// When running with AssumeChannelValid, we also prune channels
// if both of their edges are disabled. We'll mark the new
// policy as stale if it remains disabled.
if b.cfg.AssumeChannelValid {
isDisabled := flags&lnwire.ChanUpdateDisabled ==
lnwire.ChanUpdateDisabled
if isDisabled {
return true
}
}
// Otherwise, we'll fall back to our usual ChannelPruneExpiry.
return time.Since(timestamp) > b.cfg.ChannelPruneExpiry
}
// If we don't know of the edge, then it means it's fresh (thus not
// stale).
if !exists {
return false
}
// As edges are directional edge node has a unique policy for the
// direction of the edge they control. Therefore, we first check if we
// already have the most up-to-date information for that edge. If so,
// then we can exit early.
switch {
// A flag set of 0 indicates this is an announcement for the "first"
// node in the channel.
case flags&lnwire.ChanUpdateDirection == 0:
return !edge1Timestamp.Before(timestamp)
// Similarly, a flag set of 1 indicates this is an announcement for the
// "second" node in the channel.
case flags&lnwire.ChanUpdateDirection == 1:
return !edge2Timestamp.Before(timestamp)
}
return false
}
// MarkEdgeLive clears an edge from our zombie index, deeming it as live.
//
// NOTE: This method is part of the ChannelGraphSource interface.
func (b *Builder) MarkEdgeLive(chanID lnwire.ShortChannelID) error {
return b.cfg.Graph.MarkEdgeLive(chanID.ToUint64())
}