lnd/discovery/syncer_test.go
Elle Mouton 74a4b1922b
refactor: move graph related DB code to graph/db from channeldb
This is a pure refactor commit. It moves over all the graph related CRUD
code from `channeldb` to `graph/db`.
2024-11-28 13:36:13 +02:00

2531 lines
71 KiB
Go

package discovery
import (
"errors"
"fmt"
"math"
"reflect"
"sort"
"sync"
"testing"
"time"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/davecgh/go-spew/spew"
graphdb "github.com/lightningnetwork/lnd/graph/db"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
const (
defaultEncoding = lnwire.EncodingSortedPlain
latestKnownHeight = 1337
)
var (
defaultChunkSize = encodingTypeToChunkSize[defaultEncoding]
)
type horizonQuery struct {
chain chainhash.Hash
start time.Time
end time.Time
}
type filterRangeReq struct {
startHeight, endHeight uint32
}
type mockChannelGraphTimeSeries struct {
highestID lnwire.ShortChannelID
horizonReq chan horizonQuery
horizonResp chan []lnwire.Message
filterReq chan []graphdb.ChannelUpdateInfo
filterResp chan []lnwire.ShortChannelID
filterRangeReqs chan filterRangeReq
filterRangeResp chan []lnwire.ShortChannelID
annReq chan []lnwire.ShortChannelID
annResp chan []lnwire.Message
updateReq chan lnwire.ShortChannelID
updateResp chan []*lnwire.ChannelUpdate1
}
func newMockChannelGraphTimeSeries(
hID lnwire.ShortChannelID) *mockChannelGraphTimeSeries {
return &mockChannelGraphTimeSeries{
highestID: hID,
horizonReq: make(chan horizonQuery, 1),
horizonResp: make(chan []lnwire.Message, 1),
filterReq: make(chan []graphdb.ChannelUpdateInfo, 1),
filterResp: make(chan []lnwire.ShortChannelID, 1),
filterRangeReqs: make(chan filterRangeReq, 1),
filterRangeResp: make(chan []lnwire.ShortChannelID, 1),
annReq: make(chan []lnwire.ShortChannelID, 1),
annResp: make(chan []lnwire.Message, 1),
updateReq: make(chan lnwire.ShortChannelID, 1),
updateResp: make(chan []*lnwire.ChannelUpdate1, 1),
}
}
func (m *mockChannelGraphTimeSeries) HighestChanID(chain chainhash.Hash) (*lnwire.ShortChannelID, error) {
return &m.highestID, nil
}
func (m *mockChannelGraphTimeSeries) UpdatesInHorizon(chain chainhash.Hash,
startTime time.Time, endTime time.Time) ([]lnwire.Message, error) {
m.horizonReq <- horizonQuery{
chain, startTime, endTime,
}
return <-m.horizonResp, nil
}
func (m *mockChannelGraphTimeSeries) FilterKnownChanIDs(chain chainhash.Hash,
superSet []graphdb.ChannelUpdateInfo,
isZombieChan func(time.Time, time.Time) bool) (
[]lnwire.ShortChannelID, error) {
m.filterReq <- superSet
return <-m.filterResp, nil
}
func (m *mockChannelGraphTimeSeries) FilterChannelRange(chain chainhash.Hash,
startHeight, endHeight uint32, withTimestamps bool) (
[]graphdb.BlockChannelRange, error) {
m.filterRangeReqs <- filterRangeReq{startHeight, endHeight}
reply := <-m.filterRangeResp
channelsPerBlock := make(map[uint32][]graphdb.ChannelUpdateInfo)
for _, cid := range reply {
channelsPerBlock[cid.BlockHeight] = append(
channelsPerBlock[cid.BlockHeight],
graphdb.ChannelUpdateInfo{
ShortChannelID: cid,
},
)
}
// Return the channel ranges in ascending block height order.
blocks := make([]uint32, 0, len(channelsPerBlock))
for block := range channelsPerBlock {
blocks = append(blocks, block)
}
sort.Slice(blocks, func(i, j int) bool {
return blocks[i] < blocks[j]
})
channelRanges := make(
[]graphdb.BlockChannelRange, 0, len(channelsPerBlock),
)
for _, block := range blocks {
channelRanges = append(
channelRanges, graphdb.BlockChannelRange{
Height: block,
Channels: channelsPerBlock[block],
},
)
}
return channelRanges, nil
}
func (m *mockChannelGraphTimeSeries) FetchChanAnns(chain chainhash.Hash,
shortChanIDs []lnwire.ShortChannelID) ([]lnwire.Message, error) {
m.annReq <- shortChanIDs
return <-m.annResp, nil
}
func (m *mockChannelGraphTimeSeries) FetchChanUpdates(chain chainhash.Hash,
shortChanID lnwire.ShortChannelID) ([]*lnwire.ChannelUpdate1, error) {
m.updateReq <- shortChanID
return <-m.updateResp, nil
}
var _ ChannelGraphTimeSeries = (*mockChannelGraphTimeSeries)(nil)
// newTestSyncer creates a new test instance of a GossipSyncer. A buffered
// message channel is returned for intercepting messages sent from the syncer,
// in addition to a mock channel series which allows the test to control which
// messages the syncer knows of or wishes to filter out. The variadic flags are
// treated as positional arguments where the first index signals that the syncer
// should spawn a channelGraphSyncer and second index signals that the syncer
// should spawn a replyHandler. Any flags beyond the first two are currently
// ignored. If no flags are provided, both a channelGraphSyncer and replyHandler
// will be spawned by default.
func newTestSyncer(hID lnwire.ShortChannelID,
encodingType lnwire.QueryEncoding, chunkSize int32,
flags ...bool) (chan []lnwire.Message,
*GossipSyncer, *mockChannelGraphTimeSeries) {
var (
syncChannels = true
replyQueries = true
timestamps = false
)
if len(flags) > 0 {
syncChannels = flags[0]
}
if len(flags) > 1 {
replyQueries = flags[1]
}
if len(flags) > 2 {
timestamps = flags[2]
}
msgChan := make(chan []lnwire.Message, 20)
cfg := gossipSyncerCfg{
channelSeries: newMockChannelGraphTimeSeries(hID),
encodingType: encodingType,
chunkSize: chunkSize,
batchSize: chunkSize,
noSyncChannels: !syncChannels,
noReplyQueries: !replyQueries,
noTimestampQueryOption: !timestamps,
sendToPeer: func(msgs ...lnwire.Message) error {
msgChan <- msgs
return nil
},
sendToPeerSync: func(msgs ...lnwire.Message) error {
msgChan <- msgs
return nil
},
delayedQueryReplyInterval: 2 * time.Second,
bestHeight: func() uint32 {
return latestKnownHeight
},
markGraphSynced: func() {},
maxQueryChanRangeReplies: maxQueryChanRangeReplies,
}
syncerSema := make(chan struct{}, 1)
syncerSema <- struct{}{}
syncer := newGossipSyncer(cfg, syncerSema)
return msgChan, syncer, cfg.channelSeries.(*mockChannelGraphTimeSeries)
}
// TestGossipSyncerFilterGossipMsgsNoHorizon tests that if the remote peer
// doesn't have a horizon set, then we won't send any incoming messages to it.
func TestGossipSyncerFilterGossipMsgsNoHorizon(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// With the syncer created, we'll create a set of messages to filter
// through the gossiper to the target peer.
msgs := []msgWithSenders{
{
msg: &lnwire.NodeAnnouncement{Timestamp: uint32(time.Now().Unix())},
},
{
msg: &lnwire.NodeAnnouncement{Timestamp: uint32(time.Now().Unix())},
},
}
// We'll then attempt to filter the set of messages through the target
// peer.
syncer.FilterGossipMsgs(msgs...)
