mirror of
https://github.com/lightningnetwork/lnd.git
synced 2025-01-19 14:45:23 +01:00
ad8e25cbc9
This commit makes sure that no loop variables or other temporary variables are accessed directly in a goroutine but are instead passed into the goroutine through a parameter. This makes sure a copy of the value is put on the stack and is not changed while the outside loop continues.
1146 lines
35 KiB
Go
1146 lines
35 KiB
Go
package neutrinonotify
|
|
|
|
import (
|
|
"errors"
|
|
"fmt"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/btcjson"
|
|
"github.com/btcsuite/btcd/btcutil"
|
|
"github.com/btcsuite/btcd/btcutil/gcs/builder"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/rpcclient"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/lightninglabs/neutrino"
|
|
"github.com/lightninglabs/neutrino/headerfs"
|
|
"github.com/lightningnetwork/lnd/blockcache"
|
|
"github.com/lightningnetwork/lnd/chainntnfs"
|
|
"github.com/lightningnetwork/lnd/lntypes"
|
|
"github.com/lightningnetwork/lnd/queue"
|
|
)
|
|
|
|
const (
|
|
// notifierType uniquely identifies this concrete implementation of the
|
|
// ChainNotifier interface.
|
|
notifierType = "neutrino"
|
|
)
|
|
|
|
// NeutrinoNotifier is a version of ChainNotifier that's backed by the neutrino
|
|
// Bitcoin light client. Unlike other implementations, this implementation
|
|
// speaks directly to the p2p network. As a result, this implementation of the
|
|
// ChainNotifier interface is much more light weight that other implementation
|
|
// which rely of receiving notification over an RPC interface backed by a
|
|
// running full node.
|
|
//
|
|
// TODO(roasbeef): heavily consolidate with NeutrinoNotifier code
|
|
// - maybe combine into single package?
|
|
type NeutrinoNotifier struct {
|
|
epochClientCounter uint64 // To be used atomically.
|
|
|
|
start sync.Once
|
|
active int32 // To be used atomically.
|
|
stopped int32 // To be used atomically.
|
|
|
|
bestBlockMtx sync.RWMutex
|
|
bestBlock chainntnfs.BlockEpoch
|
|
|
|
p2pNode *neutrino.ChainService
|
|
chainView *neutrino.Rescan
|
|
|
|
chainConn *NeutrinoChainConn
|
|
|
|
notificationCancels chan interface{}
|
|
notificationRegistry chan interface{}
|
|
|
|
txNotifier *chainntnfs.TxNotifier
|
|
|
|
blockEpochClients map[uint64]*blockEpochRegistration
|
|
|
|
rescanErr <-chan error
|
|
|
|
chainUpdates chan *filteredBlock
|
|
|
|
txUpdates *queue.ConcurrentQueue
|
|
|
|
// spendHintCache is a cache used to query and update the latest height
|
|
// hints for an outpoint. Each height hint represents the earliest
|
|
// height at which the outpoint could have been spent within the chain.
|
|
spendHintCache chainntnfs.SpendHintCache
|
|
|
|
// confirmHintCache is a cache used to query the latest height hints for
|
|
// a transaction. Each height hint represents the earliest height at
|
|
// which the transaction could have confirmed within the chain.
|
|
confirmHintCache chainntnfs.ConfirmHintCache
|
|
|
|
// blockCache is an LRU block cache.
|
|
blockCache *blockcache.BlockCache
|
|
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
}
|
|
|
|
// Ensure NeutrinoNotifier implements the ChainNotifier interface at compile time.
|
|
var _ chainntnfs.ChainNotifier = (*NeutrinoNotifier)(nil)
|
|
|
|
// New creates a new instance of the NeutrinoNotifier concrete implementation
|
|
// of the ChainNotifier interface.
|
|
//
|
|
// NOTE: The passed neutrino node should already be running and active before
|
|
// being passed into this function.
|
|
func New(node *neutrino.ChainService, spendHintCache chainntnfs.SpendHintCache,
|
|
confirmHintCache chainntnfs.ConfirmHintCache,
|
|
blockCache *blockcache.BlockCache) *NeutrinoNotifier {
|
|
|
|
return &NeutrinoNotifier{
|
|
notificationCancels: make(chan interface{}),
|
|
notificationRegistry: make(chan interface{}),
|
|
|
|
blockEpochClients: make(map[uint64]*blockEpochRegistration),
|
|
|
|
p2pNode: node,
|
|
chainConn: &NeutrinoChainConn{node},
|
|
|
|
rescanErr: make(chan error),
|
|
|
|
chainUpdates: make(chan *filteredBlock, 100),
|
|
|
|
txUpdates: queue.NewConcurrentQueue(10),
|
|
|
|
spendHintCache: spendHintCache,
|
|
confirmHintCache: confirmHintCache,
|
|
|
|
blockCache: blockCache,
|
|
|
|
quit: make(chan struct{}),
|
|
}
|
|
}
|
|
|
|
// Start contacts the running neutrino light client and kicks off an initial
|
|
// empty rescan.
|
|
func (n *NeutrinoNotifier) Start() error {
|
|
var startErr error
|
|
n.start.Do(func() {
|
|
startErr = n.startNotifier()
|
|
})
|
|
return startErr
|
|
}
|
|
|
|
// Stop shuts down the NeutrinoNotifier.
|
|
func (n *NeutrinoNotifier) Stop() error {
|
|
// Already shutting down?
|
|
if atomic.AddInt32(&n.stopped, 1) != 1 {
|
|
return nil
|
|
}
|
|
|
|
chainntnfs.Log.Info("neutrino notifier shutting down")
|
|
|
|
close(n.quit)
|
|
n.wg.Wait()
|
|
|
|
n.txUpdates.Stop()
|
|
|
|
// Notify all pending clients of our shutdown by closing the related
|
|
// notification channels.
