lnd/channeldb/invoices.go

3465 lines
105 KiB
Go

package channeldb
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"strings"
"time"
"github.com/lightningnetwork/lnd/feature"
"github.com/lightningnetwork/lnd/htlcswitch/hop"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/record"
"github.com/lightningnetwork/lnd/tlv"
)
var (
// unknownPreimage is an all-zeroes preimage that indicates that the
// preimage for this invoice is not yet known.
unknownPreimage lntypes.Preimage
// BlankPayAddr is a sentinel payment address for legacy invoices.
// Invoices with this payment address are special-cased in the insertion
// logic to prevent being indexed in the payment address index,
// otherwise they would cause collisions after the first insertion.
BlankPayAddr [32]byte
// invoiceBucket is the name of the bucket within the database that
// stores all data related to invoices no matter their final state.
// Within the invoice bucket, each invoice is keyed by its invoice ID
// which is a monotonically increasing uint32.
invoiceBucket = []byte("invoices")
// paymentHashIndexBucket is the name of the sub-bucket within the
// invoiceBucket which indexes all invoices by their payment hash. The
// payment hash is the sha256 of the invoice's payment preimage. This
// index is used to detect duplicates, and also to provide a fast path
// for looking up incoming HTLCs to determine if we're able to settle
// them fully.
//
// maps: payHash => invoiceKey
invoiceIndexBucket = []byte("paymenthashes")
// payAddrIndexBucket is the name of the top-level bucket that maps
// payment addresses to their invoice number. This can be used
// to efficiently query or update non-legacy invoices. Note that legacy
// invoices will not be included in this index since they all have the
// same, all-zero payment address, however all newly generated invoices
// will end up in this index.
//
// maps: payAddr => invoiceKey
payAddrIndexBucket = []byte("pay-addr-index")
// setIDIndexBucket is the name of the top-level bucket that maps set
// ids to their invoice number. This can be used to efficiently query or
// update AMP invoice. Note that legacy or MPP invoices will not be
// included in this index, since their HTLCs do not have a set id.
//
// maps: setID => invoiceKey
setIDIndexBucket = []byte("set-id-index")
// numInvoicesKey is the name of key which houses the auto-incrementing
// invoice ID which is essentially used as a primary key. With each
// invoice inserted, the primary key is incremented by one. This key is
// stored within the invoiceIndexBucket. Within the invoiceBucket
// invoices are uniquely identified by the invoice ID.
numInvoicesKey = []byte("nik")
// addIndexBucket is an index bucket that we'll use to create a
// monotonically increasing set of add indexes. Each time we add a new
// invoice, this sequence number will be incremented and then populated
// within the new invoice.
//
// In addition to this sequence number, we map:
//
// addIndexNo => invoiceKey
addIndexBucket = []byte("invoice-add-index")
// settleIndexBucket is an index bucket that we'll use to create a
// monotonically increasing integer for tracking a "settle index". Each
// time an invoice is settled, this sequence number will be incremented
// as populate within the newly settled invoice.
//
// In addition to this sequence number, we map:
//
// settleIndexNo => invoiceKey
settleIndexBucket = []byte("invoice-settle-index")
// ErrInvoiceAlreadySettled is returned when the invoice is already
// settled.
ErrInvoiceAlreadySettled = errors.New("invoice already settled")
// ErrInvoiceAlreadyCanceled is returned when the invoice is already
// canceled.
ErrInvoiceAlreadyCanceled = errors.New("invoice already canceled")
// ErrInvoiceAlreadyAccepted is returned when the invoice is already
// accepted.
ErrInvoiceAlreadyAccepted = errors.New("invoice already accepted")
// ErrInvoiceStillOpen is returned when the invoice is still open.
ErrInvoiceStillOpen = errors.New("invoice still open")
// ErrInvoiceCannotOpen is returned when an attempt is made to move an
// invoice to the open state.
ErrInvoiceCannotOpen = errors.New("cannot move invoice to open")
// ErrInvoiceCannotAccept is returned when an attempt is made to accept
// an invoice while the invoice is not in the open state.
ErrInvoiceCannotAccept = errors.New("cannot accept invoice")
// ErrInvoicePreimageMismatch is returned when the preimage doesn't
// match the invoice hash.
ErrInvoicePreimageMismatch = errors.New("preimage does not match")
// ErrHTLCPreimageMissing is returned when trying to accept/settle an
// AMP HTLC but the HTLC-level preimage has not been set.
ErrHTLCPreimageMissing = errors.New("AMP htlc missing preimage")
// ErrHTLCPreimageMismatch is returned when trying to accept/settle an
// AMP HTLC but the HTLC-level preimage does not satisfying the
// HTLC-level payment hash.
ErrHTLCPreimageMismatch = errors.New("htlc preimage mismatch")
// ErrHTLCAlreadySettled is returned when trying to settle an invoice
// but HTLC already exists in the settled state.
ErrHTLCAlreadySettled = errors.New("htlc already settled")
// ErrInvoiceHasHtlcs is returned when attempting to insert an invoice
// that already has HTLCs.
ErrInvoiceHasHtlcs = errors.New("cannot add invoice with htlcs")
// ErrEmptyHTLCSet is returned when attempting to accept or settle and
// HTLC set that has no HTLCs.
ErrEmptyHTLCSet = errors.New("cannot settle/accept empty HTLC set")
// ErrUnexpectedInvoicePreimage is returned when an invoice-level
// preimage is provided when trying to settle an invoice that shouldn't
// have one, e.g. an AMP invoice.
ErrUnexpectedInvoicePreimage = errors.New(
"unexpected invoice preimage provided on settle",
)
// ErrHTLCPreimageAlreadyExists is returned when trying to set an
// htlc-level preimage but one is already known.
ErrHTLCPreimageAlreadyExists = errors.New(
"htlc-level preimage already exists",
)
)
// ErrDuplicateSetID is an error returned when attempting to adding an AMP HTLC
// to an invoice, but another invoice is already indexed by the same set id.
type ErrDuplicateSetID struct {
setID [32]byte
}
// Error returns a human-readable description of ErrDuplicateSetID.
func (e ErrDuplicateSetID) Error() string {
return fmt.Sprintf("invoice with set_id=%x already exists", e.setID)
}
const (
// MaxMemoSize is maximum size of the memo field within invoices stored
// in the database.
MaxMemoSize = 1024
// MaxPaymentRequestSize is the max size of a payment request for
// this invoice.
// TODO(halseth): determine the max length payment request when field
// lengths are final.
MaxPaymentRequestSize = 4096
// A set of tlv type definitions used to serialize invoice htlcs to the
// database.
//
// NOTE: A migration should be added whenever this list changes. This
// prevents against the database being rolled back to an older
// format where the surrounding logic might assume a different set of
// fields are known.
chanIDType tlv.Type = 1
htlcIDType tlv.Type = 3
amtType tlv.Type = 5
acceptHeightType tlv.Type = 7
acceptTimeType tlv.Type = 9
resolveTimeType tlv.Type = 11
expiryHeightType tlv.Type = 13
htlcStateType tlv.Type = 15
mppTotalAmtType tlv.Type = 17
htlcAMPType tlv.Type = 19
htlcHashType tlv.Type = 21
htlcPreimageType tlv.Type = 23
// A set of tlv type definitions used to serialize invoice bodiees.
//
// NOTE: A migration should be added whenever this list changes. This
// prevents against the database being rolled back to an older
// format where the surrounding logic might assume a different set of
// fields are known.
memoType tlv.Type = 0
payReqType tlv.Type = 1
createTimeType tlv.Type = 2
settleTimeType tlv.Type = 3
addIndexType tlv.Type = 4
settleIndexType tlv.Type = 5
preimageType tlv.Type = 6
valueType tlv.Type = 7
cltvDeltaType tlv.Type = 8
expiryType tlv.Type = 9
paymentAddrType tlv.Type = 10
featuresType tlv.Type = 11
invStateType tlv.Type = 12
amtPaidType tlv.Type = 13
hodlInvoiceType tlv.Type = 14
invoiceAmpStateType tlv.Type = 15
// A set of tlv type definitions used to serialize the invoice AMP
// state along-side the main invoice body.
ampStateSetIDType tlv.Type = 0
ampStateHtlcStateType tlv.Type = 1
ampStateSettleIndexType tlv.Type = 2
ampStateSettleDateType tlv.Type = 3
ampStateCircuitKeysType tlv.Type = 4
ampStateAmtPaidType tlv.Type = 5
)
// RefModifier is a modification on top of a base invoice ref. It allows the
// caller to opt to skip out on HTLCs for a given payAddr, or only return the
// set of specified HTLCs for a given setID.
type RefModifier uint8
const (
// DefaultModifier is the base modifier that doesn't change any behavior.
DefaultModifier RefModifier = iota
// HtlcSetOnlyModifier can only be used with a setID based invoice ref, and
// specifies that only the set of HTLCs related to that setID are to be
// returned.
HtlcSetOnlyModifier
// HtlcSetOnlyModifier can only be used with a payAddr based invoice ref,
// and specifies that the returned invoice shouldn't include any HTLCs at
// all.
HtlcSetBlankModifier
)
// InvoiceRef is a composite identifier for invoices. Invoices can be referenced
// by various combinations of payment hash and payment addr, in certain contexts
// only some of these are known. An InvoiceRef and its constructors thus
// encapsulate the valid combinations of query parameters that can be supplied
// to LookupInvoice and UpdateInvoice.
type InvoiceRef struct {
// payHash is the payment hash of the target invoice. All invoices are
// currently indexed by payment hash. This value will be used as a
// fallback when no payment address is known.
payHash *lntypes.Hash
// payAddr is the payment addr of the target invoice. Newer invoices
// (0.11 and up) are indexed by payment address in addition to payment
// hash, but pre 0.8 invoices do not have one at all. When this value is
// known it will be used as the primary identifier, falling back to
// payHash if no value is known.
payAddr *[32]byte
// setID is the optional set id for an AMP payment. This can be used to
// lookup or update the invoice knowing only this value. Queries by set
// id are only used to facilitate user-facing requests, e.g. lookup,
// settle or cancel an AMP invoice. The regular update flow from the
// invoice registry will always query for the invoice by
// payHash+payAddr.
setID *[32]byte
// refModifier allows an invoice ref to include or exclude specific
// HTLC sets based on the payAddr or setId.
refModifier RefModifier
}
// InvoiceRefByHash creates an InvoiceRef that queries for an invoice only by
// its payment hash.
func InvoiceRefByHash(payHash lntypes.Hash) InvoiceRef {
return InvoiceRef{
payHash: &payHash,
}
}
// InvoiceRefByHashAndAddr creates an InvoiceRef that first queries for an
// invoice by the provided payment address, falling back to the payment hash if
// the payment address is unknown.
