lnd/lnwire/fuzz_test.go
Matt Morehouse 75bdf2d252
lnwire: use assertEqualFunc in onion failure harness
Simplifies the code slightly and improves the error message printed if
the original and deserialized messages do not match.
2024-11-13 10:25:16 -06:00

780 lines
20 KiB
Go

package lnwire
import (
"bytes"
"compress/zlib"
"encoding/binary"
"testing"
"github.com/stretchr/testify/require"
)
// prefixWithMsgType takes []byte and adds a wire protocol prefix
// to make the []byte into an actual message to be used in fuzzing.
func prefixWithMsgType(data []byte, prefix MessageType) []byte {
var prefixBytes [2]byte
binary.BigEndian.PutUint16(prefixBytes[:], uint16(prefix))
data = append(prefixBytes[:], data...)
return data
}
// assertEqualFunc is a function used to assert that two deserialized messages
// are equivalent.
type assertEqualFunc func(t *testing.T, x, y any)
// wireMsgHarnessCustom performs the actual fuzz testing of the appropriate wire
// message. This function will check that the passed-in message passes wire
// length checks, is a valid message once deserialized, and passes a sequence of
// serialization and deserialization checks.
func wireMsgHarnessCustom(t *testing.T, data []byte, msgType MessageType,
assertEqual assertEqualFunc) {
data = prefixWithMsgType(data, msgType)
// Create a reader with the byte array.
r := bytes.NewReader(data)
// Check that the created message is not greater than the maximum
// message size.
if len(data) > MaxSliceLength {
return
}
msg, err := ReadMessage(r, 0)
if err != nil {
return
}
// We will serialize the message into a new bytes buffer.
var b bytes.Buffer
_, err = WriteMessage(&b, msg, 0)
require.NoError(t, err)
// Deserialize the message from the serialized bytes buffer, and then
// assert that the original message is equal to the newly deserialized
// message.
newMsg, err := ReadMessage(&b, 0)
require.NoError(t, err)
assertEqual(t, msg, newMsg)
}
func wireMsgHarness(t *testing.T, data []byte, msgType MessageType) {
t.Helper()
assertEq := func(t *testing.T, x, y any) {
require.Equal(t, x, y)
}
wireMsgHarnessCustom(t, data, msgType, assertEq)
}
func FuzzAcceptChannel(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// We can't use require.Equal for UpfrontShutdownScript, since
// we consider the empty slice and nil to be equivalent.
assertEq := func(t *testing.T, x, y any) {
require.IsType(t, &AcceptChannel{}, x)
first, _ := x.(*AcceptChannel)
require.IsType(t, &AcceptChannel{}, y)
second, _ := y.(*AcceptChannel)
require.True(
t, bytes.Equal(
first.UpfrontShutdownScript,
second.UpfrontShutdownScript,
),
)
first.UpfrontShutdownScript = nil
second.UpfrontShutdownScript = nil
require.Equal(t, first, second)
}
wireMsgHarnessCustom(t, data, MsgAcceptChannel, assertEq)
})
}
func FuzzAnnounceSignatures(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgAnnounceSignatures)
})
}
func FuzzAnnounceSignatures2(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgAnnounceSignatures2)
})
}
func FuzzChannelAnnouncement(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgChannelAnnouncement)
})
}
func FuzzChannelAnnouncement2(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// We can't use require.Equal for Features, since we consider
// the empty map and nil to be equivalent.
assertEq := func(t *testing.T, x, y any) {
require.IsType(t, &ChannelAnnouncement2{}, x)
first, _ := x.(*ChannelAnnouncement2)
require.IsType(t, &ChannelAnnouncement2{}, y)
second, _ := y.(*ChannelAnnouncement2)
require.True(
t,
first.Features.Val.Equals(&second.Features.Val),
)
first.Features.Val = *NewRawFeatureVector()
second.Features.Val = *NewRawFeatureVector()
require.Equal(t, first, second)
}
wireMsgHarnessCustom(t, data, MsgChannelAnnouncement2, assertEq)
})
}
func FuzzChannelReestablish(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgChannelReestablish)
})
}
func FuzzChannelUpdate(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgChannelUpdate)
})
}
func FuzzChannelUpdate2(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgChannelUpdate2)
})
}
func FuzzClosingSigned(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgClosingSigned)
})
}
func FuzzCommitSig(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgCommitSig)
})
}
func FuzzError(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgError)
})
}
func FuzzWarning(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgWarning)
})
}
func FuzzStfu(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgStfu)
})
}
func FuzzFundingCreated(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgFundingCreated)
})
}
func FuzzChannelReady(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgChannelReady)
})
}
func FuzzFundingSigned(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgFundingSigned)
})
}
func FuzzGossipTimestampRange(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgGossipTimestampRange)
})
}
func FuzzInit(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgInit)
})
}
func FuzzNodeAnnouncement(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// We can't use require.Equal for Addresses, since the same IP
// can be represented by different underlying bytes. Instead, we
// compare the normalized string representation of each address.