|
|
for _, epochClient := range n.blockEpochClients {
|
|
close(epochClient.cancelChan)
|
|
epochClient.wg.Wait()
|
|
|
|
close(epochClient.epochChan)
|
|
}
|
|
n.txNotifier.TearDown()
|
|
|
|
return nil
|
|
}
|
|
|
|
// Started returns true if this instance has been started, and false otherwise.
|
|
func (n *NeutrinoNotifier) Started() bool {
|
|
return atomic.LoadInt32(&n.active) != 0
|
|
}
|
|
|
|
func (n *NeutrinoNotifier) startNotifier() error {
|
|
// Start our concurrent queues before starting the rescan, to ensure
|
|
// onFilteredBlockConnected and onRelavantTx callbacks won't be
|
|
// blocked.
|
|
n.txUpdates.Start()
|
|
|
|
// First, we'll obtain the latest block height of the p2p node. We'll
|
|
// start the auto-rescan from this point. Once a caller actually wishes
|
|
// to register a chain view, the rescan state will be rewound
|
|
// accordingly.
|
|
startingPoint, err := n.p2pNode.BestBlock()
|
|
if err != nil {
|
|
n.txUpdates.Stop()
|
|
return err
|
|
}
|
|
startingHeader, err := n.p2pNode.GetBlockHeader(
|
|
&startingPoint.Hash,
|
|
)
|
|
if err != nil {
|
|
n.txUpdates.Stop()
|
|
return err
|
|
}
|
|
|
|
n.bestBlock.Hash = &startingPoint.Hash
|
|
n.bestBlock.Height = startingPoint.Height
|
|
n.bestBlock.BlockHeader = startingHeader
|
|
|
|
n.txNotifier = chainntnfs.NewTxNotifier(
|
|
uint32(n.bestBlock.Height), chainntnfs.ReorgSafetyLimit,
|
|
n.confirmHintCache, n.spendHintCache,
|
|
)
|
|
|
|
// Next, we'll create our set of rescan options. Currently it's
|
|
// required that a user MUST set an addr/outpoint/txid when creating a
|
|
// rescan. To get around this, we'll add a "zero" outpoint, that won't
|
|
// actually be matched.
|
|
var zeroInput neutrino.InputWithScript
|
|
rescanOptions := []neutrino.RescanOption{
|
|
neutrino.StartBlock(startingPoint),
|
|
neutrino.QuitChan(n.quit),
|
|
neutrino.NotificationHandlers(
|
|
rpcclient.NotificationHandlers{
|
|
OnFilteredBlockConnected: n.onFilteredBlockConnected,
|
|
OnFilteredBlockDisconnected: n.onFilteredBlockDisconnected,
|
|
OnRedeemingTx: n.onRelevantTx,
|
|
},
|
|
),
|
|
neutrino.WatchInputs(zeroInput),
|
|
}
|
|
|
|
// Finally, we'll create our rescan struct, start it, and launch all
|
|
// the goroutines we need to operate this ChainNotifier instance.
|
|
n.chainView = neutrino.NewRescan(
|
|
&neutrino.RescanChainSource{
|
|
ChainService: n.p2pNode,
|
|
},
|
|
rescanOptions...,
|
|
)
|
|
n.rescanErr = n.chainView.Start()
|
|
|
|
n.wg.Add(1)
|
|
go n.notificationDispatcher()
|
|
|
|
// Set the active flag now that we've completed the full
|
|
// startup.
|
|
atomic.StoreInt32(&n.active, 1)
|
|
|
|
return nil
|
|
}
|
|
|
|
// filteredBlock represents a new block which has been connected to the main
|
|
// chain. The slice of transactions will only be populated if the block
|
|
// includes a transaction that confirmed one of our watched txids, or spends
|
|
// one of the outputs currently being watched.
|
|
type filteredBlock struct {
|
|
header *wire.BlockHeader
|
|
hash chainhash.Hash
|
|
height uint32
|
|
txns []*btcutil.Tx
|
|
|
|
// connected is true if this update is a new block and false if it is a
|
|
// disconnected block.
|
|
connect bool
|
|
}
|
|
|
|
// rescanFilterUpdate represents a request that will be sent to the
|
|
// notificaionRegistry in order to prevent race conditions between the filter
|
|
// update and new block notifications.
|
|
type rescanFilterUpdate struct {
|
|
updateOptions []neutrino.UpdateOption
|
|
errChan chan error
|
|
}
|
|
|
|
// onFilteredBlockConnected is a callback which is executed each a new block is
|
|
// connected to the end of the main chain.
|
|
func (n *NeutrinoNotifier) onFilteredBlockConnected(height int32,
|
|
header *wire.BlockHeader, txns []*btcutil.Tx) {
|
|
|
|
// Append this new chain update to the end of the queue of new chain
|
|
// updates.
|
|
select {
|
|
case n.chainUpdates <- &filteredBlock{
|
|
hash: header.BlockHash(),
|
|
height: uint32(height),
|
|
txns: txns,
|
|
header: header,
|
|
connect: true,
|
|
}:
|
|
case <-n.quit:
|
|
}
|
|
}
|
|
|
|
// onFilteredBlockDisconnected is a callback which is executed each time a new
|
|
// block has been disconnected from the end of the mainchain due to a re-org.
|
|
func (n *NeutrinoNotifier) onFilteredBlockDisconnected(height int32,
|
|
header *wire.BlockHeader) {
|
|
|
|
// Append this new chain update to the end of the queue of new chain
|
|
// disconnects.