func InvoiceRefByHashAndAddr(payHash lntypes.Hash,
payAddr [32]byte) InvoiceRef {
return InvoiceRef{
payHash: &payHash,
payAddr: &payAddr,
}
}
// InvoiceRefByAddr creates an InvoiceRef that queries the payment addr index
// for an invoice with the provided payment address.
func InvoiceRefByAddr(addr [32]byte) InvoiceRef {
return InvoiceRef{
payAddr: &addr,
}
}
// InvoiceRefByAddrBlankHtlc creates an InvoiceRef that queries the payment addr index
// for an invoice with the provided payment address, but excludes any of the
// core HTLC information.
func InvoiceRefByAddrBlankHtlc(addr [32]byte) InvoiceRef {
return InvoiceRef{
payAddr: &addr,
refModifier: HtlcSetBlankModifier,
}
}
// InvoiceRefBySetID creates an InvoiceRef that queries the set id index for an
// invoice with the provided setID. If the invoice is not found, the query will
// not fallback to payHash or payAddr.
func InvoiceRefBySetID(setID [32]byte) InvoiceRef {
return InvoiceRef{
setID: &setID,
}
}
// InvoiceRefBySetIDFiltered is similar to the InvoiceRefBySetID identifier,
// but it specifies that the returned set of HTLCs should be filtered to only
// include HTLCs that are part of that set.
func InvoiceRefBySetIDFiltered(setID [32]byte) InvoiceRef {
return InvoiceRef{
setID: &setID,
refModifier: HtlcSetOnlyModifier,
}
}
// PayHash returns the optional payment hash of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) PayHash() *lntypes.Hash {
if r.payHash != nil {
hash := *r.payHash
return &hash
}
return nil
}
// PayAddr returns the optional payment address of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) PayAddr() *[32]byte {
if r.payAddr != nil {
addr := *r.payAddr
return &addr
}
return nil
}
// SetID returns the optional set id of the target invoice.
//
// NOTE: This value may be nil.
func (r InvoiceRef) SetID() *[32]byte {
if r.setID != nil {
id := *r.setID
return &id
}
return nil
}
// Modifier defines the set of available modifications to the base invoice ref
// look up that are available.
func (r InvoiceRef) Modifier() RefModifier {
return r.refModifier
}
// String returns a human-readable representation of an InvoiceRef.
func (r InvoiceRef) String() string {
var ids []string
if r.payHash != nil {
ids = append(ids, fmt.Sprintf("pay_hash=%v", *r.payHash))
}
if r.payAddr != nil {
ids = append(ids, fmt.Sprintf("pay_addr=%x", *r.payAddr))
}
if r.setID != nil {
ids = append(ids, fmt.Sprintf("set_id=%x", *r.setID))
}
return fmt.Sprintf("(%s)", strings.Join(ids, ", "))
}
// ContractState describes the state the invoice is in.
type ContractState uint8
const (
// ContractOpen means the invoice has only been created.
ContractOpen ContractState = 0
// ContractSettled means the htlc is settled and the invoice has been paid.
ContractSettled ContractState = 1
// ContractCanceled means the invoice has been canceled.
ContractCanceled ContractState = 2
// ContractAccepted means the HTLC has been accepted but not settled yet.
ContractAccepted ContractState = 3
)
// String returns a human readable identifier for the ContractState type.
func (c ContractState) String() string {
switch c {
case ContractOpen:
return "Open"
case ContractSettled:
return "Settled"
case ContractCanceled:
return "Canceled"
case ContractAccepted:
return "Accepted"
}
return "Unknown"
}
// IsFinal returns a boolean indicating whether an invoice state is final.
func (c ContractState) IsFinal() bool {
return c == ContractSettled || c == ContractCanceled
}
// ContractTerm is a companion struct to the Invoice struct. This struct houses
// the necessary conditions required before the invoice can be considered fully
// settled by the payee.
type ContractTerm struct {
// FinalCltvDelta is the minimum required number of blocks before htlc
// expiry when the invoice is accepted.
FinalCltvDelta int32
// Expiry defines how long after creation this invoice should expire.
Expiry time.Duration
// PaymentPreimage is the preimage which is to be revealed in the
// occasion that an HTLC paying to the hash of this preimage is
// extended. Set to nil if the preimage isn't known yet.
PaymentPreimage *lntypes.Preimage
// Value is the expected amount of milli-satoshis to be paid to an HTLC
// which can be satisfied by the above preimage.
Value lnwire.MilliSatoshi
// PaymentAddr is a randomly generated value include in the MPP record
// by the sender to prevent probing of the receiver.
PaymentAddr [32]byte
// Features is the feature vectors advertised on the payment request.
Features *lnwire.FeatureVector
}
// String returns a human-readable description of the prominent contract terms.
func (c ContractTerm) String() string {
return fmt.Sprintf("amt=%v, expiry=%v, final_cltv_delta=%v", c.Value,
c.Expiry, c.FinalCltvDelta)
}
// SetID is the extra unique tuple item for AMP invoices. In addition to
// setting a payment address, each repeated payment to an AMP invoice will also
// contain a set ID as well.
type SetID [32]byte
// InvoiceStateAMP is a struct that associates the current state of an AMP
// invoice identified by its set ID along with the set of invoices identified
// by the circuit key. This allows callers to easily look up the latest state
// of an AMP "sub-invoice" and also look up the invoice HLTCs themselves in the
// greater HTLC map index.
type InvoiceStateAMP struct {
// State is the state of this sub-AMP invoice.
State HtlcState
// SettleIndex indicates the location in the settle index that
// references this instance of InvoiceStateAMP, but only if
// this value is set (non-zero), and State is HtlcStateSettled.
SettleIndex uint64
// SettleDate is the date that the setID was settled.
SettleDate time.Time
// InvoiceKeys is the set of circuit keys that can be used to locate
// the invoices for a given set ID.
InvoiceKeys map[CircuitKey]struct{}
// AmtPaid is the total amount that was paid in the AMP sub-invoice.
// Fetching the full HTLC/invoice state allows one to extract the
// custom records as well as the break down of the payment splits used
// when paying.
AmtPaid lnwire.MilliSatoshi
}
// copy makes a deep copy of the underlying InvoiceStateAMP.
func (i *InvoiceStateAMP) copy() (InvoiceStateAMP, error) {
result := *i
// Make a copy of the InvoiceKeys map.
result.InvoiceKeys = make(map[CircuitKey]struct{})
for k := range i.InvoiceKeys {
result.InvoiceKeys[k] = struct{}{}
}
// As a safety measure, copy SettleDate. time.Time is concurrency safe
// except when using any of the (un)marshalling methods.
settleDateBytes, err := i.SettleDate.MarshalBinary()
if err != nil {
return InvoiceStateAMP{}, err
}
err = result.SettleDate.UnmarshalBinary(settleDateBytes)
if err != nil {
return InvoiceStateAMP{}, err
}
return result, nil
}
// AMPInvoiceState represents a type that stores metadata related to the set of
// settled AMP "sub-invoices".
type AMPInvoiceState map[SetID]InvoiceStateAMP
// recordSize returns the amount of bytes this TLV record will occupy when
// encoded.
func (a *AMPInvoiceState) recordSize() uint64 {
var (
b bytes.Buffer
buf [8]byte
)
// We know that encoding works since the tests pass in the build this file
// is checked into, so we'll simplify things and simply encode it ourselves
// then report the total amount of bytes used.
if err := ampStateEncoder(&b, a, &buf); err != nil {
// This should never error out, but we log it just in case it
// does.
log.Errorf("encoding the amp invoice state failed: %v", err)
}
return uint64(len(b.Bytes()))
}
// Invoice is a payment invoice generated by a payee in order to request
// payment for some good or service. The inclusion of invoices within Lightning
// creates a payment work flow for merchants very similar to that of the
// existing financial system within PayPal, etc. Invoices are added to the
// database when a payment is requested, then can be settled manually once the
// payment is received at the upper layer. For record keeping purposes,
// invoices are never deleted from the database, instead a bit is toggled
// denoting the invoice has been fully settled. Within the database, all
// invoices must have a unique payment hash which is generated by taking the
// sha256 of the payment preimage.
type Invoice struct {
// Memo is an optional memo to be stored along side an invoice. The
// memo may contain further details pertaining to the invoice itself,
// or any other message which fits within the size constraints.
Memo []byte
// PaymentRequest is the encoded payment request for this invoice. For
// spontaneous (keysend) payments, this field will be empty.
PaymentRequest []byte
// CreationDate is the exact time the invoice was created.
CreationDate time.Time
// SettleDate is the exact time the invoice was settled.
SettleDate time.Time
// Terms are the contractual payment terms of the invoice. Once all the
// terms have been satisfied by the payer, then the invoice can be
// considered fully fulfilled.
//
// TODO(roasbeef): later allow for multiple terms to fulfill the final
// invoice: payment fragmentation, etc.
Terms ContractTerm
// AddIndex is an auto-incrementing integer that acts as a
// monotonically increasing sequence number for all invoices created.
// Clients can then use this field as a "checkpoint" of sorts when
// implementing a streaming RPC to notify consumers of instances where
// an invoice has been added before they re-connected.
//
// NOTE: This index starts at 1.
AddIndex uint64
// SettleIndex is an auto-incrementing integer that acts as a
// monotonically increasing sequence number for all settled invoices.
// Clients can then use this field as a "checkpoint" of sorts when
// implementing a streaming RPC to notify consumers of instances where
// an invoice has been settled before they re-connected.
//
// NOTE: This index starts at 1.
SettleIndex uint64
// State describes the state the invoice is in. This is the global
// state of the invoice which may remain open even when a series of
// sub-invoices for this invoice has been settled.
State ContractState
// AmtPaid is the final amount that we ultimately accepted for pay for
// this invoice. We specify this value independently as it's possible
// that the invoice originally didn't specify an amount, or the sender
// overpaid.
AmtPaid lnwire.MilliSatoshi
// Htlcs records all htlcs that paid to this invoice. Some of these
// htlcs may have been marked as canceled.
Htlcs map[CircuitKey]*InvoiceHTLC
// AMPState describes the state of any related sub-invoices AMP to this
// greater invoice. A sub-invoice is defined by a set of HTLCs with the
// same set ID that attempt to make one time or recurring payments to
// this greater invoice. It's possible for a sub-invoice to be canceled
// or settled, but the greater invoice still open.
AMPState AMPInvoiceState
// HodlInvoice indicates whether the invoice should be held in the
// Accepted state or be settled right away.