// As the remote peer doesn't yet have a gossip timestamp set, we
// shouldn't receive any outbound messages.
select {
case msg := <-msgChan:
t.Fatalf("received message but shouldn't have: %v",
spew.Sdump(msg))
case <-time.After(time.Millisecond * 10):
}
}
func unixStamp(a int64) uint32 {
t := time.Unix(a, 0)
return uint32(t.Unix())
}
// TestGossipSyncerFilterGossipMsgsAll tests that we're able to properly filter
// out a set of incoming messages based on the set remote update horizon for a
// peer. We tests all messages type, and all time straddling. We'll also send a
// channel ann that already has a channel update on disk.
func TestGossipSyncerFilterGossipMsgsAllInMemory(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll create then apply a remote horizon for the target peer with a
// set of manually selected timestamps.
remoteHorizon := &lnwire.GossipTimestampRange{
FirstTimestamp: unixStamp(25000),
TimestampRange: uint32(1000),
}
syncer.remoteUpdateHorizon = remoteHorizon
// With the syncer created, we'll create a set of messages to filter
// through the gossiper to the target peer. Our message will consist of
// one node announcement above the horizon, one below. Additionally,
// we'll include a chan ann with an update below the horizon, one
// with an update timestamp above the horizon, and one without any
// channel updates at all.
msgs := []msgWithSenders{
{
// Node ann above horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(25001)},
},
{
// Node ann below horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(5)},
},
{
// Node ann above horizon.
msg: &lnwire.NodeAnnouncement{Timestamp: unixStamp(999999)},
},
{
// Ann tuple below horizon.
msg: &lnwire.ChannelAnnouncement1{
ShortChannelID: lnwire.NewShortChanIDFromInt(10),
},
},
{
msg: &lnwire.ChannelUpdate1{
ShortChannelID: lnwire.NewShortChanIDFromInt(10),
Timestamp: unixStamp(5),
},
},
{
// Ann tuple above horizon.
msg: &lnwire.ChannelAnnouncement1{
ShortChannelID: lnwire.NewShortChanIDFromInt(15),
},
},
{
msg: &lnwire.ChannelUpdate1{
ShortChannelID: lnwire.NewShortChanIDFromInt(15),
Timestamp: unixStamp(25002),
},
},
{
// Ann tuple beyond horizon.
msg: &lnwire.ChannelAnnouncement1{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
},
},
{
msg: &lnwire.ChannelUpdate1{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
Timestamp: unixStamp(999999),
},
},
{
// Ann w/o an update at all, the update in the DB will
// be below the horizon.
msg: &lnwire.ChannelAnnouncement1{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
},
},
}
// Before we send off the query, we'll ensure we send the missing
// channel update for that final ann. It will be below the horizon, so
// shouldn't be sent anyway.
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query received")
return
case query := <-chanSeries.updateReq:
// It should be asking for the chan updates of short
// chan ID 25.
expectedID := lnwire.NewShortChanIDFromInt(25)
if expectedID != query {
errCh <- fmt.Errorf("wrong query id: expected %v, got %v",
expectedID, query)
return
}
// If so, then we'll send back the missing update.
chanSeries.updateResp <- []*lnwire.ChannelUpdate1{
{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
Timestamp: unixStamp(5),
},
}
errCh <- nil
}
}()
// We'll then instruct the gossiper to filter this set of messages.
syncer.FilterGossipMsgs(msgs...)
// Out of all the messages we sent in, we should only get 2 of them
// back.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
if len(msgs) != 3 {
t.Fatalf("expected 3 messages instead got %v "+
"messages: %v", len(msgs), spew.Sdump(msgs))
}
}
// Wait for error from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerApplyNoHistoricalGossipFilter tests that once a gossip filter
// is applied for the remote peer, then we don't send the peer all known
// messages which are within their desired time horizon.
func TestGossipSyncerApplyNoHistoricalGossipFilter(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
_, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
syncer.cfg.ignoreHistoricalFilters = true
// We'll apply this gossip horizon for the remote peer.
remoteHorizon := &lnwire.GossipTimestampRange{
FirstTimestamp: unixStamp(25000),
TimestampRange: uint32(1000),
}
// After applying the gossip filter, the chan series should not be
// queried using the updated horizon.
errChan := make(chan error, 1)
var wg sync.WaitGroup
wg.Add(1)
go func() {
defer wg.Done()
select {
// No query received, success.
case <-time.After(3 * time.Second):
errChan <- nil
// Unexpected query received.
case <-chanSeries.horizonReq:
errChan <- errors.New("chan series should not have been " +
"queried")
}
}()
// We'll now attempt to apply the gossip filter for the remote peer.
syncer.ApplyGossipFilter(remoteHorizon)
// Ensure that the syncer's remote horizon was properly updated.
if !reflect.DeepEqual(syncer.remoteUpdateHorizon, remoteHorizon) {
t.Fatalf("expected remote horizon: %v, got: %v",
remoteHorizon, syncer.remoteUpdateHorizon)
}
// Wait for the query check to finish.
wg.Wait()
// Assert that no query was made as a result of applying the gossip
// filter.
err := <-errChan
if err != nil {
t.Fatalf(err.Error())
}
}
// TestGossipSyncerApplyGossipFilter tests that once a gossip filter is applied
// for the remote peer, then we send the peer all known messages which are
// within their desired time horizon.
func TestGossipSyncerApplyGossipFilter(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll apply this gossip horizon for the remote peer.
remoteHorizon := &lnwire.GossipTimestampRange{
FirstTimestamp: unixStamp(25000),
TimestampRange: uint32(1000),
}
// Before we apply the horizon, we'll dispatch a response to the query
// that the syncer will issue.
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query recvd")
return
case query := <-chanSeries.horizonReq:
// The syncer should have translated the time range
// into the proper star time.
if remoteHorizon.FirstTimestamp != uint32(query.start.Unix()) {
errCh <- fmt.Errorf("wrong query stamp: expected %v, got %v",
remoteHorizon.FirstTimestamp, query.start)
return
}
// For this first response, we'll send back an empty
// set of messages. As result, we shouldn't send any
// messages.
chanSeries.horizonResp <- []lnwire.Message{}
errCh <- nil
}
}()
// We'll now attempt to apply the gossip filter for the remote peer.
err := syncer.ApplyGossipFilter(remoteHorizon)
require.NoError(t, err, "unable to apply filter")
// There should be no messages in the message queue as we didn't send
// the syncer and messages within the horizon.
select {
case msgs := <-msgChan:
t.Fatalf("expected no msgs, instead got %v", spew.Sdump(msgs))
default:
}
// Wait for error result from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
// If we repeat the process, but give the syncer a set of valid
// messages, then these should be sent to the remote peer.