|
|
select {
|
|
case n.chainUpdates <- &filteredBlock{
|
|
hash: header.BlockHash(),
|
|
height: uint32(height),
|
|
connect: false,
|
|
}:
|
|
case <-n.quit:
|
|
}
|
|
}
|
|
|
|
// relevantTx represents a relevant transaction to the notifier that fulfills
|
|
// any outstanding spend requests.
|
|
type relevantTx struct {
|
|
tx *btcutil.Tx
|
|
details *btcjson.BlockDetails
|
|
}
|
|
|
|
// onRelevantTx is a callback that proxies relevant transaction notifications
|
|
// from the backend to the notifier's main event handler.
|
|
func (n *NeutrinoNotifier) onRelevantTx(tx *btcutil.Tx, details *btcjson.BlockDetails) {
|
|
select {
|
|
case n.txUpdates.ChanIn() <- &relevantTx{tx, details}:
|
|
case <-n.quit:
|
|
}
|
|
}
|
|
|
|
// connectFilteredBlock is called when we receive a filteredBlock from the
|
|
// backend. If the block is ahead of what we're expecting, we'll attempt to
|
|
// catch up and then process the block.
|
|
func (n *NeutrinoNotifier) connectFilteredBlock(update *filteredBlock) {
|
|
n.bestBlockMtx.Lock()
|
|
defer n.bestBlockMtx.Unlock()
|
|
|
|
if update.height != uint32(n.bestBlock.Height+1) {
|
|
chainntnfs.Log.Infof("Missed blocks, attempting to catch up")
|
|
|
|
_, missedBlocks, err := chainntnfs.HandleMissedBlocks(
|
|
n.chainConn, n.txNotifier, n.bestBlock,
|
|
int32(update.height), false,
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
return
|
|
}
|
|
|
|
for _, block := range missedBlocks {
|
|
filteredBlock, err := n.getFilteredBlock(block)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
return
|
|
}
|
|
err = n.handleBlockConnected(filteredBlock)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
err := n.handleBlockConnected(update)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
}
|
|
}
|
|
|
|
// disconnectFilteredBlock is called when our disconnected filtered block
|
|
// callback is fired. It attempts to rewind the chain to before the
|
|
// disconnection and updates our best block.
|
|
func (n *NeutrinoNotifier) disconnectFilteredBlock(update *filteredBlock) {
|
|
n.bestBlockMtx.Lock()
|
|
defer n.bestBlockMtx.Unlock()
|
|
|
|
if update.height != uint32(n.bestBlock.Height) {
|
|
chainntnfs.Log.Infof("Missed disconnected blocks, attempting" +
|
|
" to catch up")
|
|
}
|
|
newBestBlock, err := chainntnfs.RewindChain(n.chainConn, n.txNotifier,
|
|
n.bestBlock, int32(update.height-1),
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Errorf("Unable to rewind chain from height %d"+
|
|
"to height %d: %v", n.bestBlock.Height,
|
|
update.height-1, err,
|
|
)
|
|
}
|
|
|
|
n.bestBlock = newBestBlock
|
|
}
|
|
|
|
// drainChainUpdates is called after updating the filter. It reads every
|
|
// buffered item off the chan and returns when no more are available. It is
|
|
// used to ensure that callers performing a historical scan properly update
|
|
// their EndHeight to scan blocks that did not have the filter applied at
|
|
// processing time. Without this, a race condition exists that could allow a
|
|
// spend or confirmation notification to be missed. It is unlikely this would
|
|
// occur in a real-world scenario, and instead would manifest itself in tests.
|
|
func (n *NeutrinoNotifier) drainChainUpdates() {
|
|
for {
|
|
select {
|
|
case update := <-n.chainUpdates:
|
|
if update.connect {
|
|
n.connectFilteredBlock(update)
|
|
break
|
|
}
|
|
n.disconnectFilteredBlock(update)
|
|
default:
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// notificationDispatcher is the primary goroutine which handles client
|
|
// notification registrations, as well as notification dispatches.
|
|
func (n *NeutrinoNotifier) notificationDispatcher() {
|
|
defer n.wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case cancelMsg := <-n.notificationCancels:
|
|
switch msg := cancelMsg.(type) {
|
|
case *epochCancel:
|
|
chainntnfs.Log.Infof("Cancelling epoch "+
|
|
"notification, epoch_id=%v", msg.epochID)
|
|
|
|
// First, we'll lookup the original
|
|
// registration in order to stop the active
|
|
// queue goroutine.
|
|
reg := n.blockEpochClients[msg.epochID]
|
|
reg.epochQueue.Stop()
|
|
|
|
// Next, close the cancel channel for this
|
|
// specific client, and wait for the client to
|
|
// exit.
|
|
close(n.blockEpochClients[msg.epochID].cancelChan)
|
|
n.blockEpochClients[msg.epochID].wg.Wait()
|
|
|
|
// Once the client has exited, we can then
|
|
// safely close the channel used to send epoch
|
|
// notifications, in order to notify any
|
|
// listeners that the intent has been
|
|
// canceled.
|
|
close(n.blockEpochClients[msg.epochID].epochChan)
|
|
delete(n.blockEpochClients, msg.epochID)
|
|
}
|
|
|
|
case registerMsg := <-n.notificationRegistry:
|
|
switch msg := registerMsg.(type) {
|
|
case *chainntnfs.HistoricalConfDispatch:
|
|
// We'll start a historical rescan chain of the
|
|
// chain asynchronously to prevent blocking
|
|
// potentially long rescans.