HodlInvoice bool
}
// HTLCSet returns the set of HTLCs belonging to setID and in the provided
// state. Passing a nil setID will return all HTLCs in the provided state in the
// case of legacy or MPP, and no HTLCs in the case of AMP. Otherwise, the
// returned set will be filtered by the populated setID which is used to
// retrieve AMP HTLC sets.
func (i *Invoice) HTLCSet(setID *[32]byte, state HtlcState) map[CircuitKey]*InvoiceHTLC {
htlcSet := make(map[CircuitKey]*InvoiceHTLC)
for key, htlc := range i.Htlcs {
// Only add HTLCs that are in the requested HtlcState.
if htlc.State != state {
continue
}
if !htlc.IsInHTLCSet(setID) {
continue
}
htlcSet[key] = htlc
}
return htlcSet
}
// HTLCSetCompliment returns the set of all HTLCs not belonging to setID that
// are in the target state. Passing a nil setID will return no invoices, since
// all MPP HTLCs are part of the same HTLC set.
func (i *Invoice) HTLCSetCompliment(setID *[32]byte,
state HtlcState) map[CircuitKey]*InvoiceHTLC {
htlcSet := make(map[CircuitKey]*InvoiceHTLC)
for key, htlc := range i.Htlcs {
// Only add HTLCs that are in the requested HtlcState.
if htlc.State != state {
continue
}
// We are constructing the compliment, so filter anything that
// matches this set id.
if htlc.IsInHTLCSet(setID) {
continue
}
htlcSet[key] = htlc
}
return htlcSet
}
// HtlcState defines the states an htlc paying to an invoice can be in.
type HtlcState uint8
const (
// HtlcStateAccepted indicates the htlc is locked-in, but not resolved.
HtlcStateAccepted HtlcState = iota
// HtlcStateCanceled indicates the htlc is canceled back to the
// sender.
HtlcStateCanceled
// HtlcStateSettled indicates the htlc is settled.
HtlcStateSettled
)
// InvoiceHTLC contains details about an htlc paying to this invoice.
type InvoiceHTLC struct {
// Amt is the amount that is carried by this htlc.
Amt lnwire.MilliSatoshi
// MppTotalAmt is a field for mpp that indicates the expected total
// amount.
MppTotalAmt lnwire.MilliSatoshi
// AcceptHeight is the block height at which the invoice registry
// decided to accept this htlc as a payment to the invoice. At this
// height, the invoice cltv delay must have been met.
AcceptHeight uint32
// AcceptTime is the wall clock time at which the invoice registry
// decided to accept the htlc.
AcceptTime time.Time
// ResolveTime is the wall clock time at which the invoice registry
// decided to settle the htlc.
ResolveTime time.Time
// Expiry is the expiry height of this htlc.
Expiry uint32
// State indicates the state the invoice htlc is currently in. A
// canceled htlc isn't just removed from the invoice htlcs map, because
// we need AcceptHeight to properly cancel the htlc back.
State HtlcState
// CustomRecords contains the custom key/value pairs that accompanied
// the htlc.
CustomRecords record.CustomSet
// AMP encapsulates additional data relevant to AMP HTLCs. This includes
// the AMP onion record, in addition to the HTLC's payment hash and
// preimage since these are unique to each AMP HTLC, and not the invoice
// as a whole.
//
// NOTE: This value will only be set for AMP HTLCs.
AMP *InvoiceHtlcAMPData
}
// Copy makes a deep copy of the target InvoiceHTLC.
func (h *InvoiceHTLC) Copy() *InvoiceHTLC {
result := *h
// Make a copy of the CustomSet map.
result.CustomRecords = make(record.CustomSet)
for k, v := range h.CustomRecords {
result.CustomRecords[k] = v
}
result.AMP = h.AMP.Copy()
return &result
}
// IsInHTLCSet returns true if this HTLC is part an HTLC set. If nil is passed,
// this method returns true if this is an MPP HTLC. Otherwise, it only returns
// true if the AMP HTLC's set id matches the populated setID.
func (h *InvoiceHTLC) IsInHTLCSet(setID *[32]byte) bool {
wantAMPSet := setID != nil
isAMPHtlc := h.AMP != nil
// Non-AMP HTLCs cannot be part of AMP HTLC sets, and vice versa.
if wantAMPSet != isAMPHtlc {
return false
}
// Skip AMP HTLCs that have differing set ids.
if isAMPHtlc && *setID != h.AMP.Record.SetID() {
return false
}
return true
}
// InvoiceHtlcAMPData is a struct hodling the additional metadata stored for
// each received AMP HTLC. This includes the AMP onion record, in addition to
// the HTLC's payment hash and preimage.
type InvoiceHtlcAMPData struct {
// AMP is a copy of the AMP record presented in the onion payload
// containing the information necessary to correlate and settle a
// spontaneous HTLC set. Newly accepted legacy keysend payments will
// also have this field set as we automatically promote them into an AMP
// payment for internal processing.
Record record.AMP
// Hash is an HTLC-level payment hash that is stored only for AMP
// payments. This is done because an AMP HTLC will carry a different
// payment hash from the invoice it might be satisfying, so we track the
// payment hashes individually to able to compute whether or not the
// reconstructed preimage correctly matches the HTLC's hash.
Hash lntypes.Hash
// Preimage is an HTLC-level preimage that satisfies the AMP HTLC's
// Hash. The preimage will be be derived either from secret share
// reconstruction of the shares in the AMP payload.
//
// NOTE: Preimage will only be present once the HTLC is in
// HtlcStateSettled.
Preimage *lntypes.Preimage
}
// Copy returns a deep copy of the InvoiceHtlcAMPData.
func (d *InvoiceHtlcAMPData) Copy() *InvoiceHtlcAMPData {
if d == nil {
return nil
}
var preimage *lntypes.Preimage
if d.Preimage != nil {
pimg := *d.Preimage
preimage = &pimg
}
return &InvoiceHtlcAMPData{
Record: d.Record,
Hash: d.Hash,
Preimage: preimage,
}
}
// HtlcAcceptDesc describes the details of a newly accepted htlc.
type HtlcAcceptDesc struct {
// AcceptHeight is the block height at which this htlc was accepted.
AcceptHeight int32
// Amt is the amount that is carried by this htlc.
Amt lnwire.MilliSatoshi
// MppTotalAmt is a field for mpp that indicates the expected total
// amount.
MppTotalAmt lnwire.MilliSatoshi
// Expiry is the expiry height of this htlc.
Expiry uint32
// CustomRecords contains the custom key/value pairs that accompanied
// the htlc.
CustomRecords record.CustomSet
// AMP encapsulates additional data relevant to AMP HTLCs. This includes
// the AMP onion record, in addition to the HTLC's payment hash and
// preimage since these are unique to each AMP HTLC, and not the invoice
// as a whole.
//
// NOTE: This value will only be set for AMP HTLCs.
AMP *InvoiceHtlcAMPData
}
// InvoiceUpdateDesc describes the changes that should be applied to the
// invoice.
type InvoiceUpdateDesc struct {
// State is the new state that this invoice should progress to. If nil,
// the state is left unchanged.
State *InvoiceStateUpdateDesc
// CancelHtlcs describes the htlcs that need to be canceled.
CancelHtlcs map[CircuitKey]struct{}
// AddHtlcs describes the newly accepted htlcs that need to be added to
// the invoice.
AddHtlcs map[CircuitKey]*HtlcAcceptDesc
// SetID is an optional set ID for AMP invoices that allows operations
// to be more efficient by ensuring we don't need to read out the
// entire HTLC set each timee an HTLC is to be cancelled.
SetID *SetID
}
// InvoiceStateUpdateDesc describes an invoice-level state transition.
type InvoiceStateUpdateDesc struct {
// NewState is the new state that this invoice should progress to.
NewState ContractState
// Preimage must be set to the preimage when NewState is settled.
Preimage *lntypes.Preimage
// HTLCPreimages set the HTLC-level preimages stored for AMP HTLCs.
// These are only learned when settling the invoice as a whole. Must be
// set when settling an invoice with non-nil SetID.
HTLCPreimages map[CircuitKey]lntypes.Preimage
// SetID identifies a specific set of HTLCs destined for the same
// invoice as part of a larger AMP payment. This value will be nil for
// legacy or MPP payments.
SetID *[32]byte
}
// InvoiceUpdateCallback is a callback used in the db transaction to update the
// invoice.
type InvoiceUpdateCallback = func(invoice *Invoice) (*InvoiceUpdateDesc, error)
func validateInvoice(i *Invoice, paymentHash lntypes.Hash) error {
// Avoid conflicts with all-zeroes magic value in the database.
if paymentHash == unknownPreimage.Hash() {
return fmt.Errorf("cannot use hash of all-zeroes preimage")
}
if len(i.Memo) > MaxMemoSize {
return fmt.Errorf("max length a memo is %v, and invoice "+
"of length %v was provided", MaxMemoSize, len(i.Memo))
}
if len(i.PaymentRequest) > MaxPaymentRequestSize {
return fmt.Errorf("max length of payment request is %v, length "+
"provided was %v", MaxPaymentRequestSize,
len(i.PaymentRequest))
}
if i.Terms.Features == nil {
return errors.New("invoice must have a feature vector")
}
err := feature.ValidateDeps(i.Terms.Features)
if err != nil {
return err
}
// AMP invoices and hodl invoices are allowed to have no preimage
// specified.
isAMP := i.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
if i.Terms.PaymentPreimage == nil && !(i.HodlInvoice || isAMP) {
return errors.New("non-hodl invoices must have a preimage")
}
if len(i.Htlcs) > 0 {
return ErrInvoiceHasHtlcs
}
return nil
}
// IsPending returns true if the invoice is in ContractOpen state.
func (i *Invoice) IsPending() bool {
return i.State == ContractOpen || i.State == ContractAccepted
}
// AddInvoice inserts the targeted invoice into the database. If the invoice has
// *any* payment hashes which already exists within the database, then the
// insertion will be aborted and rejected due to the strict policy banning any
// duplicate payment hashes. A side effect of this function is that it sets
// AddIndex on newInvoice.
func (d *DB) AddInvoice(newInvoice *Invoice, paymentHash lntypes.Hash) (
uint64, error) {
if err := validateInvoice(newInvoice, paymentHash); err != nil {
return 0, err
}
var invoiceAddIndex uint64
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
if err != nil {
return err
}
invoiceIndex, err := invoices.CreateBucketIfNotExists(
invoiceIndexBucket,
)
if err != nil {
return err
}
addIndex, err := invoices.CreateBucketIfNotExists(
addIndexBucket,
)
if err != nil {
return err
}
// Ensure that an invoice an identical payment hash doesn't
// already exist within the index.
if invoiceIndex.Get(paymentHash[:]) != nil {
return ErrDuplicateInvoice
}
// Check that we aren't inserting an invoice with a duplicate
// payment address. The all-zeros payment address is
// special-cased to support legacy keysend invoices which don't
// assign one. This is safe since later we also will avoid
// indexing them and avoid collisions.