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query recvd")
return
case query := <-chanSeries.horizonReq:
// The syncer should have translated the time range
// into the proper star time.
if remoteHorizon.FirstTimestamp != uint32(query.start.Unix()) {
errCh <- fmt.Errorf("wrong query stamp: expected %v, got %v",
remoteHorizon.FirstTimestamp, query.start)
return
}
// For this first response, we'll send back a proper
// set of messages that should be echoed back.
chanSeries.horizonResp <- []lnwire.Message{
&lnwire.ChannelUpdate1{
ShortChannelID: lnwire.NewShortChanIDFromInt(25),
Timestamp: unixStamp(5),
},
}
errCh <- nil
}
}()
err = syncer.ApplyGossipFilter(remoteHorizon)
require.NoError(t, err, "unable to apply filter")
// We should get back the exact same message.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("wrong messages: expected %v, got %v",
1, len(msgs))
}
}
// Wait for error result from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerQueryChannelRangeWrongChainHash tests that if we receive a
// channel range query for the wrong chain, then we send back a response with no
// channels and complete=0.
func TestGossipSyncerQueryChannelRangeWrongChainHash(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll now ask the syncer to reply to a channel range query, but for a
// chain that it isn't aware of.
query := &lnwire.QueryChannelRange{
ChainHash: *chaincfg.SimNetParams.GenesisHash,
FirstBlockHeight: 0,
NumBlocks: math.MaxUint32,
}
err := syncer.replyChanRangeQuery(query)
require.NoError(t, err, "unable to process short chan ID's")
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
// We should get back exactly one message, that's a
// ReplyChannelRange with a matching query, and a complete value
// of zero.
if len(msgs) != 1 {
t.Fatalf("wrong messages: expected %v, got %v",
1, len(msgs))
}
msg, ok := msgs[0].(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("expected lnwire.ReplyChannelRange, got %T", msg)
}
if msg.ChainHash != query.ChainHash {
t.Fatalf("wrong chain hash: expected %v got %v",
query.ChainHash, msg.ChainHash)
}
if msg.Complete != 0 {
t.Fatalf("expected complete set to 0, got %v",
msg.Complete)
}
}
}
// TestGossipSyncerReplyShortChanIDsWrongChainHash tests that if we get a chan
// ID query for the wrong chain, then we send back only a short ID end with
// complete=0.
func TestGossipSyncerReplyShortChanIDsWrongChainHash(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// We'll now ask the syncer to reply to a chan ID query, but for a
// chain that it isn't aware of.
err := syncer.replyShortChanIDs(&lnwire.QueryShortChanIDs{
ChainHash: *chaincfg.SimNetParams.GenesisHash,
})
require.NoError(t, err, "unable to process short chan ID's")
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msgs := <-msgChan:
// We should get back exactly one message, that's a
// ReplyShortChanIDsEnd with a matching chain hash, and a
// complete value of zero.
if len(msgs) != 1 {
t.Fatalf("wrong messages: expected %v, got %v",
1, len(msgs))
}
msg, ok := msgs[0].(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("expected lnwire.ReplyShortChanIDsEnd "+
"instead got %T", msg)
}
if msg.ChainHash != *chaincfg.SimNetParams.GenesisHash {
t.Fatalf("wrong chain hash: expected %v, got %v",
msg.ChainHash, chaincfg.SimNetParams.GenesisHash)
}
if msg.Complete != 0 {
t.Fatalf("complete set incorrectly")
}
}
}
// TestGossipSyncerReplyShortChanIDs tests that in the case of a known chain
// hash for a QueryShortChanIDs, we'll return the set of matching
// announcements, as well as an ending ReplyShortChanIDsEnd message.
func TestGossipSyncerReplyShortChanIDs(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
queryChanIDs := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
}
queryReply := []lnwire.Message{
&lnwire.ChannelAnnouncement1{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
},
&lnwire.ChannelUpdate1{
ShortChannelID: lnwire.NewShortChanIDFromInt(20),
Timestamp: unixStamp(999999),
},
&lnwire.NodeAnnouncement{Timestamp: unixStamp(25001)},
}
// We'll then craft a reply to the upcoming query for all the matching
// channel announcements for a particular set of short channel ID's.
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query recvd")
return
case chanIDs := <-chanSeries.annReq:
// The set of chan ID's should match exactly.
if !reflect.DeepEqual(chanIDs, queryChanIDs) {
errCh <- fmt.Errorf("wrong chan IDs: expected %v, got %v",
queryChanIDs, chanIDs)
return
}
// If they do, then we'll send back a response with
// some canned messages.
chanSeries.annResp <- queryReply
errCh <- nil
}
}()
// With our set up above complete, we'll now attempt to obtain a reply
// from the channel syncer for our target chan ID query.
err := syncer.replyShortChanIDs(&lnwire.QueryShortChanIDs{
ShortChanIDs: queryChanIDs,
})
require.NoError(t, err, "unable to query for chan IDs")
for i := 0; i < len(queryReply)+1; i++ {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
// We should get back exactly 4 messages. The first 3 are the
// same messages we sent above, and the query end message.
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("wrong number of messages: "+
"expected %v, got %v", 1, len(msgs))
}
isQueryReply := i < len(queryReply)
finalMsg, ok := msgs[0].(*lnwire.ReplyShortChanIDsEnd)
switch {
case isQueryReply &&
!reflect.DeepEqual(queryReply[i], msgs[0]):
t.Fatalf("wrong message: expected %v, got %v",
spew.Sdump(queryReply[i]),
spew.Sdump(msgs[0]))
case !isQueryReply && !ok:
t.Fatalf("expected lnwire.ReplyShortChanIDsEnd"+
" instead got %T", msgs[3])
case !isQueryReply && finalMsg.Complete != 1:
t.Fatalf("complete wasn't set")
}
}
}
// Wait for error from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerReplyChanRangeQuery tests that if we receive a
// QueryChannelRange message, then we'll properly send back a chunked reply to
// the remote peer.
func TestGossipSyncerReplyChanRangeQuery(t *testing.T) {
t.Parallel()
// We'll use a smaller chunk size so we can easily test all the edge
// cases.
const chunkSize = 2
// We'll now create our test gossip syncer that will shortly respond to
// our canned query.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, chunkSize,
)
// Next, we'll craft a query to ask for all the new chan ID's after
// block 100.
const startingBlockHeight = 100
const numBlocks = 50
const endingBlockHeight = startingBlockHeight + numBlocks - 1
query := &lnwire.QueryChannelRange{
FirstBlockHeight: uint32(startingBlockHeight),
NumBlocks: uint32(numBlocks),
}
// We'll then launch a goroutine to reply to the query with a set of 5
// responses. This will ensure we get two full chunks, and one partial
// chunk.
queryResp := []lnwire.ShortChannelID{
{
BlockHeight: uint32(startingBlockHeight),
},
{
BlockHeight: 102,
},
{
BlockHeight: 104,
},
{
BlockHeight: 106,
},
{
BlockHeight: 108,
},
}
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query recvd")
return
case filterReq := <-chanSeries.filterRangeReqs:
// We should be querying for block 100 to 150.
if filterReq.startHeight != startingBlockHeight &&
filterReq.endHeight != endingBlockHeight {
errCh <- fmt.Errorf("wrong height range: %v",
spew.Sdump(filterReq))
return
}
// If the proper request was sent, then we'll respond
// with our set of short channel ID's.
chanSeries.filterRangeResp <- queryResp
errCh <- nil
}
}()
// With our goroutine active, we'll now issue the query.
if err := syncer.replyChanRangeQuery(query); err != nil {
t.Fatalf("unable to issue query: %v", err)
}
// At this point, we'll now wait for the syncer to send the chunked
// reply. We should get three sets of messages as two of them should be
// full, while the other is the final fragment.
const numExpectedChunks = 3
var prevResp *lnwire.ReplyChannelRange
respMsgs := make([]lnwire.ShortChannelID, 0, 5)
for i := 0; i < numExpectedChunks; i++ {
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
resp := msg[0]
rangeResp, ok := resp.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("expected ReplyChannelRange instead got %T", msg)
}
// We'll determine the correct values of each field in
// each response based on the order that they were sent.
var (
expectedFirstBlockHeight uint32
expectedNumBlocks uint32
expectedComplete uint8
)
switch {
// The first reply should range from our starting block
// height until it reaches its maximum capacity of
// channels.