|
|
n.wg.Add(1)
|
|
|
|
//nolint:lll
|
|
go func(msg *chainntnfs.HistoricalConfDispatch) {
|
|
defer n.wg.Done()
|
|
|
|
confDetails, err := n.historicalConfDetails(
|
|
msg.ConfRequest,
|
|
msg.StartHeight, msg.EndHeight,
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
return
|
|
}
|
|
|
|
// If the historical dispatch finished
|
|
// without error, we will invoke
|
|
// UpdateConfDetails even if none were
|
|
// found. This allows the notifier to
|
|
// begin safely updating the height hint
|
|
// cache at tip, since any pending
|
|
// rescans have now completed.
|
|
err = n.txNotifier.UpdateConfDetails(
|
|
msg.ConfRequest, confDetails,
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Error(err)
|
|
}
|
|
}(msg)
|
|
|
|
case *blockEpochRegistration:
|
|
chainntnfs.Log.Infof("New block epoch subscription")
|
|
|
|
n.blockEpochClients[msg.epochID] = msg
|
|
|
|
// If the client did not provide their best
|
|
// known block, then we'll immediately dispatch
|
|
// a notification for the current tip.
|
|
if msg.bestBlock == nil {
|
|
n.notifyBlockEpochClient(
|
|
msg, n.bestBlock.Height,
|
|
n.bestBlock.Hash,
|
|
n.bestBlock.BlockHeader,
|
|
)
|
|
|
|
msg.errorChan <- nil
|
|
continue
|
|
}
|
|
|
|
// Otherwise, we'll attempt to deliver the
|
|
// backlog of notifications from their best
|
|
// known block.
|
|
n.bestBlockMtx.Lock()
|
|
bestHeight := n.bestBlock.Height
|
|
n.bestBlockMtx.Unlock()
|
|
|
|
missedBlocks, err := chainntnfs.GetClientMissedBlocks(
|
|
n.chainConn, msg.bestBlock, bestHeight,
|
|
false,
|
|
)
|
|
if err != nil {
|
|
msg.errorChan <- err
|
|
continue
|
|
}
|
|
|
|
for _, block := range missedBlocks {
|
|
n.notifyBlockEpochClient(
|
|
msg, block.Height, block.Hash,
|
|
block.BlockHeader,
|
|
)
|
|
}
|
|
|
|
msg.errorChan <- nil
|
|
|
|
case *rescanFilterUpdate:
|
|
err := n.chainView.Update(msg.updateOptions...)
|
|
if err != nil {
|
|
chainntnfs.Log.Errorf("Unable to "+
|
|
"update rescan filter: %v", err)
|
|
}
|
|
|
|
// Drain the chainUpdates chan so the caller
|
|
// listening on errChan can be sure that
|
|
// updates after receiving the error will have
|
|
// the filter applied. This allows the caller
|
|
// to update their EndHeight if they're
|
|
// performing a historical scan.
|
|
n.drainChainUpdates()
|
|
|
|
// After draining, send the error to the
|
|
// caller.
|
|
msg.errChan <- err
|
|
}
|
|
|
|
case item := <-n.chainUpdates:
|
|
update := item
|
|
if update.connect {
|
|
n.connectFilteredBlock(update)
|
|
continue
|
|
}
|
|
|
|
n.disconnectFilteredBlock(update)
|
|
|
|
case txUpdate := <-n.txUpdates.ChanOut():
|
|
// A new relevant transaction notification has been
|
|
// received from the backend. We'll attempt to process
|
|
// it to determine if it fulfills any outstanding
|
|
// confirmation and/or spend requests and dispatch
|
|
// notifications for them.
|
|
update := txUpdate.(*relevantTx)
|
|
err := n.txNotifier.ProcessRelevantSpendTx(
|
|
update.tx, uint32(update.details.Height),
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Errorf("Unable to process "+
|
|
"transaction %v: %v", update.tx.Hash(),
|
|
err)
|
|
}
|
|
|
|
case err := <-n.rescanErr:
|
|
chainntnfs.Log.Errorf("Error during rescan: %v", err)
|
|
|
|
case <-n.quit:
|
|
return
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
// historicalConfDetails looks up whether a confirmation request (txid/output
|
|
// script) has already been included in a block in the active chain and, if so,
|
|
// returns details about said block.
|
|
func (n *NeutrinoNotifier) historicalConfDetails(confRequest chainntnfs.ConfRequest,
|
|
startHeight, endHeight uint32) (*chainntnfs.TxConfirmation, error) {
|
|
|
|
// Starting from the height hint, we'll walk forwards in the chain to
|
|
// see if this transaction/output script has already been confirmed.
|
|
for scanHeight := endHeight; scanHeight >= startHeight && scanHeight > 0; scanHeight-- {
|
|
// Ensure we haven't been requested to shut down before
|
|
// processing the next height.
|
|
select {
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
default:
|
|
}
|
|
|
|
// First, we'll fetch the block header for this height so we
|
|
// can compute the current block hash.
|
|
blockHash, err := n.p2pNode.GetBlockHash(int64(scanHeight))
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to get header for height=%v: %v",
|
|
scanHeight, err)
|
|
}
|
|
|
|
// With the hash computed, we can now fetch the basic filter for this
|
|
// height. Since the range of required items is known we avoid
|
|
// roundtrips by requesting a batched response and save bandwidth by
|
|
// limiting the max number of items per batch. Since neutrino populates
|
|
// its underline filters cache with the batch response, the next call
|
|
// will execute a network query only once per batch and not on every
|
|
// iteration.