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
if newInvoice.Terms.PaymentAddr != BlankPayAddr {
if payAddrIndex.Get(newInvoice.Terms.PaymentAddr[:]) != nil {
return ErrDuplicatePayAddr
}
}
// If the current running payment ID counter hasn't yet been
// created, then create it now.
var invoiceNum uint32
invoiceCounter := invoiceIndex.Get(numInvoicesKey)
if invoiceCounter == nil {
var scratch [4]byte
byteOrder.PutUint32(scratch[:], invoiceNum)
err := invoiceIndex.Put(numInvoicesKey, scratch[:])
if err != nil {
return err
}
} else {
invoiceNum = byteOrder.Uint32(invoiceCounter)
}
newIndex, err := putInvoice(
invoices, invoiceIndex, payAddrIndex, addIndex,
newInvoice, invoiceNum, paymentHash,
)
if err != nil {
return err
}
invoiceAddIndex = newIndex
return nil
}, func() {
invoiceAddIndex = 0
})
if err != nil {
return 0, err
}
return invoiceAddIndex, err
}
// InvoicesAddedSince can be used by callers to seek into the event time series
// of all the invoices added in the database. The specified sinceAddIndex
// should be the highest add index that the caller knows of. This method will
// return all invoices with an add index greater than the specified
// sinceAddIndex.
//
// NOTE: The index starts from 1, as a result. We enforce that specifying a
// value below the starting index value is a noop.
func (d *DB) InvoicesAddedSince(sinceAddIndex uint64) ([]Invoice, error) {
var newInvoices []Invoice
// If an index of zero was specified, then in order to maintain
// backwards compat, we won't send out any new invoices.
if sinceAddIndex == 0 {
return newInvoices, nil
}
var startIndex [8]byte
byteOrder.PutUint64(startIndex[:], sinceAddIndex)
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return nil
}
addIndex := invoices.NestedReadBucket(addIndexBucket)
if addIndex == nil {
return nil
}
// We'll now run through each entry in the add index starting
// at our starting index. We'll continue until we reach the
// very end of the current key space.
invoiceCursor := addIndex.ReadCursor()
// We'll seek to the starting index, then manually advance the
// cursor in order to skip the entry with the since add index.
invoiceCursor.Seek(startIndex[:])
addSeqNo, invoiceKey := invoiceCursor.Next()
for ; addSeqNo != nil && bytes.Compare(addSeqNo, startIndex[:]) > 0; addSeqNo, invoiceKey = invoiceCursor.Next() {
// For each key found, we'll look up the actual
// invoice, then accumulate it into our return value.
invoice, err := fetchInvoice(invoiceKey, invoices)
if err != nil {
return err
}
newInvoices = append(newInvoices, invoice)
}
return nil
}, func() {
newInvoices = nil
})
if err != nil {
return nil, err
}
return newInvoices, nil
}
// LookupInvoice attempts to look up an invoice according to its 32 byte
// payment hash. If an invoice which can settle the HTLC identified by the
// passed payment hash isn't found, then an error is returned. Otherwise, the
// full invoice is returned. Before setting the incoming HTLC, the values
// SHOULD be checked to ensure the payer meets the agreed upon contractual
// terms of the payment.
func (d *DB) LookupInvoice(ref InvoiceRef) (Invoice, error) {
var invoice Invoice
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
if invoiceIndex == nil {
return ErrNoInvoicesCreated
}
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
setIDIndex := tx.ReadBucket(setIDIndexBucket)
// Retrieve the invoice number for this invoice using
// the provided invoice reference.
invoiceNum, err := fetchInvoiceNumByRef(
invoiceIndex, payAddrIndex, setIDIndex, ref,
)
if err != nil {
return err
}
var setID *SetID
switch {
// If this is a payment address ref, and the blank modified was
// specified, then we'll use the zero set ID to indicate that
// we won't want any HTLCs returned.
case ref.PayAddr() != nil && ref.Modifier() == HtlcSetBlankModifier:
var zeroSetID SetID
setID = &zeroSetID
// If this is a set ID ref, and the htlc set only modified was
// specified, then we'll pass through the specified setID so
// only that will be returned.
case ref.SetID() != nil && ref.Modifier() == HtlcSetOnlyModifier:
setID = (*SetID)(ref.SetID())
}
// An invoice was found, retrieve the remainder of the invoice
// body.
i, err := fetchInvoice(invoiceNum, invoices, setID)
if err != nil {
return err
}
invoice = i
return nil
}, func() {})
if err != nil {
return invoice, err
}
return invoice, nil
}
// fetchInvoiceNumByRef retrieve the invoice number for the provided invoice
// reference. The payment address will be treated as the primary key, falling
// back to the payment hash if nothing is found for the payment address. An
// error is returned if the invoice is not found.
func fetchInvoiceNumByRef(invoiceIndex, payAddrIndex, setIDIndex kvdb.RBucket,
ref InvoiceRef) ([]byte, error) {
// If the set id is present, we only consult the set id index for this
// invoice. This type of query is only used to facilitate user-facing
// requests to lookup, settle or cancel an AMP invoice.
setID := ref.SetID()
if setID != nil {
invoiceNumBySetID := setIDIndex.Get(setID[:])
if invoiceNumBySetID == nil {
return nil, ErrInvoiceNotFound
}
return invoiceNumBySetID, nil
}
payHash := ref.PayHash()
payAddr := ref.PayAddr()
getInvoiceNumByHash := func() []byte {
if payHash != nil {
return invoiceIndex.Get(payHash[:])
}
return nil
}
getInvoiceNumByAddr := func() []byte {
if payAddr != nil {
// Only allow lookups for payment address if it is not a
// blank payment address, which is a special-cased value
// for legacy keysend invoices.
if *payAddr != BlankPayAddr {
return payAddrIndex.Get(payAddr[:])
}
}
return nil
}
invoiceNumByHash := getInvoiceNumByHash()
invoiceNumByAddr := getInvoiceNumByAddr()
switch {
// If payment address and payment hash both reference an existing
// invoice, ensure they reference the _same_ invoice.
case invoiceNumByAddr != nil && invoiceNumByHash != nil:
if !bytes.Equal(invoiceNumByAddr, invoiceNumByHash) {
return nil, ErrInvRefEquivocation
}
return invoiceNumByAddr, nil
// Return invoices by payment addr only.
//
// NOTE: We constrain this lookup to only apply if the invoice ref does
// not contain a payment hash. Legacy and MPP payments depend on the
// payment hash index to enforce that the HTLCs payment hash matches the
// payment hash for the invoice, without this check we would
// inadvertently assume the invoice contains the correct preimage for
// the HTLC, which we only enforce via the lookup by the invoice index.
case invoiceNumByAddr != nil && payHash == nil:
return invoiceNumByAddr, nil
// If we were only able to reference the invoice by hash, return the
// corresponding invoice number. This can happen when no payment address
// was provided, or if it didn't match anything in our records.
case invoiceNumByHash != nil:
return invoiceNumByHash, nil
// Otherwise we don't know of the target invoice.
default:
return nil, ErrInvoiceNotFound
}
}
// ScanInvoices scans through all invoices and calls the passed scanFunc for
// for each invoice with its respective payment hash. Additionally a reset()
// closure is passed which is used to reset/initialize partial results and also
// to signal if the kvdb.View transaction has been retried.
func (d *DB) ScanInvoices(
scanFunc func(lntypes.Hash, *Invoice) error, reset func()) error {
return kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadBucket(invoiceIndexBucket)
if invoiceIndex == nil {
// Mask the error if there's no invoice
// index as that simply means there are no
// invoices added yet to the DB. In this case
// we simply return an empty list.
return nil
}
return invoiceIndex.ForEach(func(k, v []byte) error {
// Skip the special numInvoicesKey as that does not
// point to a valid invoice.
if bytes.Equal(k, numInvoicesKey) {
return nil
}
// Skip sub-buckets.
if v == nil {
return nil
}
invoice, err := fetchInvoice(v, invoices)
if err != nil {
return err
}
var paymentHash lntypes.Hash
copy(paymentHash[:], k)
return scanFunc(paymentHash, &invoice)
})
}, reset)
}
// InvoiceQuery represents a query to the invoice database. The query allows a
// caller to retrieve all invoices starting from a particular add index and
// limit the number of results returned.
type InvoiceQuery struct {
// IndexOffset is the offset within the add indices to start at. This
// can be used to start the response at a particular invoice.
IndexOffset uint64
// NumMaxInvoices is the maximum number of invoices that should be
// starting from the add index.
NumMaxInvoices uint64
// PendingOnly, if set, returns unsettled invoices starting from the
// add index.
PendingOnly bool
// Reversed, if set, indicates that the invoices returned should start
// from the IndexOffset and go backwards.
Reversed bool
// CreationDateStart, if set, filters out all invoices with a creation
// date greater than or euqal to it.
CreationDateStart time.Time
// CreationDateEnd, if set, filters out all invoices with a creation
// date less than or euqal to it.
CreationDateEnd time.Time
}
// InvoiceSlice is the response to a invoice query. It includes the original
// query, the set of invoices that match the query, and an integer which
// represents the offset index of the last item in the set of returned invoices.
// This integer allows callers to resume their query using this offset in the
// event that the query's response exceeds the maximum number of returnable
// invoices.
type InvoiceSlice struct {
InvoiceQuery
// Invoices is the set of invoices that matched the query above.
Invoices []Invoice
// FirstIndexOffset is the index of the first element in the set of
// returned Invoices above. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response.
FirstIndexOffset uint64
// LastIndexOffset is the index of the last element in the set of
// returned Invoices above. Callers can use this to resume their query
// in the event that the slice has too many events to fit into a single
// response.
LastIndexOffset uint64
}
// QueryInvoices allows a caller to query the invoice database for invoices
// within the specified add index range.
func (d *DB) QueryInvoices(q InvoiceQuery) (InvoiceSlice, error) {
var (
resp InvoiceSlice
startDateSet = !q.CreationDateStart.IsZero()
endDateSet = !q.CreationDateEnd.IsZero()
)
err := kvdb.View(d, func(tx kvdb.RTx) error {
// If the bucket wasn't found, then there aren't any invoices
// within the database yet, so we can simply exit.