case i == 0:
expectedFirstBlockHeight = startingBlockHeight
expectedNumBlocks = 4
// The last reply should range starting from the next
// block of our previous reply up until the ending
// height of the query. It should also have the Complete
// bit set.
case i == numExpectedChunks-1:
expectedFirstBlockHeight = prevResp.LastBlockHeight() + 1
expectedNumBlocks = endingBlockHeight - expectedFirstBlockHeight + 1
expectedComplete = 1
// Any intermediate replies should range starting from
// the next block of our previous reply up until it
// reaches its maximum capacity of channels.
default:
expectedFirstBlockHeight = prevResp.LastBlockHeight() + 1
expectedNumBlocks = 4
}
switch {
case rangeResp.FirstBlockHeight != expectedFirstBlockHeight:
t.Fatalf("FirstBlockHeight in resp #%d "+
"incorrect: expected %v, got %v", i+1,
expectedFirstBlockHeight,
rangeResp.FirstBlockHeight)
case rangeResp.NumBlocks != expectedNumBlocks:
t.Fatalf("NumBlocks in resp #%d incorrect: "+
"expected %v, got %v", i+1,
expectedNumBlocks, rangeResp.NumBlocks)
case rangeResp.Complete != expectedComplete:
t.Fatalf("Complete in resp #%d incorrect: "+
"expected %v, got %v", i+1,
expectedComplete, rangeResp.Complete)
}
prevResp = rangeResp
respMsgs = append(respMsgs, rangeResp.ShortChanIDs...)
}
}
// We should get back exactly 5 short chan ID's, and they should match
// exactly the ID's we sent as a reply.
if len(respMsgs) != len(queryResp) {
t.Fatalf("expected %v chan ID's, instead got %v",
len(queryResp), spew.Sdump(respMsgs))
}
if !reflect.DeepEqual(queryResp, respMsgs) {
t.Fatalf("mismatched response: expected %v, got %v",
spew.Sdump(queryResp), spew.Sdump(respMsgs))
}
// Wait for error from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerReplyChanRangeQuery tests a variety of
// QueryChannelRange messages to ensure the underlying queries are
// executed with the correct block range.
func TestGossipSyncerReplyChanRangeQueryBlockRange(t *testing.T) {
t.Parallel()
// First create our test gossip syncer that will handle and
// respond to the test queries
_, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, math.MaxInt32,
)
// Next construct test queries with various startBlock and endBlock
// ranges
queryReqs := []*lnwire.QueryChannelRange{
// full range example
{
FirstBlockHeight: uint32(0),
NumBlocks: uint32(math.MaxUint32),
},
// small query example that does not overflow
{
FirstBlockHeight: uint32(1000),
NumBlocks: uint32(100),
},
// overflow example
{
FirstBlockHeight: uint32(1000),
NumBlocks: uint32(math.MaxUint32),
},
}
// Next construct the expected filterRangeReq startHeight and endHeight
// values that we will compare to the captured values
expFilterReqs := []filterRangeReq{
{
startHeight: uint32(0),
endHeight: uint32(math.MaxUint32 - 1),
},
{
startHeight: uint32(1000),
endHeight: uint32(1099),
},
{
startHeight: uint32(1000),
endHeight: uint32(math.MaxUint32),
},
}
// We'll then launch a goroutine to capture the filterRangeReqs for
// each request and return those results once all queries have been
// received
resultsCh := make(chan []filterRangeReq, 1)
errCh := make(chan error, 1)
go func() {
// We will capture the values supplied to the chanSeries here
// and return the results once all the requests have been
// collected
capFilterReqs := []filterRangeReq{}
for filterReq := range chanSeries.filterRangeReqs {
// capture the filter request so we can compare to the
// expected values later
capFilterReqs = append(capFilterReqs, filterReq)
// Reply with an empty result for each query to allow
// unblock the caller
queryResp := []lnwire.ShortChannelID{}
chanSeries.filterRangeResp <- queryResp
// Once we have collected all results send the results
// back to the main thread and terminate the goroutine
if len(capFilterReqs) == len(expFilterReqs) {
resultsCh <- capFilterReqs
return
}
}
}()
// We'll launch a goroutine to send the query sequentially. This
// goroutine ensures that the timeout logic below on the mainthread
// will be reached
go func() {
for _, query := range queryReqs {
if err := syncer.replyChanRangeQuery(query); err != nil {
errCh <- fmt.Errorf("unable to issue query: %w",
err)
return
}
}
}()
// Wait for the results to be collected and validate that the
// collected results match the expected results, the timeout to
// expire, or an error to occur
select {
case capFilterReq := <-resultsCh:
if !reflect.DeepEqual(expFilterReqs, capFilterReq) {
t.Fatalf("mismatched filter reqs: expected %v, got %v",
spew.Sdump(expFilterReqs), spew.Sdump(capFilterReq))
}
case <-time.After(time.Second * 10):
t.Fatalf("goroutine did not return within 10 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerReplyChanRangeQueryNoNewChans tests that if we issue a reply
// for a channel range query, and we don't have any new channels, then we send
// back a single response that signals completion.
func TestGossipSyncerReplyChanRangeQueryNoNewChans(t *testing.T) {
t.Parallel()
// We'll now create our test gossip syncer that will shortly respond to
// our canned query.
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
// Next, we'll craft a query to ask for all the new chan ID's after
// block 100.
query := &lnwire.QueryChannelRange{
FirstBlockHeight: 100,
NumBlocks: 50,
}
// We'll then launch a goroutine to reply to the query no new channels.
resp := []lnwire.ShortChannelID{}
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query recvd")
return
case filterReq := <-chanSeries.filterRangeReqs:
// We should be querying for block 100 to 150.
if filterReq.startHeight != 100 && filterReq.endHeight != 150 {
errCh <- fmt.Errorf("wrong height range: %v",
spew.Sdump(filterReq))
return
}
// If the proper request was sent, then we'll respond
// with our blank set of short chan ID's.
chanSeries.filterRangeResp <- resp
errCh <- nil
}
}()
// With our goroutine active, we'll now issue the query.
if err := syncer.replyChanRangeQuery(query); err != nil {
t.Fatalf("unable to issue query: %v", err)
}
// We should get back exactly one message, and the message should
// indicate that this is the final in the series.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
resp := msg[0]
rangeResp, ok := resp.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("expected ReplyChannelRange instead got %T", msg)
}
if len(rangeResp.ShortChanIDs) != 0 {
t.Fatalf("expected no chan ID's, instead "+
"got: %v", spew.Sdump(rangeResp.ShortChanIDs))
}
if rangeResp.Complete != 1 {
t.Fatalf("complete wasn't set")
}
}
// Wait for error from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerGenChanRangeQuery tests that given the current best known
// channel ID, we properly generate an correct initial channel range response.
func TestGossipSyncerGenChanRangeQuery(t *testing.T) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
const startingHeight = 200
_, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: startingHeight},
defaultEncoding, defaultChunkSize,
)
// If we now ask the syncer to generate an initial range query, it
// should return a start height that's back chanRangeQueryBuffer
// blocks.
rangeQuery, err := syncer.genChanRangeQuery(false)
require.NoError(t, err, "unable to resp")
firstHeight := uint32(startingHeight - chanRangeQueryBuffer)
if rangeQuery.FirstBlockHeight != firstHeight {
t.Fatalf("incorrect chan range query: expected %v, %v",
rangeQuery.FirstBlockHeight,
startingHeight-chanRangeQueryBuffer)
}
if rangeQuery.NumBlocks != latestKnownHeight-firstHeight {
t.Fatalf("wrong num blocks: expected %v, got %v",
latestKnownHeight-firstHeight, rangeQuery.NumBlocks)
}
// Generating a historical range query should result in a start height
// of 0.