|
|
regFilter, err := n.p2pNode.GetCFilter(
|
|
*blockHash, wire.GCSFilterRegular,
|
|
neutrino.NumRetries(5),
|
|
neutrino.OptimisticReverseBatch(),
|
|
neutrino.MaxBatchSize(int64(scanHeight-startHeight+1)),
|
|
)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to retrieve regular filter for "+
|
|
"height=%v: %v", scanHeight, err)
|
|
}
|
|
|
|
// In the case that the filter exists, we'll attempt to see if
|
|
// any element in it matches our target public key script.
|
|
key := builder.DeriveKey(blockHash)
|
|
match, err := regFilter.Match(key, confRequest.PkScript.Script())
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to query filter: %v", err)
|
|
}
|
|
|
|
// If there's no match, then we can continue forward to the
|
|
// next block.
|
|
if !match {
|
|
continue
|
|
}
|
|
|
|
// In the case that we do have a match, we'll fetch the block
|
|
// from the network so we can find the positional data required
|
|
// to send the proper response.
|
|
block, err := n.GetBlock(*blockHash)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to get block from network: %v", err)
|
|
}
|
|
|
|
// For every transaction in the block, check which one matches
|
|
// our request. If we find one that does, we can dispatch its
|
|
// confirmation details.
|
|
for i, tx := range block.Transactions() {
|
|
if !confRequest.MatchesTx(tx.MsgTx()) {
|
|
continue
|
|
}
|
|
|
|
return &chainntnfs.TxConfirmation{
|
|
Tx: tx.MsgTx(),
|
|
BlockHash: blockHash,
|
|
BlockHeight: scanHeight,
|
|
TxIndex: uint32(i),
|
|
Block: block.MsgBlock(),
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
return nil, nil
|
|
}
|
|
|
|
// handleBlockConnected applies a chain update for a new block. Any watched
|
|
// transactions included this block will processed to either send notifications
|
|
// now or after numConfirmations confs.
|
|
//
|
|
// NOTE: This method must be called with the bestBlockMtx lock held.
|
|
func (n *NeutrinoNotifier) handleBlockConnected(newBlock *filteredBlock) error {
|
|
// We'll extend the txNotifier's height with the information of this
|
|
// new block, which will handle all of the notification logic for us.
|
|
//
|
|
// We actually need the _full_ block here as well in order to be able
|
|
// to send the full block back up to the client. The neutrino client
|
|
// itself will only dispatch a block if one of the items we're looking
|
|
// for matches, so ultimately passing it the full block will still only
|
|
// result in the items we care about being dispatched.
|
|
rawBlock, err := n.GetBlock(newBlock.hash)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to get full block: %v", err)
|
|
}
|
|
err = n.txNotifier.ConnectTip(rawBlock, newBlock.height)
|
|
if err != nil {
|
|
return fmt.Errorf("unable to connect tip: %v", err)
|
|
}
|
|
|
|
chainntnfs.Log.Infof("New block: height=%v, sha=%v", newBlock.height,
|
|
newBlock.hash)
|
|
|
|
// Now that we've guaranteed the new block extends the txNotifier's
|
|
// current tip, we'll proceed to dispatch notifications to all of our
|
|
// registered clients whom have had notifications fulfilled. Before
|
|
// doing so, we'll make sure update our in memory state in order to
|
|
// satisfy any client requests based upon the new block.
|
|
n.bestBlock.Hash = &newBlock.hash
|
|
n.bestBlock.Height = int32(newBlock.height)
|
|
n.bestBlock.BlockHeader = newBlock.header
|
|
|
|
n.notifyBlockEpochs(
|
|
int32(newBlock.height), &newBlock.hash, newBlock.header,
|
|
)
|
|
return n.txNotifier.NotifyHeight(newBlock.height)
|
|
}
|
|
|
|
// getFilteredBlock is a utility to retrieve the full filtered block from a block epoch.
|
|
func (n *NeutrinoNotifier) getFilteredBlock(epoch chainntnfs.BlockEpoch) (*filteredBlock, error) {
|
|
rawBlock, err := n.GetBlock(*epoch.Hash)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to get block: %v", err)
|
|
}
|
|
|
|
txns := rawBlock.Transactions()
|
|
|
|
block := &filteredBlock{
|
|
hash: *epoch.Hash,
|
|
height: uint32(epoch.Height),
|
|
header: &rawBlock.MsgBlock().Header,
|
|
txns: txns,
|
|
connect: true,
|
|
}
|
|
return block, nil
|
|
}
|
|
|
|
// notifyBlockEpochs notifies all registered block epoch clients of the newly
|
|
// connected block to the main chain.
|
|
func (n *NeutrinoNotifier) notifyBlockEpochs(newHeight int32, newSha *chainhash.Hash,
|
|
blockHeader *wire.BlockHeader) {
|
|
|
|
for _, client := range n.blockEpochClients {
|
|
n.notifyBlockEpochClient(client, newHeight, newSha, blockHeader)
|
|
}
|
|
}
|
|
|
|
// notifyBlockEpochClient sends a registered block epoch client a notification
|
|
// about a specific block.
|
|
func (n *NeutrinoNotifier) notifyBlockEpochClient(epochClient *blockEpochRegistration,
|
|
height int32, sha *chainhash.Hash, blockHeader *wire.BlockHeader) {
|
|
|
|
epoch := &chainntnfs.BlockEpoch{
|
|
Height: height,
|
|
Hash: sha,
|
|
BlockHeader: blockHeader,
|
|
}
|
|
|
|
select {
|
|
case epochClient.epochQueue.ChanIn() <- epoch:
|
|
case <-epochClient.cancelChan:
|
|
case <-n.quit:
|
|
}
|
|
}
|
|
|
|
// RegisterSpendNtfn registers an intent to be notified once the target
|
|
// outpoint/output script has been spent by a transaction on-chain. When
|
|
// intending to be notified of the spend of an output script, a nil outpoint
|
|
// must be used. The heightHint should represent the earliest height in the
|
|
// chain of the transaction that spent the outpoint/output script.