assertEq := func(t *testing.T, x, y any) {
require.IsType(t, &NodeAnnouncement{}, x)
first, _ := x.(*NodeAnnouncement)
require.IsType(t, &NodeAnnouncement{}, y)
second, _ := y.(*NodeAnnouncement)
require.Equal(
t, len(first.Addresses), len(second.Addresses),
)
for i := range first.Addresses {
require.Equal(
t, first.Addresses[i].String(),
second.Addresses[i].String(),
)
}
first.Addresses = nil
second.Addresses = nil
require.Equal(t, first, second)
}
wireMsgHarnessCustom(t, data, MsgNodeAnnouncement, assertEq)
})
}
func FuzzOpenChannel(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// We can't use require.Equal for UpfrontShutdownScript, since
// we consider the empty slice and nil to be equivalent.
assertEq := func(t *testing.T, x, y any) {
require.IsType(t, &OpenChannel{}, x)
first, _ := x.(*OpenChannel)
require.IsType(t, &OpenChannel{}, y)
second, _ := y.(*OpenChannel)
require.True(
t, bytes.Equal(
first.UpfrontShutdownScript,
second.UpfrontShutdownScript,
),
)
first.UpfrontShutdownScript = nil
second.UpfrontShutdownScript = nil
require.Equal(t, first, second)
}
wireMsgHarnessCustom(t, data, MsgOpenChannel, assertEq)
})
}
func FuzzPing(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgPing)
})
}
func FuzzPong(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgPong)
})
}
func FuzzQueryChannelRange(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgQueryChannelRange)
})
}
func FuzzZlibQueryShortChanIDs(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
var buf bytes.Buffer
zlibWriter := zlib.NewWriter(&buf)
_, err := zlibWriter.Write(data)
require.NoError(t, err) // Zlib bug?
err = zlibWriter.Close()
require.NoError(t, err) // Zlib bug?
compressedPayload := buf.Bytes()
chainhash := []byte("00000000000000000000000000000000")
numBytesInBody := len(compressedPayload) + 1
zlibByte := []byte("\x01")
bodyBytes := make([]byte, 2)
binary.BigEndian.PutUint16(bodyBytes, uint16(numBytesInBody))
payload := chainhash
payload = append(payload, bodyBytes...)
payload = append(payload, zlibByte...)
payload = append(payload, compressedPayload...)
wireMsgHarness(t, payload, MsgQueryShortChanIDs)
})
}
func FuzzQueryShortChanIDs(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgQueryShortChanIDs)
})
}
func FuzzZlibReplyChannelRange(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
var buf bytes.Buffer
zlibWriter := zlib.NewWriter(&buf)
_, err := zlibWriter.Write(data)
require.NoError(t, err) // Zlib bug?
err = zlibWriter.Close()
require.NoError(t, err) // Zlib bug?
compressedPayload := buf.Bytes()
// Initialize some []byte vars which will prefix our payload
chainhash := []byte("00000000000000000000000000000000")
firstBlockHeight := []byte("\x00\x00\x00\x00")
numBlocks := []byte("\x00\x00\x00\x00")
completeByte := []byte("\x00")
numBytesInBody := len(compressedPayload) + 1
zlibByte := []byte("\x01")
bodyBytes := make([]byte, 2)
binary.BigEndian.PutUint16(bodyBytes, uint16(numBytesInBody))
payload := chainhash
payload = append(payload, firstBlockHeight...)
payload = append(payload, numBlocks...)
payload = append(payload, completeByte...)
payload = append(payload, bodyBytes...)
payload = append(payload, zlibByte...)
payload = append(payload, compressedPayload...)
wireMsgHarness(t, payload, MsgReplyChannelRange)
})
}
func FuzzReplyChannelRange(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// We can't use require.Equal for Timestamps, since we consider
// the empty slice and nil to be equivalent.