rangeQuery, err = syncer.genChanRangeQuery(true)
require.NoError(t, err, "unable to resp")
if rangeQuery.FirstBlockHeight != 0 {
t.Fatalf("incorrect chan range query: expected %v, %v", 0,
rangeQuery.FirstBlockHeight)
}
if rangeQuery.NumBlocks != latestKnownHeight {
t.Fatalf("wrong num blocks: expected %v, got %v",
latestKnownHeight, rangeQuery.NumBlocks)
}
}
// TestGossipSyncerProcessChanRangeReply tests that we'll properly buffer
// replied channel replies until we have the complete version.
func TestGossipSyncerProcessChanRangeReply(t *testing.T) {
t.Parallel()
t.Run("legacy", func(t *testing.T) {
testGossipSyncerProcessChanRangeReply(t, true)
})
t.Run("block ranges", func(t *testing.T) {
testGossipSyncerProcessChanRangeReply(t, false)
})
}
// testGossipSyncerProcessChanRangeReply tests that we'll properly buffer
// replied channel replies until we have the complete version. The legacy
// option, if set, uses the Complete field of the reply to determine when we've
// received all expected replies. Otherwise, it looks at the block ranges of
// each reply instead.
func testGossipSyncerProcessChanRangeReply(t *testing.T, legacy bool) {
t.Parallel()
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
highestID := lnwire.ShortChannelID{
BlockHeight: latestKnownHeight,
}
_, syncer, chanSeries := newTestSyncer(
highestID, defaultEncoding, defaultChunkSize,
)
startingState := syncer.state
query, err := syncer.genChanRangeQuery(true)
require.NoError(t, err, "unable to generate channel range query")
currentTimestamp := time.Now().Unix()
// Timestamp more than 2 weeks in the past hence expired.
expiredTimestamp := time.Unix(0, 0).Unix()
// Timestamp three weeks in the future.
skewedTimestamp := time.Now().Add(time.Hour * 24 * 18).Unix()
// When interpreting block ranges, the first reply should start from
// our requested first block, and the last should end at our requested
// last block.
replies := []*lnwire.ReplyChannelRange{
{
FirstBlockHeight: 0,
NumBlocks: 11,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: 10,
},
},
},
{
FirstBlockHeight: 11,
NumBlocks: 1,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: 11,
},
},
},
{
FirstBlockHeight: 12,
NumBlocks: 1,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: 12,
},
},
},
{
FirstBlockHeight: 13,
NumBlocks: query.NumBlocks - 13,
Complete: 1,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: 13,
TxIndex: 1,
},
{
BlockHeight: 13,
TxIndex: 2,
},
{
BlockHeight: 13,
TxIndex: 3,
},
{
BlockHeight: 13,
TxIndex: 4,
},
{
BlockHeight: 13,
TxIndex: 5,
},
{
BlockHeight: 13,
TxIndex: 6,
},
},
Timestamps: []lnwire.ChanUpdateTimestamps{
{
// Both timestamps are valid.
Timestamp1: uint32(currentTimestamp),
Timestamp2: uint32(currentTimestamp),
},
{
// One of the timestamps is valid.
Timestamp1: uint32(currentTimestamp),
Timestamp2: uint32(expiredTimestamp),
},
{
// Both timestamps are expired.
Timestamp1: uint32(expiredTimestamp),
Timestamp2: uint32(expiredTimestamp),
},
{
// Both timestamps are skewed.
Timestamp1: uint32(skewedTimestamp),
Timestamp2: uint32(skewedTimestamp),
},
{
// One timestamp is skewed the other
// expired.
Timestamp1: uint32(expiredTimestamp),
Timestamp2: uint32(skewedTimestamp),
},
{
// One timestamp is skewed the other
// expired.
Timestamp1: uint32(skewedTimestamp),
Timestamp2: uint32(expiredTimestamp),
},
},
},
}
// Each reply query is the same as the original query in the legacy
// mode.
if legacy {
replies[0].FirstBlockHeight = query.FirstBlockHeight
replies[0].NumBlocks = query.NumBlocks
replies[1].FirstBlockHeight = query.FirstBlockHeight
replies[1].NumBlocks = query.NumBlocks
replies[2].FirstBlockHeight = query.FirstBlockHeight
replies[2].NumBlocks = query.NumBlocks
replies[3].FirstBlockHeight = query.FirstBlockHeight
replies[3].NumBlocks = query.NumBlocks
}
// We'll begin by sending the syncer a set of non-complete channel
// range replies.
if err := syncer.processChanRangeReply(replies[0]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if err := syncer.processChanRangeReply(replies[1]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if err := syncer.processChanRangeReply(replies[2]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
// At this point, we should still be in our starting state as the query
// hasn't finished.
if syncer.state != startingState {
t.Fatalf("state should not have transitioned")
}
expectedReq := []lnwire.ShortChannelID{
{
BlockHeight: 10,
},
{
BlockHeight: 11,
},
{
BlockHeight: 12,
},
{
BlockHeight: 13,
TxIndex: 1,
},
{
BlockHeight: 13,
TxIndex: 2,
},
}
// As we're about to send the final response, we'll launch a goroutine
// to respond back with a filtered set of chan ID's.
errCh := make(chan error, 1)
go func() {
select {
case <-time.After(time.Second * 15):
errCh <- errors.New("no query received")
return
case req := <-chanSeries.filterReq:
scids := make([]lnwire.ShortChannelID, len(req))
for i, scid := range req {
scids[i] = scid.ShortChannelID
}
// We should get a request for the entire range of short
// chan ID's.
if !reflect.DeepEqual(expectedReq, scids) {
errCh <- fmt.Errorf("wrong request: "+
"expected %v, got %v", expectedReq, req)
return
}
// We'll send back only the last two to simulate filtering.
chanSeries.filterResp <- expectedReq[1:]
errCh <- nil
}
}()
// If we send the final message, then we should transition to
// queryNewChannels as we've sent a non-empty set of new channels.
if err := syncer.processChanRangeReply(replies[3]); err != nil {
t.Fatalf("unable to process reply: %v", err)
}
if syncer.syncState() != queryNewChannels {
t.Fatalf("wrong state: expected %v instead got %v",
queryNewChannels, syncer.state)
}
if !reflect.DeepEqual(syncer.newChansToQuery, expectedReq[1:]) {
t.Fatalf("wrong set of chans to query: expected %v, got %v",
syncer.newChansToQuery, expectedReq[1:])
}
// Wait for error from goroutine.
select {
case <-time.After(time.Second * 30):
t.Fatalf("goroutine did not return within 30 seconds")
case err := <-errCh:
if err != nil {
t.Fatal(err)
}
}
}
// TestGossipSyncerSynchronizeChanIDs tests that we properly request chunks of
// the short chan ID's which were unknown to us. We'll ensure that we request
// chunk by chunk, and after the last chunk, we return true indicating that we
// can transition to the synced stage.
func TestGossipSyncerSynchronizeChanIDs(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
// First, we'll create a GossipSyncer instance with a canned sendToPeer
// message to allow us to intercept their potential sends.
msgChan, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding, chunkSize,
)
// Next, we'll construct a set of chan ID's that we should query for,
// and set them as newChansToQuery within the state machine.
newChanIDs := []lnwire.ShortChannelID{
lnwire.NewShortChanIDFromInt(1),
lnwire.NewShortChanIDFromInt(2),
lnwire.NewShortChanIDFromInt(3),
lnwire.NewShortChanIDFromInt(4),
lnwire.NewShortChanIDFromInt(5),
}
syncer.newChansToQuery = newChanIDs
for i := 0; i < chunkSize*2; i += 2 {
// With our set up complete, we'll request a sync of chan ID's.
done, err := syncer.synchronizeChanIDs()
if err != nil {
t.Fatalf("unable to sync chan IDs: %v", err)
}
// At this point, we shouldn't yet be done as only 2 items
// should have been queried for.
if done {
t.Fatalf("syncer shown as done, but shouldn't be!")