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
// Get the add index bucket which we will use to iterate through
// our indexed invoices.
invoiceAddIndex := invoices.NestedReadBucket(addIndexBucket)
if invoiceAddIndex == nil {
return ErrNoInvoicesCreated
}
// Create a paginator which reads from our add index bucket with
// the parameters provided by the invoice query.
paginator := newPaginator(
invoiceAddIndex.ReadCursor(), q.Reversed, q.IndexOffset,
q.NumMaxInvoices,
)
// accumulateInvoices looks up an invoice based on the index we
// are given, adds it to our set of invoices if it has the right
// characteristics for our query and returns the number of items
// we have added to our set of invoices.
accumulateInvoices := func(_, indexValue []byte) (bool, error) {
invoice, err := fetchInvoice(indexValue, invoices)
if err != nil {
return false, err
}
// Skip any settled or canceled invoices if the caller
// is only interested in pending ones.
if q.PendingOnly && !invoice.IsPending() {
return false, nil
}
// Skip any invoices that were created before the
// specified time.
if startDateSet && invoice.CreationDate.Before(
q.CreationDateStart,
) {
return false, nil
}
// Skip any invoices that were created after the
// specified time.
if endDateSet && invoice.CreationDate.After(
q.CreationDateEnd,
) {
return false, nil
}
// At this point, we've exhausted the offset, so we'll
// begin collecting invoices found within the range.
resp.Invoices = append(resp.Invoices, invoice)
return true, nil
}
// Query our paginator using accumulateInvoices to build up a
// set of invoices.
if err := paginator.query(accumulateInvoices); err != nil {
return err
}
// If we iterated through the add index in reverse order, then
// we'll need to reverse the slice of invoices to return them in
// forward order.
if q.Reversed {
numInvoices := len(resp.Invoices)
for i := 0; i < numInvoices/2; i++ {
opposite := numInvoices - i - 1
resp.Invoices[i], resp.Invoices[opposite] =
resp.Invoices[opposite], resp.Invoices[i]
}
}
return nil
}, func() {
resp = InvoiceSlice{
InvoiceQuery: q,
}
})
if err != nil && err != ErrNoInvoicesCreated {
return resp, err
}
// Finally, record the indexes of the first and last invoices returned
// so that the caller can resume from this point later on.
if len(resp.Invoices) > 0 {
resp.FirstIndexOffset = resp.Invoices[0].AddIndex
resp.LastIndexOffset = resp.Invoices[len(resp.Invoices)-1].AddIndex
}
return resp, nil
}
// UpdateInvoice attempts to update an invoice corresponding to the passed
// payment hash. If an invoice matching the passed payment hash doesn't exist
// within the database, then the action will fail with a "not found" error.
//
// The update is performed inside the same database transaction that fetches the
// invoice and is therefore atomic. The fields to update are controlled by the
// supplied callback.
func (d *DB) UpdateInvoice(ref InvoiceRef, setIDHint *SetID,
callback InvoiceUpdateCallback) (*Invoice, error) {
var updatedInvoice *Invoice
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices, err := tx.CreateTopLevelBucket(invoiceBucket)
if err != nil {
return err
}
invoiceIndex, err := invoices.CreateBucketIfNotExists(
invoiceIndexBucket,
)
if err != nil {
return err
}
settleIndex, err := invoices.CreateBucketIfNotExists(
settleIndexBucket,
)
if err != nil {
return err
}
payAddrIndex := tx.ReadBucket(payAddrIndexBucket)
setIDIndex := tx.ReadWriteBucket(setIDIndexBucket)
// Retrieve the invoice number for this invoice using the
// provided invoice reference.
invoiceNum, err := fetchInvoiceNumByRef(
invoiceIndex, payAddrIndex, setIDIndex, ref,
)
if err != nil {
return err
}
payHash := ref.PayHash()
updatedInvoice, err = d.updateInvoice(
payHash, setIDHint, invoices, settleIndex, setIDIndex,
invoiceNum, callback,
)
return err
}, func() {
updatedInvoice = nil
})
return updatedInvoice, err
}
// InvoicesSettledSince can be used by callers to catch up any settled invoices
// they missed within the settled invoice time series. We'll return all known
// settled invoice that have a settle index higher than the passed
// sinceSettleIndex.
//
// NOTE: The index starts from 1, as a result. We enforce that specifying a
// value below the starting index value is a noop.
func (d *DB) InvoicesSettledSince(sinceSettleIndex uint64) ([]Invoice, error) {
var settledInvoices []Invoice
// If an index of zero was specified, then in order to maintain
// backwards compat, we won't send out any new invoices.
if sinceSettleIndex == 0 {
return settledInvoices, nil
}
var startIndex [8]byte
byteOrder.PutUint64(startIndex[:], sinceSettleIndex)
err := kvdb.View(d, func(tx kvdb.RTx) error {
invoices := tx.ReadBucket(invoiceBucket)
if invoices == nil {
return nil
}
settleIndex := invoices.NestedReadBucket(settleIndexBucket)
if settleIndex == nil {
return nil
}
// We'll now run through each entry in the add index starting
// at our starting index. We'll continue until we reach the
// very end of the current key space.
invoiceCursor := settleIndex.ReadCursor()
// We'll seek to the starting index, then manually advance the
// cursor in order to skip the entry with the since add index.
invoiceCursor.Seek(startIndex[:])
seqNo, indexValue := invoiceCursor.Next()
for ; seqNo != nil && bytes.Compare(seqNo, startIndex[:]) > 0; seqNo, indexValue = invoiceCursor.Next() {
// Depending on the length of the index value, this may
// or may not be an AMP invoice, so we'll extract the
// invoice value into two components: the invoice num,
// and the setID (may not be there).
var (
invoiceKey [4]byte
setID *SetID
)
valueLen := copy(invoiceKey[:], indexValue)
if len(indexValue) == invoiceSetIDKeyLen {
setID = new(SetID)
copy(setID[:], indexValue[valueLen:])
}
// For each key found, we'll look up the actual
// invoice, then accumulate it into our return value.
invoice, err := fetchInvoice(invoiceKey[:], invoices, setID)
if err != nil {
return err
}
settledInvoices = append(settledInvoices, invoice)
}
return nil
}, func() {
settledInvoices = nil
})
if err != nil {
return nil, err
}
return settledInvoices, nil
}
func putInvoice(invoices, invoiceIndex, payAddrIndex, addIndex kvdb.RwBucket,
i *Invoice, invoiceNum uint32, paymentHash lntypes.Hash) (
uint64, error) {
// Create the invoice key which is just the big-endian representation
// of the invoice number.
var invoiceKey [4]byte
byteOrder.PutUint32(invoiceKey[:], invoiceNum)
// Increment the num invoice counter index so the next invoice bares
// the proper ID.
var scratch [4]byte
invoiceCounter := invoiceNum + 1
byteOrder.PutUint32(scratch[:], invoiceCounter)
if err := invoiceIndex.Put(numInvoicesKey, scratch[:]); err != nil {
return 0, err
}
// Add the payment hash to the invoice index. This will let us quickly
// identify if we can settle an incoming payment, and also to possibly
// allow a single invoice to have multiple payment installations.
err := invoiceIndex.Put(paymentHash[:], invoiceKey[:])
if err != nil {
return 0, err
}
// Add the invoice to the payment address index, but only if the invoice
// has a non-zero payment address. The all-zero payment address is still
// in use by legacy keysend, so we special-case here to avoid
// collisions.
if i.Terms.PaymentAddr != BlankPayAddr {
err = payAddrIndex.Put(i.Terms.PaymentAddr[:], invoiceKey[:])
if err != nil {
return 0, err
}
}
// Next, we'll obtain the next add invoice index (sequence
// number), so we can properly place this invoice within this
// event stream.
nextAddSeqNo, err := addIndex.NextSequence()
if err != nil {
return 0, err
}
// With the next sequence obtained, we'll updating the event series in
// the add index bucket to map this current add counter to the index of
// this new invoice.
var seqNoBytes [8]byte
byteOrder.PutUint64(seqNoBytes[:], nextAddSeqNo)
if err := addIndex.Put(seqNoBytes[:], invoiceKey[:]); err != nil {
return 0, err
}
i.AddIndex = nextAddSeqNo
// Finally, serialize the invoice itself to be written to the disk.
var buf bytes.Buffer
if err := serializeInvoice(&buf, i); err != nil {
return 0, err
}
if err := invoices.Put(invoiceKey[:], buf.Bytes()); err != nil {
return 0, err
}
return nextAddSeqNo, nil
}
// serializeInvoice serializes an invoice to a writer.
//
// Note: this function is in use for a migration. Before making changes that
// would modify the on disk format, make a copy of the original code and store
// it with the migration.
func serializeInvoice(w io.Writer, i *Invoice) error {
creationDateBytes, err := i.CreationDate.MarshalBinary()
if err != nil {
return err
}
settleDateBytes, err := i.SettleDate.MarshalBinary()
if err != nil {
return err
}
var fb bytes.Buffer
err = i.Terms.Features.EncodeBase256(&fb)
if err != nil {
return err
}
featureBytes := fb.Bytes()
preimage := [32]byte(unknownPreimage)
if i.Terms.PaymentPreimage != nil {
preimage = *i.Terms.PaymentPreimage
if preimage == unknownPreimage {
return errors.New("cannot use all-zeroes preimage")
}
}
value := uint64(i.Terms.Value)
cltvDelta := uint32(i.Terms.FinalCltvDelta)
expiry := uint64(i.Terms.Expiry)
amtPaid := uint64(i.AmtPaid)
state := uint8(i.State)
var hodlInvoice uint8
if i.HodlInvoice {
hodlInvoice = 1
}
tlvStream, err := tlv.NewStream(
// Memo and payreq.
tlv.MakePrimitiveRecord(memoType, &i.Memo),
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
// Add/settle metadata.
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
// Terms.
tlv.MakePrimitiveRecord(preimageType, &preimage),
tlv.MakePrimitiveRecord(valueType, &value),
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
tlv.MakePrimitiveRecord(expiryType, &expiry),
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
// Invoice state.
tlv.MakePrimitiveRecord(invStateType, &state),
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &i.AMPState,
i.AMPState.recordSize,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return err
}
var b bytes.Buffer
if err = tlvStream.Encode(&b); err != nil {
return err
}
err = binary.Write(w, byteOrder, uint64(b.Len()))
if err != nil {
return err
}
if _, err = w.Write(b.Bytes()); err != nil {
return err
}
// Only if this is a _non_ AMP invoice do we serialize the HTLCs
// in-line with the rest of the invoice.
ampInvoice := i.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
if ampInvoice {
return nil
}
return serializeHtlcs(w, i.Htlcs)
}
// serializeHtlcs serializes a map containing circuit keys and invoice htlcs to
// a writer.
func serializeHtlcs(w io.Writer, htlcs map[CircuitKey]*InvoiceHTLC) error {
for key, htlc := range htlcs {
// Encode the htlc in a tlv stream.
chanID := key.ChanID.ToUint64()
amt := uint64(htlc.Amt)
mppTotalAmt := uint64(htlc.MppTotalAmt)
acceptTime := putNanoTime(htlc.AcceptTime)
resolveTime := putNanoTime(htlc.ResolveTime)
state := uint8(htlc.State)
var records []tlv.Record
records = append(records,
tlv.MakePrimitiveRecord(chanIDType, &chanID),
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
tlv.MakePrimitiveRecord(amtType, &amt),
tlv.MakePrimitiveRecord(
acceptHeightType, &htlc.AcceptHeight,
),
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
tlv.MakePrimitiveRecord(htlcStateType, &state),
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
)
if htlc.AMP != nil {
setIDRecord := tlv.MakeDynamicRecord(
htlcAMPType, &htlc.AMP.Record,
htlc.AMP.Record.PayloadSize,
record.AMPEncoder, record.AMPDecoder,
)
records = append(records, setIDRecord)
hash32 := [32]byte(htlc.AMP.Hash)
hashRecord := tlv.MakePrimitiveRecord(
htlcHashType, &hash32,
)
records = append(records, hashRecord)
if htlc.AMP.Preimage != nil {
preimage32 := [32]byte(*htlc.AMP.Preimage)
preimageRecord := tlv.MakePrimitiveRecord(
htlcPreimageType, &preimage32,
)
records = append(records, preimageRecord)
}
}
// Convert the custom records to tlv.Record types that are ready
// for serialization.