|
|
//
|
|
// Once a spend of has been detected, the details of the spending event will be
|
|
// sent across the 'Spend' channel.
|
|
func (n *NeutrinoNotifier) RegisterSpendNtfn(outpoint *wire.OutPoint,
|
|
pkScript []byte, heightHint uint32) (*chainntnfs.SpendEvent, error) {
|
|
|
|
// Register the conf notification with the TxNotifier. A non-nil value
|
|
// for `dispatch` will be returned if we are required to perform a
|
|
// manual scan for the confirmation. Otherwise the notifier will begin
|
|
// watching at tip for the transaction to confirm.
|
|
ntfn, err := n.txNotifier.RegisterSpend(outpoint, pkScript, heightHint)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// To determine whether this outpoint has been spent on-chain, we'll
|
|
// update our filter to watch for the transaction at tip and we'll also
|
|
// dispatch a historical rescan to determine if it has been spent in the
|
|
// past.
|
|
//
|
|
// We'll update our filter first to ensure we can immediately detect the
|
|
// spend at tip.
|
|
if outpoint == nil {
|
|
outpoint = &chainntnfs.ZeroOutPoint
|
|
}
|
|
inputToWatch := neutrino.InputWithScript{
|
|
OutPoint: *outpoint,
|
|
PkScript: pkScript,
|
|
}
|
|
updateOptions := []neutrino.UpdateOption{
|
|
neutrino.AddInputs(inputToWatch),
|
|
neutrino.DisableDisconnectedNtfns(true),
|
|
}
|
|
|
|
// We'll use the txNotifier's tip as the starting point of our filter
|
|
// update. In the case of an output script spend request, we'll check if
|
|
// we should perform a historical rescan and start from there, as we
|
|
// cannot do so with GetUtxo since it matches outpoints.
|
|
rewindHeight := ntfn.Height
|
|
if ntfn.HistoricalDispatch != nil && *outpoint == chainntnfs.ZeroOutPoint {
|
|
rewindHeight = ntfn.HistoricalDispatch.StartHeight
|
|
}
|
|
updateOptions = append(updateOptions, neutrino.Rewind(rewindHeight))
|
|
|
|
errChan := make(chan error, 1)
|
|
select {
|
|
case n.notificationRegistry <- &rescanFilterUpdate{
|
|
updateOptions: updateOptions,
|
|
errChan: errChan,
|
|
}:
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
}
|
|
|
|
select {
|
|
case err = <-errChan:
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
}
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to update filter: %v", err)
|
|
}
|
|
|
|
// If the txNotifier didn't return any details to perform a historical
|
|
// scan of the chain, or if we already performed one like in the case of
|
|
// output script spend requests, then we can return early as there's
|
|
// nothing left for us to do.
|
|
if ntfn.HistoricalDispatch == nil || *outpoint == chainntnfs.ZeroOutPoint {
|
|
return ntfn.Event, nil
|
|
}
|
|
|
|
// Grab the current best height as the height may have been updated
|
|
// while we were draining the chainUpdates queue.
|
|
n.bestBlockMtx.RLock()
|
|
currentHeight := uint32(n.bestBlock.Height)
|
|
n.bestBlockMtx.RUnlock()
|
|
|
|
ntfn.HistoricalDispatch.EndHeight = currentHeight
|
|
|
|
// With the filter updated, we'll dispatch our historical rescan to
|
|
// ensure we detect the spend if it happened in the past.
|
|
n.wg.Add(1)
|
|
go func() {
|
|
defer n.wg.Done()
|
|
|
|
// We'll ensure that neutrino is caught up to the starting
|
|
// height before we attempt to fetch the UTXO from the chain.
|
|
// If we're behind, then we may miss a notification dispatch.
|
|
for {
|
|
n.bestBlockMtx.RLock()
|
|
currentHeight := uint32(n.bestBlock.Height)
|
|
n.bestBlockMtx.RUnlock()
|
|
|
|
if currentHeight >= ntfn.HistoricalDispatch.StartHeight {
|
|
break
|
|
}
|
|
|
|
select {
|
|
case <-time.After(time.Millisecond * 200):
|
|
case <-n.quit:
|
|
return
|
|
}
|
|
}
|
|
|
|
spendReport, err := n.p2pNode.GetUtxo(
|
|
neutrino.WatchInputs(inputToWatch),
|
|
neutrino.StartBlock(&headerfs.BlockStamp{
|
|
Height: int32(ntfn.HistoricalDispatch.StartHeight),
|
|
}),
|
|
neutrino.EndBlock(&headerfs.BlockStamp{
|
|
Height: int32(ntfn.HistoricalDispatch.EndHeight),
|
|
}),
|
|
neutrino.ProgressHandler(func(processedHeight uint32) {
|
|
// We persist the rescan progress to achieve incremental
|
|
// behavior across restarts, otherwise long rescans may
|
|
// start from the beginning with every restart.
|
|
err := n.spendHintCache.CommitSpendHint(
|
|
processedHeight,
|
|
ntfn.HistoricalDispatch.SpendRequest)
|
|
if err != nil {
|
|
chainntnfs.Log.Errorf("Failed to update rescan "+
|
|
"progress: %v", err)
|
|
}
|
|
}),
|
|
neutrino.QuitChan(n.quit),
|
|
)
|
|
if err != nil && !strings.Contains(err.Error(), "not found") {
|
|
chainntnfs.Log.Errorf("Failed getting UTXO: %v", err)
|
|
return
|
|
}
|
|
|
|
// If a spend report was returned, and the transaction is present, then
|
|
// this means that the output is already spent.