}
// We should've received a new message from the syncer.
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
queryMsg, ok := msg[0].(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("expected QueryShortChanIDs instead "+
"got %T", msg)
}
// The query message should have queried for the first
// two chan ID's, and nothing more.
if !reflect.DeepEqual(queryMsg.ShortChanIDs, newChanIDs[i:i+chunkSize]) {
t.Fatalf("wrong query: expected %v, got %v",
spew.Sdump(newChanIDs[i:i+chunkSize]),
queryMsg.ShortChanIDs)
}
}
// With the proper message sent out, the internal state of the
// syncer should reflect that it still has more channels to
// query for.
if !reflect.DeepEqual(syncer.newChansToQuery, newChanIDs[i+chunkSize:]) {
t.Fatalf("incorrect chans to query for: expected %v, got %v",
spew.Sdump(newChanIDs[i+chunkSize:]),
syncer.newChansToQuery)
}
}
// At this point, only one more channel should be lingering for the
// syncer to query for.
if !reflect.DeepEqual(newChanIDs[chunkSize*2:], syncer.newChansToQuery) {
t.Fatalf("wrong chans to query: expected %v, got %v",
newChanIDs[chunkSize*2:], syncer.newChansToQuery)
}
// If we issue another query, the syncer should tell us that it's done.
done, err := syncer.synchronizeChanIDs()
require.NoError(t, err, "unable to sync chan IDs")
if done {
t.Fatalf("syncer should be finished!")
}
select {
case <-time.After(time.Second * 15):
t.Fatalf("no msgs received")
case msg := <-msgChan:
queryMsg, ok := msg[0].(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("expected QueryShortChanIDs instead "+
"got %T", msg)
}
// The query issued should simply be the last item.
if !reflect.DeepEqual(queryMsg.ShortChanIDs, newChanIDs[chunkSize*2:]) {
t.Fatalf("wrong query: expected %v, got %v",
spew.Sdump(newChanIDs[chunkSize*2:]),
queryMsg.ShortChanIDs)
}
// There also should be no more channels to query.
if len(syncer.newChansToQuery) != 0 {
t.Fatalf("should be no more chans to query for, "+
"instead have %v",
spew.Sdump(syncer.newChansToQuery))
}
}
}
// TestGossipSyncerDelayDOS tests that the gossip syncer will begin delaying
// queries after its prescribed allotment of undelayed query responses. Once
// this happens, all query replies should be delayed by the configurated
// interval.
func TestGossipSyncerDelayDOS(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, since we'll be
// sending a modest number of queries. After exhausting our undelayed
// gossip queries, we'll send two extra queries and ensure that they are
// delayed properly.
const chunkSize = 2
const numDelayedQueries = 2
const delayTolerance = time.Millisecond * 200
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
highestID := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
highestID, defaultEncoding, chunkSize, true, false,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
highestID, defaultEncoding, chunkSize, false, true,
)
syncer2.Start()
defer syncer2.Stop()
// Record the delayed query reply interval used by each syncer.
delayedQueryInterval := syncer1.cfg.delayedQueryReplyInterval
// Record the number of undelayed queries allowed by the syncers.
numUndelayedQueries := syncer1.cfg.maxUndelayedQueryReplies
// We will send enough queries to exhaust the undelayed responses, and
// then send two more queries which should be delayed. An additional one
// is subtracted from the total since undelayed message will be consumed
// by the initial QueryChannelRange.
numQueryResponses := numUndelayedQueries + numDelayedQueries - 1
// The total number of responses must include the initial reply each
// syncer will make to QueryChannelRange.
numTotalQueries := 1 + numQueryResponses
// The total number of channels each syncer needs to request must be
// scaled by the chunk size being used.
numTotalChans := numQueryResponses * chunkSize
// Construct enough channels so that all of the queries will have enough
// channels. Since syncer1 won't know of any channels, their sets are
// inherently disjoint.
var syncer2Chans []lnwire.ShortChannelID
for i := 0; i < numTotalChans; i++ {
syncer2Chans = append([]lnwire.ShortChannelID{
{
BlockHeight: highestID.BlockHeight - uint32(i) - 1,
TxIndex: uint32(i),
},
}, syncer2Chans...)
}
// We'll kick off the test by asserting syncer1 sends over the
// QueryChannelRange message the other node.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.queryMsgs <- msg:
}
}
}
// At this point, we'll need to a response from syncer2's channel
// series. This will cause syncer1 to simply request the entire set of
// channels from syncer2. This will count as the first undelayed
// response for sycner2.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// At this point, we'll assert that the ReplyChannelRange message is
// sent by sycner2.
for i := 0; i < numQueryResponses; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// We'll now have syncer1 process the received sids from syncer2.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- syncer2Chans
}
// At this point, syncer1 should start to send out initial requests to
// query the chan IDs of the remote party. We'll keep track of the
// number of queries made using the iterated value, which starts at one
// due the initial contribution of the QueryChannelRange msgs.
for i := 1; i < numTotalQueries; i++ {
expDelayResponse := i >= numUndelayedQueries
queryBatch(t,
msgChan1, msgChan2,
syncer1, syncer2,
chanSeries2,
expDelayResponse,
delayedQueryInterval,
delayTolerance,
)
}
}
// queryBatch is a helper method that will query for a single batch of channels
// from a peer and assert the responses. The method can also be used to assert
// the same transition happens, but is delayed by the remote peer's DOS
// rate-limiting. The provided chanSeries should belong to syncer2.
//
// The state transition performed is the following:
//
// syncer1 -- QueryShortChanIDs --> syncer2
// chanSeries.FetchChanAnns()
// syncer1 <-- ReplyShortChanIDsEnd -- syncer2
//
// If expDelayResponse is true, this method will assert that the call the
// FetchChanAnns happens between:
//
// [delayedQueryInterval-delayTolerance, delayedQueryInterval+delayTolerance].
func queryBatch(t *testing.T,
msgChan1, msgChan2 chan []lnwire.Message,
syncer1, syncer2 *GossipSyncer,
chanSeries *mockChannelGraphTimeSeries,
expDelayResponse bool,
delayedQueryInterval, delayTolerance time.Duration) {
t.Helper()
// First, we'll assert that syncer1 sends a QueryShortChanIDs message to
// the remote peer.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryShortChanIDs message.
_, ok := msg.(*lnwire.QueryShortChanIDs)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryShortChanIDs for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.queryMsgs <- msg:
}
}
}
// We'll then respond to with an empty set of replies (as it doesn't
// affect the test).
switch {
// If this query has surpassed the undelayed query threshold, we will
// impose stricter timing constraints on the response times. We'll first
// test that syncer2's chanSeries doesn't immediately receive a query,
// and then check that the query hasn't gone unanswered entirely.
case expDelayResponse:
// Create a before and after timeout to test, our test
// will ensure the messages are delivered to the peer
// in this timeframe.
before := time.After(
delayedQueryInterval - delayTolerance,
)
after := time.After(
delayedQueryInterval + delayTolerance,
)
// First, ensure syncer2 doesn't try to respond up until the
// before time fires.
select {
case <-before:
// Query is delayed, proceed.
case <-chanSeries.annReq:
t.Fatalf("DOSy query was not delayed")
}
// If syncer2 doesn't attempt a response within the allowed
// interval, then the messages are probably lost.
select {
case <-after:
t.Fatalf("no delayed query received")
case <-chanSeries.annReq:
chanSeries.annResp <- []lnwire.Message{}
}
// Otherwise, syncer2 should query its chanSeries promtly.
default:
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("no query recvd")
case <-chanSeries.annReq:
chanSeries.annResp <- []lnwire.Message{}
}
}
// Finally, assert that syncer2 replies to syncer1 with a
// ReplyShortChanIDsEnd.
select {
case <-time.After(50 * time.Millisecond):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyShortChanIDsEnd message.