customRecords := tlv.MapToRecords(htlc.CustomRecords)
// Append the custom records. Their ids are in the experimental
// range and sorted, so there is no need to sort again.
records = append(records, customRecords...)
tlvStream, err := tlv.NewStream(records...)
if err != nil {
return err
}
var b bytes.Buffer
if err := tlvStream.Encode(&b); err != nil {
return err
}
// Write the length of the tlv stream followed by the stream
// bytes.
err = binary.Write(w, byteOrder, uint64(b.Len()))
if err != nil {
return err
}
if _, err := w.Write(b.Bytes()); err != nil {
return err
}
}
return nil
}
// putNanoTime returns the unix nano time for the passed timestamp. A zero-value
// timestamp will be mapped to 0, since calling UnixNano in that case is
// undefined.
func putNanoTime(t time.Time) uint64 {
if t.IsZero() {
return 0
}
return uint64(t.UnixNano())
}
// getNanoTime returns a timestamp for the given number of nano seconds. If zero
// is provided, an zero-value time stamp is returned.
func getNanoTime(ns uint64) time.Time {
if ns == 0 {
return time.Time{}
}
return time.Unix(0, int64(ns))
}
// fetchFilteredAmpInvoices retrieves only a select set of AMP invoices
// identified by the setID value.
func fetchFilteredAmpInvoices(invoiceBucket kvdb.RBucket,
invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) {
htlcs := make(map[CircuitKey]*InvoiceHTLC)
for _, setID := range setIDs {
invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:])
htlcSetBytes := invoiceBucket.Get(invoiceSetIDKey[:])
if htlcSetBytes == nil {
// A set ID was passed in, but we don't have this
// stored yet, meaning that the setID is being added
// for the first time.
return htlcs, ErrInvoiceNotFound
}
htlcSetReader := bytes.NewReader(htlcSetBytes)
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
if err != nil {
return nil, err
}
for key, htlc := range htlcsBySetID {
htlcs[key] = htlc
}
}
return htlcs, nil
}
// forEachAMPInvoice is a helper function that attempts to iterate over each of
// the HTLC sets (based on their set ID) for the given AMP invoice identified
// by its invoiceNum. The callback closure is called for each key within the
// prefix range.
func forEachAMPInvoice(invoiceBucket kvdb.RBucket, invoiceNum []byte,
callback func(key, htlcSet []byte) error) error {
invoiceCursor := invoiceBucket.ReadCursor()
// Seek to the first key that includes the invoice data itself.
invoiceCursor.Seek(invoiceNum)
// Advance to the very first key _after_ the invoice data, as this is
// where we'll encounter our first HTLC (if any are present).
cursorKey, htlcSet := invoiceCursor.Next()
// If at this point, the cursor key doesn't match the invoice num
// prefix, then we know that this HTLC doesn't have any set ID HTLCs
// associated with it.
if !bytes.HasPrefix(cursorKey, invoiceNum) {
return nil
}
// Otherwise continue to iterate until we no longer match the prefix,
// executing the call back at each step.
for ; cursorKey != nil && bytes.HasPrefix(cursorKey, invoiceNum); cursorKey, htlcSet = invoiceCursor.Next() {
err := callback(cursorKey, htlcSet)
if err != nil {
return err
}
}
return nil
}
// fetchAmpSubInvoices attempts to use the invoiceNum as a prefix within the
// AMP bucket to find all the individual HTLCs (by setID) associated with a
// given invoice. If a list of set IDs are specified, then only HTLCs
// associated with that setID will be retrieved.
func fetchAmpSubInvoices(invoiceBucket kvdb.RBucket,
invoiceNum []byte, setIDs ...*SetID) (map[CircuitKey]*InvoiceHTLC, error) {
// If a set of setIDs was specified, then we can skip the cursor and
// just read out exactly what we need.
if len(setIDs) != 0 && setIDs[0] != nil {
return fetchFilteredAmpInvoices(
invoiceBucket, invoiceNum, setIDs...,
)
}
// Otherwise, iterate over all the htlc sets that are prefixed beside
// this invoice in the main invoice bucket.
htlcs := make(map[CircuitKey]*InvoiceHTLC)
err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(key, htlcSet []byte) error {
htlcSetReader := bytes.NewReader(htlcSet)
htlcsBySetID, err := deserializeHtlcs(htlcSetReader)
if err != nil {
return err
}
for key, htlc := range htlcsBySetID {
htlcs[key] = htlc
}
return nil
})
if err != nil {
return nil, err
}
return htlcs, nil
}
// fetchInvoice attempts to read out the relevant state for the invoice as
// specified by the invoice number. If the setID fields are set, then only the
// HTLC information pertaining to those set IDs is returned.
func fetchInvoice(invoiceNum []byte, invoices kvdb.RBucket, setIDs ...*SetID) (Invoice, error) {
invoiceBytes := invoices.Get(invoiceNum)
if invoiceBytes == nil {
return Invoice{}, ErrInvoiceNotFound
}
invoiceReader := bytes.NewReader(invoiceBytes)
invoice, err := deserializeInvoice(invoiceReader)
if err != nil {
return Invoice{}, err
}
// If this is an AMP invoice, then we'll also attempt to read out the
// set of HTLCs that were paid to prior set IDs. However, we'll only do
// this is the invoice didn't already have HTLCs stored in-line.
invoiceIsAMP := invoice.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
switch {
case !invoiceIsAMP:
return invoice, nil
// For AMP invoice that already have HTLCs populated (created before
// recurring invoices), then we don't need to read from the prefix
// keyed section of the bucket.
case invoiceIsAMP && len(invoice.Htlcs) != 0:
return invoice, nil
// If the "zero" setID was specified, then this means that no HTLC data
// should be returned alongside of it.
case invoiceIsAMP && len(setIDs) != 0 && setIDs[0] != nil &&
*setIDs[0] == BlankPayAddr:
return invoice, nil
}
invoice.Htlcs, err = fetchAmpSubInvoices(
invoices, invoiceNum, setIDs...,
)
if err != nil {
return invoice, nil
}
return invoice, nil
}
// fetchInvoiceStateAMP retrieves the state of all the relevant sub-invoice for
// an AMP invoice. This methods only decode the relevant state vs the entire
// invoice.
func fetchInvoiceStateAMP(invoiceNum []byte,
invoices kvdb.RBucket) (AMPInvoiceState, error) {
// Fetch the raw invoice bytes.
invoiceBytes := invoices.Get(invoiceNum)
if invoiceBytes == nil {
return nil, ErrInvoiceNotFound
}
r := bytes.NewReader(invoiceBytes)
var bodyLen int64
err := binary.Read(r, byteOrder, &bodyLen)
if err != nil {
return nil, err
}
// Next, we'll make a new TLV stream that only attempts to decode the
// bytes we actually need.
ampState := make(AMPInvoiceState)
tlvStream, err := tlv.NewStream(
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &ampState, nil,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return nil, err
}
invoiceReader := io.LimitReader(r, bodyLen)
if err = tlvStream.Decode(invoiceReader); err != nil {
return nil, err
}
return ampState, nil
}
func deserializeInvoice(r io.Reader) (Invoice, error) {
var (
preimageBytes [32]byte
value uint64
cltvDelta uint32
expiry uint64
amtPaid uint64
state uint8
hodlInvoice uint8
creationDateBytes []byte
settleDateBytes []byte
featureBytes []byte
)
var i Invoice
i.AMPState = make(AMPInvoiceState)
tlvStream, err := tlv.NewStream(
// Memo and payreq.
tlv.MakePrimitiveRecord(memoType, &i.Memo),
tlv.MakePrimitiveRecord(payReqType, &i.PaymentRequest),
// Add/settle metadata.
tlv.MakePrimitiveRecord(createTimeType, &creationDateBytes),
tlv.MakePrimitiveRecord(settleTimeType, &settleDateBytes),
tlv.MakePrimitiveRecord(addIndexType, &i.AddIndex),
tlv.MakePrimitiveRecord(settleIndexType, &i.SettleIndex),
// Terms.
tlv.MakePrimitiveRecord(preimageType, &preimageBytes),
tlv.MakePrimitiveRecord(valueType, &value),
tlv.MakePrimitiveRecord(cltvDeltaType, &cltvDelta),
tlv.MakePrimitiveRecord(expiryType, &expiry),
tlv.MakePrimitiveRecord(paymentAddrType, &i.Terms.PaymentAddr),
tlv.MakePrimitiveRecord(featuresType, &featureBytes),
// Invoice state.
tlv.MakePrimitiveRecord(invStateType, &state),
tlv.MakePrimitiveRecord(amtPaidType, &amtPaid),
tlv.MakePrimitiveRecord(hodlInvoiceType, &hodlInvoice),
// Invoice AMP state.
tlv.MakeDynamicRecord(
invoiceAmpStateType, &i.AMPState, nil,
ampStateEncoder, ampStateDecoder,
),
)
if err != nil {
return i, err
}
var bodyLen int64
err = binary.Read(r, byteOrder, &bodyLen)
if err != nil {
return i, err
}
lr := io.LimitReader(r, bodyLen)
if err = tlvStream.Decode(lr); err != nil {
return i, err
}
preimage := lntypes.Preimage(preimageBytes)
if preimage != unknownPreimage {
i.Terms.PaymentPreimage = &preimage
}
i.Terms.Value = lnwire.MilliSatoshi(value)
i.Terms.FinalCltvDelta = int32(cltvDelta)
i.Terms.Expiry = time.Duration(expiry)
i.AmtPaid = lnwire.MilliSatoshi(amtPaid)
i.State = ContractState(state)
if hodlInvoice != 0 {
i.HodlInvoice = true
}
err = i.CreationDate.UnmarshalBinary(creationDateBytes)
if err != nil {
return i, err
}
err = i.SettleDate.UnmarshalBinary(settleDateBytes)
if err != nil {
return i, err
}
rawFeatures := lnwire.NewRawFeatureVector()
err = rawFeatures.DecodeBase256(
bytes.NewReader(featureBytes), len(featureBytes),
)
if err != nil {
return i, err
}
i.Terms.Features = lnwire.NewFeatureVector(
rawFeatures, lnwire.Features,
)
i.Htlcs, err = deserializeHtlcs(r)
return i, err
}
func encodeCircuitKeys(w io.Writer, val interface{}, buf *[8]byte) error {
if v, ok := val.(*map[CircuitKey]struct{}); ok {
// We encode the set of circuit keys as a varint length prefix.