|
|
var spendDetails *chainntnfs.SpendDetail
|
|
if spendReport != nil && spendReport.SpendingTx != nil {
|
|
spendingTxHash := spendReport.SpendingTx.TxHash()
|
|
spendDetails = &chainntnfs.SpendDetail{
|
|
SpentOutPoint: outpoint,
|
|
SpenderTxHash: &spendingTxHash,
|
|
SpendingTx: spendReport.SpendingTx,
|
|
SpenderInputIndex: spendReport.SpendingInputIndex,
|
|
SpendingHeight: int32(spendReport.SpendingTxHeight),
|
|
}
|
|
}
|
|
|
|
// Finally, no matter whether the rescan found a spend in the past or
|
|
// not, we'll mark our historical rescan as complete to ensure the
|
|
// outpoint's spend hint gets updated upon connected/disconnected
|
|
// blocks.
|
|
err = n.txNotifier.UpdateSpendDetails(
|
|
ntfn.HistoricalDispatch.SpendRequest, spendDetails,
|
|
)
|
|
if err != nil {
|
|
chainntnfs.Log.Errorf("Failed to update spend details: %v", err)
|
|
return
|
|
}
|
|
}()
|
|
|
|
return ntfn.Event, nil
|
|
}
|
|
|
|
// RegisterConfirmationsNtfn registers an intent to be notified once the target
|
|
// txid/output script has reached numConfs confirmations on-chain. When
|
|
// intending to be notified of the confirmation of an output script, a nil txid
|
|
// must be used. The heightHint should represent the earliest height at which
|
|
// the txid/output script could have been included in the chain.
|
|
//
|
|
// Progress on the number of confirmations left can be read from the 'Updates'
|
|
// channel. Once it has reached all of its confirmations, a notification will be
|
|
// sent across the 'Confirmed' channel.
|
|
func (n *NeutrinoNotifier) RegisterConfirmationsNtfn(txid *chainhash.Hash,
|
|
pkScript []byte, numConfs, heightHint uint32,
|
|
opts ...chainntnfs.NotifierOption) (*chainntnfs.ConfirmationEvent, error) {
|
|
|
|
// Register the conf notification with the TxNotifier. A non-nil value
|
|
// for `dispatch` will be returned if we are required to perform a
|
|
// manual scan for the confirmation. Otherwise the notifier will begin
|
|
// watching at tip for the transaction to confirm.
|
|
ntfn, err := n.txNotifier.RegisterConf(
|
|
txid, pkScript, numConfs, heightHint, opts...,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// To determine whether this transaction has confirmed on-chain, we'll
|
|
// update our filter to watch for the transaction at tip and we'll also
|
|
// dispatch a historical rescan to determine if it has confirmed in the
|
|
// past.
|
|
//
|
|
// We'll update our filter first to ensure we can immediately detect the
|
|
// confirmation at tip. To do so, we'll map the script into an address
|
|
// type so we can instruct neutrino to match if the transaction
|
|
// containing the script is found in a block.
|
|
params := n.p2pNode.ChainParams()
|
|
_, addrs, _, err := txscript.ExtractPkScriptAddrs(pkScript, ¶ms)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to extract script: %v", err)
|
|
}
|
|
|
|
// We'll send the filter update request to the notifier's main event
|
|
// handler and wait for its response.
|
|
errChan := make(chan error, 1)
|
|
select {
|
|
case n.notificationRegistry <- &rescanFilterUpdate{
|
|
updateOptions: []neutrino.UpdateOption{
|
|
neutrino.AddAddrs(addrs...),
|
|
neutrino.Rewind(ntfn.Height),
|
|
neutrino.DisableDisconnectedNtfns(true),
|
|
},
|
|
errChan: errChan,
|
|
}:
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
}
|
|
|
|
select {
|
|
case err = <-errChan:
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
}
|
|
if err != nil {
|
|
return nil, fmt.Errorf("unable to update filter: %v", err)
|
|
}
|
|
|
|
// If a historical rescan was not requested by the txNotifier, then we
|
|
// can return to the caller.
|
|
if ntfn.HistoricalDispatch == nil {
|
|
return ntfn.Event, nil
|
|
}
|
|
|
|
// Grab the current best height as the height may have been updated
|
|
// while we were draining the chainUpdates queue.
|
|
n.bestBlockMtx.RLock()
|
|
currentHeight := uint32(n.bestBlock.Height)
|
|
n.bestBlockMtx.RUnlock()
|
|
|
|
ntfn.HistoricalDispatch.EndHeight = currentHeight
|
|
|
|
// Finally, with the filter updated, we can dispatch the historical
|
|
// rescan to ensure we can detect if the event happened in the past.
|
|
select {
|
|
case n.notificationRegistry <- ntfn.HistoricalDispatch:
|
|
case <-n.quit:
|
|
return nil, chainntnfs.ErrChainNotifierShuttingDown
|
|
}
|
|
|
|
return ntfn.Event, nil
|
|
}
|
|
|
|
// GetBlock is used to retrieve the block with the given hash. Since the block
|
|
// cache used by neutrino will be the same as that used by LND (since it is
|
|
// passed to neutrino on initialisation), the neutrino GetBlock method can be
|
|
// called directly since it already uses the block cache. However, neutrino
|
|
// does not lock the block cache mutex for the given block hash and so that is
|
|
// done here.