_, ok := msg.(*lnwire.ReplyShortChanIDsEnd)
if !ok {
t.Fatalf("wrong message: expected "+
"ReplyShortChanIDsEnd for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// TestGossipSyncerRoutineSync tests all state transitions of the main syncer
// goroutine. This ensures that given an encounter with a peer that has a set
// of distinct channels, then we'll properly synchronize our channel state with
// them.
func TestGossipSyncerRoutineSync(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
highestID := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
highestID, defaultEncoding, chunkSize, true, false,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
highestID, defaultEncoding, chunkSize, false, true,
)
syncer2.Start()
defer syncer2.Stop()
// Although both nodes are at the same height, syncer will have 3 chan
// ID's that syncer1 doesn't know of.
syncer2Chans := []lnwire.ShortChannelID{
{BlockHeight: highestID.BlockHeight - 3},
{BlockHeight: highestID.BlockHeight - 2},
{BlockHeight: highestID.BlockHeight - 1},
}
// We'll kick off the test by passing over the QueryChannelRange
// messages from syncer1 to syncer2.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.queryMsgs <- msg:
}
}
}
// At this point, we'll need to send a response from syncer2 to syncer1
// using syncer2's channels This will cause syncer1 to simply request
// the entire set of channels from the other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// At this point, we'll assert that syncer2 replies with the
// ReplyChannelRange messages. Two replies are expected since the chunk
// size is 2, and we need to query for 3 channels.
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// We'll now send back a chunked response from syncer2 back to sycner1.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- syncer2Chans
}
// At this point, syncer1 should start to send out initial requests to
// query the chan IDs of the remote party. As the chunk size is 2,
// they'll need 2 rounds in order to fully reconcile the state.
for i := 0; i < chunkSize; i++ {
queryBatch(t,
msgChan1, msgChan2,
syncer1, syncer2,
chanSeries2,
false, 0, 0,
)
}
// At this stage syncer1 should now be sending over its initial
// GossipTimestampRange messages as it should be fully synced.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
}
// TestGossipSyncerAlreadySynced tests that if we attempt to synchronize two
// syncers that have the exact same state, then they'll skip straight to the
// final state and not perform any channel queries.
func TestGossipSyncerAlreadySynced(t *testing.T) {
t.Parallel()
// We'll modify the chunk size to be a smaller value, so we can ensure
// our chunk parsing works properly. With this value we should get 3
// queries: two full chunks, and one lingering chunk.
const chunkSize = 2
const numChans = 3
// First, we'll create two GossipSyncer instances with a canned
// sendToPeer message to allow us to intercept their potential sends.
highestID := lnwire.ShortChannelID{
BlockHeight: 1144,
}
msgChan1, syncer1, chanSeries1 := newTestSyncer(
highestID, defaultEncoding, chunkSize,
)
syncer1.Start()
defer syncer1.Stop()
msgChan2, syncer2, chanSeries2 := newTestSyncer(
highestID, defaultEncoding, chunkSize,
)
syncer2.Start()
defer syncer2.Stop()
// The channel state of both syncers will be identical. They should
// recognize this, and skip the sync phase below.
var syncer1Chans, syncer2Chans []lnwire.ShortChannelID
for i := numChans; i > 0; i-- {
shortChanID := lnwire.ShortChannelID{
BlockHeight: highestID.BlockHeight - uint32(i),
}
syncer1Chans = append(syncer1Chans, shortChanID)
syncer2Chans = append(syncer2Chans, shortChanID)
}
// We'll now kick off the test by allowing both side to send their
// QueryChannelRange messages to each other.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.queryMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a QueryChannelRange message.
_, ok := msg.(*lnwire.QueryChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.queryMsgs <- msg:
}
}
}
// We'll now send back the range each side should send over: the set of
// channels they already know about.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterRangeReqs:
// We'll send all the channels that it should know of.
chanSeries1.filterRangeResp <- syncer1Chans
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterRangeReqs:
// We'll send back all the channels that it should know of.
chanSeries2.filterRangeResp <- syncer2Chans
}
// Next, we'll thread through the replies of both parties. As the chunk
// size is 2, and they both know of 3 channels, it'll take two around
// and two chunks.
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
}
for i := 0; i < chunkSize; i++ {
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer2")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a ReplyChannelRange message.
_, ok := msg.(*lnwire.ReplyChannelRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// Now that both sides have the full responses, we'll send over the
// channels that they need to filter out. As both sides have the exact
// same set of channels, they should skip to the final state.
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries1.filterReq:
chanSeries1.filterResp <- []lnwire.ShortChannelID{}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("no query recvd")
case <-chanSeries2.filterReq:
chanSeries2.filterResp <- []lnwire.ShortChannelID{}
}
// As both parties are already synced, the next message they send to
// each other should be the GossipTimestampRange message.
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan1:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer2.gossipMsgs <- msg:
}
}
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("didn't get msg from syncer1")
case msgs := <-msgChan2:
for _, msg := range msgs {
// The message MUST be a GossipTimestampRange message.
_, ok := msg.(*lnwire.GossipTimestampRange)
if !ok {
t.Fatalf("wrong message: expected "+
"QueryChannelRange for %T", msg)
}
select {
case <-time.After(time.Second * 2):
t.Fatalf("node 2 didn't read msg")
case syncer1.gossipMsgs <- msg:
}
}
}
}
// TestGossipSyncerSyncTransitions ensures that the gossip syncer properly
// carries out its duties when accepting a new sync transition request.
func TestGossipSyncerSyncTransitions(t *testing.T) {
t.Parallel()
assertMsgSent := func(t *testing.T, msgChan chan []lnwire.Message,
msg lnwire.Message) {
t.Helper()
var msgSent lnwire.Message
select {
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("expected to send a single message at "+
"a time, got %d", len(msgs))
}
msgSent = msgs[0]
case <-time.After(time.Second):
t.Fatalf("expected to send %T message", msg)
}
if !reflect.DeepEqual(msgSent, msg) {
t.Fatalf("expected to send message: %v\ngot: %v",
spew.Sdump(msg), spew.Sdump(msgSent))
}
}
tests := []struct {
name string
entrySyncType SyncerType
finalSyncType SyncerType
assert func(t *testing.T, msgChan chan []lnwire.Message,
syncer *GossipSyncer)
}{
{
name: "active to passive",
entrySyncType: ActiveSync,
finalSyncType: PassiveSync,
assert: func(t *testing.T, mChan chan []lnwire.Message,
g *GossipSyncer) {
// When we first boot up, we expect that we
// send out a message that indicates we want
// all the updates from here on.
firstTimestamp := uint32(time.Now().Unix())
assertMsgSent(
t, mChan, &lnwire.GossipTimestampRange{
FirstTimestamp: firstTimestamp,
TimestampRange: math.MaxUint32,
},
)
// When transitioning from active to passive, we
// should expect to see a new local update
// horizon sent to the remote peer indicating
// that it would not like to receive any future
// updates.