// followed by a series of fixed sized uint8 integers.
numKeys := uint64(len(*v))
if err := tlv.WriteVarInt(w, numKeys, buf); err != nil {
return err
}
for key := range *v {
scidInt := key.ChanID.ToUint64()
if err := tlv.EUint64(w, &scidInt, buf); err != nil {
return err
}
if err := tlv.EUint64(w, &key.HtlcID, buf); err != nil {
return err
}
}
return nil
}
return tlv.NewTypeForEncodingErr(val, "*map[CircuitKey]struct{}")
}
func decodeCircuitKeys(r io.Reader, val interface{}, buf *[8]byte, l uint64) error {
if v, ok := val.(*map[CircuitKey]struct{}); ok {
// First, we'll read out the varint that encodes the number of
// circuit keys encoded.
numKeys, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Now that we know how many keys to expect, iterate reading each
// one until we're done.
for i := uint64(0); i < numKeys; i++ {
var (
key CircuitKey
scid uint64
)
if err := tlv.DUint64(r, &scid, buf, 8); err != nil {
return err
}
key.ChanID = lnwire.NewShortChanIDFromInt(scid)
if err := tlv.DUint64(r, &key.HtlcID, buf, 8); err != nil {
return err
}
(*v)[key] = struct{}{}
}
return nil
}
return tlv.NewTypeForDecodingErr(val, "*map[CircuitKey]struct{}", l, l)
}
// ampStateEncoder is a custom TLV encoder for the AMPInvoiceState record.
func ampStateEncoder(w io.Writer, val interface{}, buf *[8]byte) error {
if v, ok := val.(*AMPInvoiceState); ok {
// We'll encode the AMP state as a series of KV pairs on the
// wire with a length prefix.
numRecords := uint64(len(*v))
// First, we'll write out the number of records as a var int.
if err := tlv.WriteVarInt(w, numRecords, buf); err != nil {
return err
}
// With that written out, we'll now encode the entries
// themselves as a sub-TLV record, which includes its _own_
// inner length prefix.
for setID, ampState := range *v {
setID := [32]byte(setID)
ampState := ampState
htlcState := uint8(ampState.State)
settleDateBytes, err := ampState.SettleDate.MarshalBinary()
if err != nil {
return err
}
amtPaid := uint64(ampState.AmtPaid)
var ampStateTlvBytes bytes.Buffer
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(
ampStateSetIDType, &setID,
),
tlv.MakePrimitiveRecord(
ampStateHtlcStateType, &htlcState,
),
tlv.MakePrimitiveRecord(
ampStateSettleIndexType, &ampState.SettleIndex,
),
tlv.MakePrimitiveRecord(
ampStateSettleDateType, &settleDateBytes,
),
tlv.MakeDynamicRecord(
ampStateCircuitKeysType,
&ampState.InvoiceKeys,
func() uint64 {
// The record takes 8 bytes to encode the
// set of circuits, 8 bytes for the scid
// for the key, and 8 bytes for the HTLC
// index.
numKeys := uint64(len(ampState.InvoiceKeys))
return tlv.VarIntSize(numKeys) + (numKeys * 16)
},
encodeCircuitKeys, decodeCircuitKeys,
),
tlv.MakePrimitiveRecord(
ampStateAmtPaidType, &amtPaid,
),
)
if err != nil {
return err
}
if err := tlvStream.Encode(&ampStateTlvBytes); err != nil {
return err
}
// We encode the record with a varint length followed by
// the _raw_ TLV bytes.
tlvLen := uint64(len(ampStateTlvBytes.Bytes()))
if err := tlv.WriteVarInt(w, tlvLen, buf); err != nil {
return err
}
if _, err := w.Write(ampStateTlvBytes.Bytes()); err != nil {
return err
}
}
return nil
}
return tlv.NewTypeForEncodingErr(val, "channeldb.AMPInvoiceState")
}
// ampStateDecoder is a custom TLV decoder for the AMPInvoiceState record.
func ampStateDecoder(r io.Reader, val interface{}, buf *[8]byte, l uint64) error {
if v, ok := val.(*AMPInvoiceState); ok {
// First, we'll decode the varint that encodes how many set IDs
// are encoded within the greater map.
numRecords, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Now that we know how many records we'll need to read, we can
// iterate and read them all out in series.
for i := uint64(0); i < numRecords; i++ {
// Read out the varint that encodes the size of this inner
// TLV record
stateRecordSize, err := tlv.ReadVarInt(r, buf)
if err != nil {
return err
}
// Using this information, we'll create a new limited
// reader that'll return an EOF once the end has been
// reached so the stream stops consuming bytes.
innerTlvReader := io.LimitedReader{
R: r,
N: int64(stateRecordSize),
}
var (
setID [32]byte
htlcState uint8
settleIndex uint64
settleDateBytes []byte
invoiceKeys = make(map[CircuitKey]struct{})
amtPaid uint64
)
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(
ampStateSetIDType, &setID,
),
tlv.MakePrimitiveRecord(
ampStateHtlcStateType, &htlcState,
),
tlv.MakePrimitiveRecord(
ampStateSettleIndexType, &settleIndex,
),
tlv.MakePrimitiveRecord(
ampStateSettleDateType, &settleDateBytes,
),
tlv.MakeDynamicRecord(
ampStateCircuitKeysType,
&invoiceKeys, nil,
encodeCircuitKeys, decodeCircuitKeys,
),
tlv.MakePrimitiveRecord(
ampStateAmtPaidType, &amtPaid,
),
)
if err != nil {
return err
}
if err := tlvStream.Decode(&innerTlvReader); err != nil {
return err
}
var settleDate time.Time
err = settleDate.UnmarshalBinary(settleDateBytes)
if err != nil {
return err
}
(*v)[setID] = InvoiceStateAMP{
State: HtlcState(htlcState),
SettleIndex: settleIndex,
SettleDate: settleDate,
InvoiceKeys: invoiceKeys,
AmtPaid: lnwire.MilliSatoshi(amtPaid),
}
}
return nil
}
return tlv.NewTypeForDecodingErr(
val, "channeldb.AMPInvoiceState", l, l,
)
}
// deserializeHtlcs reads a list of invoice htlcs from a reader and returns it
// as a map.
func deserializeHtlcs(r io.Reader) (map[CircuitKey]*InvoiceHTLC, error) {
htlcs := make(map[CircuitKey]*InvoiceHTLC)
for {
// Read the length of the tlv stream for this htlc.
var streamLen int64
if err := binary.Read(r, byteOrder, &streamLen); err != nil {
if err == io.EOF {
break
}
return nil, err
}
// Limit the reader so that it stops at the end of this htlc's
// stream.
htlcReader := io.LimitReader(r, streamLen)
// Decode the contents into the htlc fields.
var (
htlc InvoiceHTLC
key CircuitKey
chanID uint64
state uint8
acceptTime, resolveTime uint64
amt, mppTotalAmt uint64
amp = &record.AMP{}
hash32 = &[32]byte{}
preimage32 = &[32]byte{}
)
tlvStream, err := tlv.NewStream(
tlv.MakePrimitiveRecord(chanIDType, &chanID),
tlv.MakePrimitiveRecord(htlcIDType, &key.HtlcID),
tlv.MakePrimitiveRecord(amtType, &amt),
tlv.MakePrimitiveRecord(
acceptHeightType, &htlc.AcceptHeight,
),
tlv.MakePrimitiveRecord(acceptTimeType, &acceptTime),
tlv.MakePrimitiveRecord(resolveTimeType, &resolveTime),
tlv.MakePrimitiveRecord(expiryHeightType, &htlc.Expiry),
tlv.MakePrimitiveRecord(htlcStateType, &state),
tlv.MakePrimitiveRecord(mppTotalAmtType, &mppTotalAmt),
tlv.MakeDynamicRecord(
htlcAMPType, amp, amp.PayloadSize,
record.AMPEncoder, record.AMPDecoder,
),
tlv.MakePrimitiveRecord(htlcHashType, hash32),
tlv.MakePrimitiveRecord(htlcPreimageType, preimage32),
)
if err != nil {
return nil, err
}
parsedTypes, err := tlvStream.DecodeWithParsedTypes(htlcReader)
if err != nil {
return nil, err
}
if _, ok := parsedTypes[htlcAMPType]; !ok {
amp = nil
}
var preimage *lntypes.Preimage
if _, ok := parsedTypes[htlcPreimageType]; ok {
pimg := lntypes.Preimage(*preimage32)
preimage = &pimg
}
var hash *lntypes.Hash
if _, ok := parsedTypes[htlcHashType]; ok {
h := lntypes.Hash(*hash32)
hash = &h
}
key.ChanID = lnwire.NewShortChanIDFromInt(chanID)
htlc.AcceptTime = getNanoTime(acceptTime)
htlc.ResolveTime = getNanoTime(resolveTime)
htlc.State = HtlcState(state)
htlc.Amt = lnwire.MilliSatoshi(amt)
htlc.MppTotalAmt = lnwire.MilliSatoshi(mppTotalAmt)
if amp != nil && hash != nil {
htlc.AMP = &InvoiceHtlcAMPData{
Record: *amp,
Hash: *hash,
Preimage: preimage,
}
}
// Reconstruct the custom records fields from the parsed types
// map return from the tlv parser.
htlc.CustomRecords = hop.NewCustomRecords(parsedTypes)
htlcs[key] = &htlc
}
return htlcs, nil
}
// copySlice allocates a new slice and copies the source into it.
func copySlice(src []byte) []byte {
dest := make([]byte, len(src))
copy(dest, src)
return dest
}
// copyInvoice makes a deep copy of the supplied invoice.
func copyInvoice(src *Invoice) (*Invoice, error) {
dest := Invoice{
Memo: copySlice(src.Memo),
PaymentRequest: copySlice(src.PaymentRequest),
CreationDate: src.CreationDate,
SettleDate: src.SettleDate,
Terms: src.Terms,
AddIndex: src.AddIndex,
SettleIndex: src.SettleIndex,
State: src.State,
AmtPaid: src.AmtPaid,
Htlcs: make(
map[CircuitKey]*InvoiceHTLC, len(src.Htlcs),
),
AMPState: make(map[SetID]InvoiceStateAMP),
HodlInvoice: src.HodlInvoice,
}
dest.Terms.Features = src.Terms.Features.Clone()
if src.Terms.PaymentPreimage != nil {
preimage := *src.Terms.PaymentPreimage
dest.Terms.PaymentPreimage = &preimage
}
for k, v := range src.Htlcs {
dest.Htlcs[k] = v.Copy()
}
// Lastly, copy the amp invoice state.