assertEq := func(t *testing.T, x, y any) {
require.IsType(t, &ReplyChannelRange{}, x)
first, _ := x.(*ReplyChannelRange)
require.IsType(t, &ReplyChannelRange{}, y)
second, _ := y.(*ReplyChannelRange)
require.Equal(
t, len(first.Timestamps),
len(second.Timestamps),
)
for i, ts1 := range first.Timestamps {
ts2 := second.Timestamps[i]
require.Equal(t, ts1, ts2)
}
first.Timestamps = nil
second.Timestamps = nil
require.Equal(t, first, second)
}
wireMsgHarnessCustom(t, data, MsgReplyChannelRange, assertEq)
})
}
func FuzzReplyShortChanIDsEnd(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgReplyShortChanIDsEnd)
})
}
func FuzzRevokeAndAck(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgRevokeAndAck)
})
}
func FuzzShutdown(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgShutdown)
})
}
func FuzzUpdateAddHTLC(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgUpdateAddHTLC)
})
}
func FuzzUpdateFailHTLC(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgUpdateFailHTLC)
})
}
func FuzzUpdateFailMalformedHTLC(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgUpdateFailMalformedHTLC)
})
}
func FuzzUpdateFee(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgUpdateFee)
})
}
func FuzzUpdateFulfillHTLC(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgUpdateFulfillHTLC)
})
}
func FuzzDynPropose(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgDynPropose)
})
}
func FuzzDynReject(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgDynReject)
})
}
func FuzzDynAck(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgDynAck)
})
}
func FuzzKickoffSig(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgKickoffSig)
})
}
func FuzzCustomMessage(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte, customMessageType uint16) {
if customMessageType < uint16(CustomTypeStart) {
customMessageType += uint16(CustomTypeStart)
}
wireMsgHarness(t, data, MessageType(customMessageType))
})
}
// FuzzParseRawSignature tests that our DER-encoded signature parsing does not
// panic for arbitrary inputs and that serializing and reparsing the signatures
// does not mutate them.
func FuzzParseRawSignature(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
sig, err := NewSigFromECDSARawSignature(data)
if err != nil {
return
}
sig2, err := NewSigFromECDSARawSignature(sig.ToSignatureBytes())
require.NoError(t, err, "failed to reparse signature")
require.Equal(t, sig, sig2, "signature mismatch")
})
}
// FuzzConvertFixedSignature tests that conversion of fixed 64-byte signatures
// to DER-encoded signatures does not panic and that parsing and reconverting
// the signatures does not mutate them.
func FuzzConvertFixedSignature(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
var sig Sig
if len(data) > len(sig.bytes[:]) {
return
}
copy(sig.bytes[:], data)
derSig, err := sig.ToSignature()
if err != nil {
return
}
sig2, err := NewSigFromSignature(derSig)
require.NoError(t, err, "failed to parse signature")
derSig2, err := sig2.ToSignature()
require.NoError(t, err, "failed to reconvert signature to DER")
derBytes := derSig.Serialize()
derBytes2 := derSig2.Serialize()
require.Equal(t, derBytes, derBytes2, "signature mismatch")
})
}
// FuzzConvertFixedSchnorrSignature tests that conversion of fixed 64-byte
// Schnorr signatures to and from the btcec format does not panic or mutate the
// signatures.
func FuzzConvertFixedSchnorrSignature(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
var sig Sig
if len(data) > len(sig.bytes[:]) {
return
}
copy(sig.bytes[:], data)
sig.ForceSchnorr()
btcecSig, err := sig.ToSignature()
if err != nil {
return
}
sig2, err := NewSigFromSignature(btcecSig)
require.NoError(t, err, "failed to parse signature")
btcecSig2, err := sig2.ToSignature()
require.NoError(
t, err, "failed to reconvert signature to btcec format",
)
btcecBytes := btcecSig.Serialize()
btcecBytes2 := btcecSig2.Serialize()
require.Equal(t, btcecBytes, btcecBytes2, "signature mismatch")
})
}
// prefixWithFailCode adds a failure code prefix to data.
func prefixWithFailCode(data []byte, code FailCode) []byte {
var codeBytes [2]byte
binary.BigEndian.PutUint16(codeBytes[:], uint16(code))
data = append(codeBytes[:], data...)
return data
}
// onionFailureHarnessCustom performs the actual fuzz testing of the appropriate
// onion failure message. This function will check that the passed-in message
// passes wire length checks, is a valid message once deserialized, and passes a
// sequence of serialization and deserialization checks.
func onionFailureHarnessCustom(t *testing.T, data []byte, code FailCode,
assertEqual assertEqualFunc) {
data = prefixWithFailCode(data, code)
// Don't waste time fuzzing messages larger than we'll ever accept.
if len(data) > MaxSliceLength {
return
}
// First check whether the failure message can be decoded.
r := bytes.NewReader(data)
msg, err := DecodeFailureMessage(r, 0)
if err != nil {
return
}
// We now have a valid decoded message. Verify that encoding and
// decoding the message does not mutate it.
var b bytes.Buffer
err = EncodeFailureMessage(&b, msg, 0)
require.NoError(t, err, "failed to encode failure message")
newMsg, err := DecodeFailureMessage(&b, 0)
require.NoError(t, err, "failed to decode serialized failure message")
assertEqual(t, msg, newMsg)
// Now verify that encoding/decoding full packets works as expected.
var pktBuf bytes.Buffer
if err := EncodeFailure(&pktBuf, msg, 0); err != nil {
// EncodeFailure returns an error if the encoded message would
// exceed FailureMessageLength bytes, as LND always encodes
// fixed-size packets for privacy. But it is valid to decode
// messages longer than this, so we should not report an error
// if the original message was longer.