assertMsgSent(
t, mChan, &lnwire.GossipTimestampRange{
FirstTimestamp: uint32(
zeroTimestamp.Unix(),
),
TimestampRange: 0,
},
)
syncState := g.syncState()
if syncState != chansSynced {
t.Fatalf("expected syncerState %v, "+
"got %v", chansSynced, syncState)
}
},
},
{
name: "passive to active",
entrySyncType: PassiveSync,
finalSyncType: ActiveSync,
assert: func(t *testing.T, msgChan chan []lnwire.Message,
g *GossipSyncer) {
// When transitioning from historical to active,
// we should expect to see a new local update
// horizon sent to the remote peer indicating
// that it would like to receive any future
// updates.
firstTimestamp := uint32(time.Now().Unix())
assertMsgSent(t, msgChan, &lnwire.GossipTimestampRange{
FirstTimestamp: firstTimestamp,
TimestampRange: math.MaxUint32,
})
syncState := g.syncState()
if syncState != chansSynced {
t.Fatalf("expected syncerState %v, "+
"got %v", chansSynced, syncState)
}
},
},
}
for _, test := range tests {
test := test
t.Run(test.name, func(t *testing.T) {
t.Parallel()
// We'll start each test by creating our syncer. We'll
// initialize it with a state of chansSynced, as that's
// the only time when it can process sync transitions.
msgChan, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{
BlockHeight: latestKnownHeight,
},
defaultEncoding, defaultChunkSize,
)
syncer.setSyncState(chansSynced)
// We'll set the initial syncType to what the test
// demands.
syncer.setSyncType(test.entrySyncType)
// We'll then start the syncer in order to process the
// request.
syncer.Start()
defer syncer.Stop()
syncer.ProcessSyncTransition(test.finalSyncType)
// The syncer should now have the expected final
// SyncerType that the test expects.
syncType := syncer.SyncType()
if syncType != test.finalSyncType {
t.Fatalf("expected syncType %v, got %v",
test.finalSyncType, syncType)
}
// Finally, we'll run a set of assertions for each test
// to ensure the syncer performed its expected duties
// after processing its sync transition.
test.assert(t, msgChan, syncer)
})
}
}
// TestGossipSyncerHistoricalSync tests that a gossip syncer can perform a
// historical sync with the remote peer.
func TestGossipSyncerHistoricalSync(t *testing.T) {
t.Parallel()
// We'll create a new gossip syncer and manually override its state to
// chansSynced. This is necessary as the syncer can only process
// historical sync requests in this state.
msgChan, syncer, _ := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: latestKnownHeight},
defaultEncoding, defaultChunkSize, true, true, true,
)
syncer.setSyncType(PassiveSync)
syncer.setSyncState(chansSynced)
syncer.Start()
defer syncer.Stop()
syncer.historicalSync()
// We should expect to see a single lnwire.QueryChannelRange message be
// sent to the remote peer with a FirstBlockHeight of 0.
expectedMsg := &lnwire.QueryChannelRange{
FirstBlockHeight: 0,
NumBlocks: latestKnownHeight,
QueryOptions: lnwire.NewTimestampQueryOption(),
}
select {
case msgs := <-msgChan:
if len(msgs) != 1 {
t.Fatalf("expected to send a single "+
"lnwire.QueryChannelRange message, got %d",
len(msgs))
}
if !reflect.DeepEqual(msgs[0], expectedMsg) {
t.Fatalf("expected to send message: %v\ngot: %v",
spew.Sdump(expectedMsg), spew.Sdump(msgs[0]))
}
case <-time.After(time.Second):
t.Fatalf("expected to send a lnwire.QueryChannelRange message")
}
}
// TestGossipSyncerSyncedSignal ensures that we receive a signal when a gossip
// syncer reaches its terminal chansSynced state.
func TestGossipSyncerSyncedSignal(t *testing.T) {
t.Parallel()
// We'll create a new gossip syncer and manually override its state to
// chansSynced.
_, syncer, _ := newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
syncer.setSyncState(chansSynced)
// We'll go ahead and request a signal to be notified of when it reaches
// this state.
signalChan := syncer.ResetSyncedSignal()
// Starting the gossip syncer should cause the signal to be delivered.
syncer.Start()
select {
case <-signalChan:
case <-time.After(time.Second):
t.Fatal("expected to receive chansSynced signal")
}
syncer.Stop()
// We'll try this again, but this time we'll request the signal after
// the syncer is active and has already reached its chansSynced state.
_, syncer, _ = newTestSyncer(
lnwire.NewShortChanIDFromInt(10), defaultEncoding,
defaultChunkSize,
)
syncer.setSyncState(chansSynced)
syncer.Start()
defer syncer.Stop()
signalChan = syncer.ResetSyncedSignal()
// The signal should be delivered immediately.
select {
case <-signalChan:
case <-time.After(time.Second):
t.Fatal("expected to receive chansSynced signal")
}
}
// TestGossipSyncerMaxChannelRangeReplies ensures that a gossip syncer
// transitions its state after receiving the maximum possible number of replies
// for a single QueryChannelRange message, and that any further replies after
// said limit are not processed.
func TestGossipSyncerMaxChannelRangeReplies(t *testing.T) {
t.Parallel()
msgChan, syncer, chanSeries := newTestSyncer(
lnwire.ShortChannelID{BlockHeight: latestKnownHeight},
defaultEncoding, defaultChunkSize,
)
// We'll tune the maxQueryChanRangeReplies to a more sensible value for
// the sake of testing.
syncer.cfg.maxQueryChanRangeReplies = 100
syncer.Start()
defer syncer.Stop()
// Upon initialization, the syncer should submit a QueryChannelRange
// request.
var query *lnwire.QueryChannelRange
select {
case msgs := <-msgChan:
require.Len(t, msgs, 1)
require.IsType(t, &lnwire.QueryChannelRange{}, msgs[0])
query = msgs[0].(*lnwire.QueryChannelRange)
case <-time.After(time.Second):
t.Fatal("expected query channel range request msg")
}
// We'll send the maximum number of replies allowed to a
// QueryChannelRange request with each reply consuming only one block in
// order to transition the syncer's state.
for i := uint32(0); i < syncer.cfg.maxQueryChanRangeReplies; i++ {
reply := &lnwire.ReplyChannelRange{
ChainHash: query.ChainHash,
FirstBlockHeight: query.FirstBlockHeight,
NumBlocks: query.NumBlocks,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: query.FirstBlockHeight + i,
},
},
}
reply.FirstBlockHeight = query.FirstBlockHeight + i
reply.NumBlocks = 1
require.NoError(t, syncer.ProcessQueryMsg(reply, nil))
}
// We should receive a filter request for the syncer's local channels
// after processing all of the replies. We'll send back a nil response
// indicating that no new channels need to be synced, so it should
// transition to its final chansSynced state.
select {
case <-chanSeries.filterReq:
case <-time.After(time.Second):
t.Fatal("expected local filter request of known channels")
}
select {
case chanSeries.filterResp <- nil:
case <-time.After(time.Second):
t.Fatal("timed out sending filter response")
}
assertSyncerStatus(t, syncer, chansSynced, ActiveSync)
// Finally, attempting to process another reply for the same query
// should result in an error.
require.Error(t, syncer.ProcessQueryMsg(&lnwire.ReplyChannelRange{
ChainHash: query.ChainHash,
FirstBlockHeight: query.FirstBlockHeight,
NumBlocks: query.NumBlocks,
ShortChanIDs: []lnwire.ShortChannelID{
{
BlockHeight: query.LastBlockHeight() + 1,
},
},
}, nil))
}