|
|
func (n *NeutrinoNotifier) GetBlock(hash chainhash.Hash) (
|
|
*btcutil.Block, error) {
|
|
|
|
n.blockCache.HashMutex.Lock(lntypes.Hash(hash))
|
|
defer n.blockCache.HashMutex.Unlock(lntypes.Hash(hash))
|
|
|
|
return n.p2pNode.GetBlock(hash)
|
|
}
|
|
|
|
// blockEpochRegistration represents a client's intent to receive a
|
|
// notification with each newly connected block.
|
|
type blockEpochRegistration struct {
|
|
epochID uint64
|
|
|
|
epochChan chan *chainntnfs.BlockEpoch
|
|
|
|
epochQueue *queue.ConcurrentQueue
|
|
|
|
cancelChan chan struct{}
|
|
|
|
bestBlock *chainntnfs.BlockEpoch
|
|
|
|
errorChan chan error
|
|
|
|
wg sync.WaitGroup
|
|
}
|
|
|
|
// epochCancel is a message sent to the NeutrinoNotifier when a client wishes
|
|
// to cancel an outstanding epoch notification that has yet to be dispatched.
|
|
type epochCancel struct {
|
|
epochID uint64
|
|
}
|
|
|
|
// RegisterBlockEpochNtfn returns a BlockEpochEvent which subscribes the
|
|
// caller to receive notifications, of each new block connected to the main
|
|
// chain. Clients have the option of passing in their best known block, which
|
|
// the notifier uses to check if they are behind on blocks and catch them up. If
|
|
// they do not provide one, then a notification will be dispatched immediately
|
|
// for the current tip of the chain upon a successful registration.
|
|
func (n *NeutrinoNotifier) RegisterBlockEpochNtfn(
|
|
bestBlock *chainntnfs.BlockEpoch) (*chainntnfs.BlockEpochEvent, error) {
|
|
|
|
reg := &blockEpochRegistration{
|
|
epochQueue: queue.NewConcurrentQueue(20),
|
|
epochChan: make(chan *chainntnfs.BlockEpoch, 20),
|
|
cancelChan: make(chan struct{}),
|
|
epochID: atomic.AddUint64(&n.epochClientCounter, 1),
|
|
bestBlock: bestBlock,
|
|
errorChan: make(chan error, 1),
|
|
}
|
|
reg.epochQueue.Start()
|
|
|
|
// Before we send the request to the main goroutine, we'll launch a new
|
|
// goroutine to proxy items added to our queue to the client itself.
|
|
// This ensures that all notifications are received *in order*.
|
|
reg.wg.Add(1)
|
|
go func() {
|
|
defer reg.wg.Done()
|
|
|
|
for {
|
|
select {
|
|
case ntfn := <-reg.epochQueue.ChanOut():
|
|
blockNtfn := ntfn.(*chainntnfs.BlockEpoch)
|
|
select {
|
|
case reg.epochChan <- blockNtfn:
|
|
|
|
case <-reg.cancelChan:
|
|
return
|
|
|
|
case <-n.quit:
|
|
return
|
|
}
|
|
|
|
case <-reg.cancelChan:
|
|
return
|
|
|
|
case <-n.quit:
|
|
return
|
|
}
|
|
}
|
|
}()
|
|
|
|
select {
|
|
case <-n.quit:
|
|
// As we're exiting before the registration could be sent,
|
|
// we'll stop the queue now ourselves.
|
|
reg.epochQueue.Stop()
|
|
|
|
return nil, errors.New("chainntnfs: system interrupt while " +
|
|
"attempting to register for block epoch notification.")
|
|
case n.notificationRegistry <- reg:
|
|
return &chainntnfs.BlockEpochEvent{
|
|
Epochs: reg.epochChan,
|
|
Cancel: func() {
|
|
cancel := &epochCancel{
|
|
epochID: reg.epochID,
|
|
}
|
|
|
|
// Submit epoch cancellation to notification dispatcher.
|
|
select {
|
|
case n.notificationCancels <- cancel:
|
|
// Cancellation is being handled, drain the epoch channel until it is
|
|
// closed before yielding to caller.
|
|
for {
|
|
select {
|
|
case _, ok := <-reg.epochChan:
|
|
if !ok {
|
|
return
|
|
}
|
|
case <-n.quit:
|
|
return
|
|
}
|
|
}
|
|
case <-n.quit:
|
|
}
|
|
},
|
|
}, nil
|
|
}
|
|
}
|
|
|
|
// NeutrinoChainConn is a wrapper around neutrino's chain backend in order
|
|
// to satisfy the chainntnfs.ChainConn interface.
|
|
type NeutrinoChainConn struct {
|
|
p2pNode *neutrino.ChainService
|
|
}
|
|
|
|
// GetBlockHeader returns the block header for a hash.
|
|
func (n *NeutrinoChainConn) GetBlockHeader(blockHash *chainhash.Hash) (*wire.BlockHeader, error) {
|
|
return n.p2pNode.GetBlockHeader(blockHash)
|
|
}
|
|
|
|
// GetBlockHeaderVerbose returns a verbose block header result for a hash. This
|
|
// result only contains the height with a nil hash.
|
|
func (n *NeutrinoChainConn) GetBlockHeaderVerbose(blockHash *chainhash.Hash) (
|
|
*btcjson.GetBlockHeaderVerboseResult, error) {
|
|
|
|
height, err := n.p2pNode.GetBlockHeight(blockHash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
// Since only the height is used from the result, leave the hash nil.
|
|
return &btcjson.GetBlockHeaderVerboseResult{Height: int32(height)}, nil
|
|
}
|
|
|
|
// GetBlockHash returns the hash from a block height.
|
|
func (n *NeutrinoChainConn) GetBlockHash(blockHeight int64) (*chainhash.Hash, error) {
|
|
return n.p2pNode.GetBlockHash(blockHeight)
|
|
}
|