//
// We add 2 to the length of the original message since it may
// have omitted a channel_update type prefix of 2 bytes. When
// we re-encode such a message, we will add the 2-byte prefix
// as prescribed by the spec.
if len(data)+2 > FailureMessageLength {
return
}
t.Fatalf("failed to encode failure packet: %v", err)
}
// We should use FailureMessageLength sized packets plus 2 bytes to
// encode the message length and 2 bytes to encode the padding length,
// as recommended by the spec.
require.Equal(
t, pktBuf.Len(), FailureMessageLength+4,
"wrong failure message length",
)
pktMsg, err := DecodeFailure(&pktBuf, 0)
require.NoError(t, err, "failed to decode failure packet")
assertEqual(t, msg, pktMsg)
}
func onionFailureHarness(t *testing.T, data []byte, code FailCode) {
t.Helper()
assertEq := func(t *testing.T, x, y any) {
require.Equal(t, x, y)
}
onionFailureHarnessCustom(t, data, code, assertEq)
}
func FuzzFailIncorrectDetails(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
// Since FailIncorrectDetails.Decode can leave extraOpaqueData
// as nil while FailIncorrectDetails.Encode writes an empty
// slice, we need to use a custom equality function.
assertEq := func(t *testing.T, x, y any) {
msg1, ok := x.(*FailIncorrectDetails)
require.True(
t, ok, "msg1 was not FailIncorrectDetails",
)
msg2, ok := y.(*FailIncorrectDetails)
require.True(
t, ok, "msg2 was not FailIncorrectDetails",
)
require.Equal(t, msg1.amount, msg2.amount)
require.Equal(t, msg1.height, msg2.height)
require.True(
t, bytes.Equal(
msg1.extraOpaqueData,
msg2.extraOpaqueData,
),
)
}
onionFailureHarnessCustom(
t, data, CodeIncorrectOrUnknownPaymentDetails, assertEq,
)
})
}
func FuzzFailInvalidOnionVersion(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeInvalidOnionVersion)
})
}
func FuzzFailInvalidOnionHmac(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeInvalidOnionHmac)
})
}
func FuzzFailInvalidOnionKey(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeInvalidOnionKey)
})
}
func FuzzFailTemporaryChannelFailure(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeTemporaryChannelFailure)
})
}
func FuzzFailAmountBelowMinimum(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeAmountBelowMinimum)
})
}
func FuzzFailFeeInsufficient(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeFeeInsufficient)
})
}
func FuzzFailIncorrectCltvExpiry(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeIncorrectCltvExpiry)
})
}
func FuzzFailExpiryTooSoon(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeExpiryTooSoon)
})
}
func FuzzFailChannelDisabled(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeChannelDisabled)
})
}
func FuzzFailFinalIncorrectCltvExpiry(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeFinalIncorrectCltvExpiry)
})
}
func FuzzFailFinalIncorrectHtlcAmount(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeFinalIncorrectHtlcAmount)
})
}
func FuzzInvalidOnionPayload(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeInvalidOnionPayload)
})
}
func FuzzFailInvalidBlinding(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
onionFailureHarness(t, data, CodeInvalidBlinding)
})
}
func FuzzClosingSig(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgClosingSig)
})
}
func FuzzClosingComplete(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
wireMsgHarness(t, data, MsgClosingComplete)
})
}
// FuzzFee tests that decoding and re-encoding a Fee TLV does not mutate it.
func FuzzFee(f *testing.F) {
f.Fuzz(func(t *testing.T, data []byte) {
if len(data) > 8 {
return
}
var fee Fee
var buf [8]byte
r := bytes.NewReader(data)
if err := feeDecoder(r, &fee, &buf, 8); err != nil {
return
}
var b bytes.Buffer
require.NoError(t, feeEncoder(&b, &fee, &buf))
// Use bytes.Equal instead of require.Equal so that nil and
// empty slices are considered equal.
require.True(
t, bytes.Equal(data, b.Bytes()), "%v != %v", data,
b.Bytes(),
)
})
}