for k, v := range src.AMPState {
ampInvState, err := v.copy()
if err != nil {
return nil, err
}
dest.AMPState[k] = ampInvState
}
return &dest, nil
}
// invoiceSetIDKeyLen is the length of the key that's used to store the
// individual HTLCs prefixed by their ID along side the main invoice within the
// invoiceBytes. We use 4 bytes for the invoice number, and 32 bytes for the
// set ID.
const invoiceSetIDKeyLen = 4 + 32
// makeInvoiceSetIDKey returns the prefix key, based on the set ID and invoice
// number where the HTLCs for this setID will be stored udner.
func makeInvoiceSetIDKey(invoiceNum, setID []byte) [invoiceSetIDKeyLen]byte {
// Construct the prefix key we need to obtain the invoice information:
// invoiceNum || setID.
var invoiceSetIDKey [invoiceSetIDKeyLen]byte
copy(invoiceSetIDKey[:], invoiceNum)
copy(invoiceSetIDKey[len(invoiceNum):], setID)
return invoiceSetIDKey
}
// updateAMPInvoices updates the set of AMP invoices in-place. For AMP, rather
// then continually write the invoices to the end of the invoice value, we
// instead write the invoices into a new key preifx that follows the main
// invoice number. This ensures that we don't need to continually decode a
// potentially massive HTLC set, and also allows us to quickly find the HLTCs
// associated with a particular HTLC set.
func updateAMPInvoices(invoiceBucket kvdb.RwBucket, invoiceNum []byte,
htlcsToUpdate map[SetID]map[CircuitKey]*InvoiceHTLC) error {
for setID, htlcSet := range htlcsToUpdate {
// First write out the set of HTLCs including all the relevant TLV
// values.
var b bytes.Buffer
if err := serializeHtlcs(&b, htlcSet); err != nil {
return err
}
// Next store each HTLC in-line, using a prefix based off the
// invoice number.
invoiceSetIDKey := makeInvoiceSetIDKey(invoiceNum, setID[:])
err := invoiceBucket.Put(invoiceSetIDKey[:], b.Bytes())
if err != nil {
return err
}
}
return nil
}
// updateHtlcsAmp takes an invoice, and a new HTLC to be added (along with its
// set ID), and update sthe internal AMP state of an invoice, and also tallies
// the set of HTLCs to be updated on disk.
func updateHtlcsAmp(invoice *Invoice,
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
setID SetID, circuitKey CircuitKey) {
ampState, ok := invoice.AMPState[setID]
if !ok {
// If an entry for this set ID doesn't already exist, then
// we'll need to create it.
ampState = InvoiceStateAMP{
State: HtlcStateAccepted,
InvoiceKeys: make(map[CircuitKey]struct{}),
}
}
ampState.AmtPaid += htlc.Amt
ampState.InvoiceKeys[circuitKey] = struct{}{}
// Due to the way maps work, we need to read out the value, update it,
// then re-assign it into the map.
invoice.AMPState[setID] = ampState
// Now that we've updated the invoice state, we'll inform the caller of
// the _neitre_ HTLC set they need to write for this new set ID.
if _, ok := updateMap[setID]; !ok {
// If we're just now creating the HTLCs for this set then we'll
// also pull in the existing HTLCs are part of this set, so we
// can write them all to disk together (same value)
updateMap[setID] = invoice.HTLCSet(
(*[32]byte)(&setID), HtlcStateAccepted,
)
}
updateMap[setID][circuitKey] = htlc
}
// cancelHtlcsAmp processes a cancellation of an HTLC that belongs to an AMP
// HTLC set. We'll need to update the meta data in the main invoice, and also
// apply the new update to the update MAP, since all the HTLCs for a given HTLC
// set need to be written in-line with each other.
func cancelHtlcsAmp(invoice *Invoice,
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
circuitKey CircuitKey) {
setID := htlc.AMP.Record.SetID()
// First, we'll update the state of the entire HTLC set to cancelled.
ampState := invoice.AMPState[setID]
ampState.State = HtlcStateCanceled
ampState.InvoiceKeys[circuitKey] = struct{}{}
ampState.AmtPaid -= htlc.Amt
// With the state update,d we'll set the new value so the struct
// changes are propagated.
invoice.AMPState[setID] = ampState
if _, ok := updateMap[setID]; !ok {
// Only HTLCs in the accepted state, can be cancelled, but we
// also want to merge that with HTLCs that may be canceled as
// well since it can be cancelled one by one.
updateMap[setID] = invoice.HTLCSet(&setID, HtlcStateAccepted)
cancelledHtlcs := invoice.HTLCSet(&setID, HtlcStateCanceled)
for htlcKey, htlc := range cancelledHtlcs {
updateMap[setID][htlcKey] = htlc
}
}
// Finally, include the newly cancelled HTLC in the set of HTLCs we
// need to cancel.
updateMap[setID][circuitKey] = htlc
// We'll only decrement the total amount paid if the invoice was
// already in the accepted state.
if invoice.AmtPaid != 0 {
invoice.AmtPaid -= htlc.Amt
}
}
// settleHtlcsAmp processes a new settle operation on an HTLC set for an AMP
// invoice. We'll update some meta data in the main invoice, and also signal
// that this HTLC set needs to be re-written back to disk.
func settleHtlcsAmp(invoice *Invoice,
settledSetIDs map[SetID]struct{},
updateMap map[SetID]map[CircuitKey]*InvoiceHTLC, htlc *InvoiceHTLC,
circuitKey CircuitKey) {
// First, add the set ID to the set that was settled in this invoice
// update. We'll use this later to update the settle index.
setID := htlc.AMP.Record.SetID()
settledSetIDs[setID] = struct{}{}
// Next update the main AMP meta-data to indicate that this HTLC set
// has been fully settled.
ampState := invoice.AMPState[setID]
ampState.State = HtlcStateSettled
ampState.InvoiceKeys[circuitKey] = struct{}{}
invoice.AMPState[setID] = ampState
// Finally, we'll add this to the set of HTLCs that need to be updated.
if _, ok := updateMap[setID]; !ok {
updateMap[setID] = make(map[CircuitKey]*InvoiceHTLC)
}
updateMap[setID][circuitKey] = htlc
}
// updateInvoice fetches the invoice, obtains the update descriptor from the
// callback and applies the updates in a single db transaction.
func (d *DB) updateInvoice(hash *lntypes.Hash, refSetID *SetID, invoices,
settleIndex, setIDIndex kvdb.RwBucket, invoiceNum []byte,
callback InvoiceUpdateCallback) (*Invoice, error) {
// If the set ID is non-nil, then we'll use that to filter out the
// HTLCs for AMP invoice so we don't need to read them all out to
// satisfy the invoice callback below. If it's nil, then we pass in the
// zero set ID which means no HTLCs will be read out.
var invSetID SetID
if refSetID != nil {
invSetID = *refSetID
}
invoice, err := fetchInvoice(invoiceNum, invoices, &invSetID)
if err != nil {
return nil, err
}
// Create deep copy to prevent any accidental modification in the
// callback.
invoiceCopy, err := copyInvoice(&invoice)
if err != nil {
return nil, err
}
// Call the callback and obtain the update descriptor.
update, err := callback(invoiceCopy)
if err != nil {
return &invoice, err
}
// If there is nothing to update, return early.
if update == nil {
return &invoice, nil
}
var (
newState = invoice.State
setID *[32]byte
)
// We can either get the set ID from the main state update (if the
// state is changing), or via the hint passed in returned by the update
// call back.
if update.State != nil {
setID = update.State.SetID
newState = update.State.NewState
} else if update.SetID != nil {
// When we go to cancel HTLCs, there's no new state, but the
// set of HTLCs to be cancelled along with the setID affected
// will be passed in.
setID = (*[32]byte)(update.SetID)
}
now := d.clock.Now()
invoiceIsAMP := invoiceCopy.Terms.Features.HasFeature(
lnwire.AMPOptional,
)
// Process add actions from update descriptor.
htlcsAmpUpdate := make(map[SetID]map[CircuitKey]*InvoiceHTLC)
for key, htlcUpdate := range update.AddHtlcs {
if _, exists := invoice.Htlcs[key]; exists {
return nil, fmt.Errorf("duplicate add of htlc %v", key)
}
// Force caller to supply htlc without custom records in a
// consistent way.
if htlcUpdate.CustomRecords == nil {
return nil, errors.New("nil custom records map")
}
// If a newly added HTLC has an associated set id, use it to
// index this invoice in the set id index. An error is returned
// if we find the index already points to a different invoice.
var setID [32]byte
if htlcUpdate.AMP != nil {
setID = htlcUpdate.AMP.Record.SetID()
setIDInvNum := setIDIndex.Get(setID[:])
if setIDInvNum == nil {
err = setIDIndex.Put(setID[:], invoiceNum)
if err != nil {
return nil, err
}
} else if !bytes.Equal(setIDInvNum, invoiceNum) {
return nil, ErrDuplicateSetID{setID: setID}
}
}
htlc := &InvoiceHTLC{
Amt: htlcUpdate.Amt,
MppTotalAmt: htlcUpdate.MppTotalAmt,
Expiry: htlcUpdate.Expiry,
AcceptHeight: uint32(htlcUpdate.AcceptHeight),
AcceptTime: now,
State: HtlcStateAccepted,
CustomRecords: htlcUpdate.CustomRecords,
AMP: htlcUpdate.AMP.Copy(),
}
invoice.Htlcs[key] = htlc
// Collect the set of new HTLCs so we can write them properly
// below, but only if this is an AMP invoice.
if invoiceIsAMP {
updateHtlcsAmp(
&invoice, htlcsAmpUpdate, htlc, setID, key,
)
}
}
// Process cancel actions from update descriptor.
cancelHtlcs := update.CancelHtlcs
for key, htlc := range invoice.Htlcs {
htlc := htlc
// Check whether this htlc needs to be canceled. If it does,
// update the htlc state to Canceled.
_, cancel := cancelHtlcs[key]
if !cancel {
continue
}
// Consistency check to verify that there is no overlap between
// the add and cancel sets.
if _, added := update.AddHtlcs[key]; added {
return nil, fmt.Errorf("added htlc %v canceled", key)
}
err := cancelSingleHtlc(now, htlc, newState)
if err != nil {
return nil, err
}
// Delete processed cancel action, so that we can check later
// that there are no actions left.
delete(cancelHtlcs, key)
// Tally this into the set of HTLCs that need to be updated on
// disk, but once again, only if this is an AMP invoice.
if invoiceIsAMP {
cancelHtlcsAmp(
&invoice, htlcsAmpUpdate, htlc, key,
)
}
}
// Verify that we didn't get an action for htlcs that are not present on
// the invoice.
if len(cancelHtlcs) > 0 {
return nil, errors.New("cancel action on non-existent htlc(s)")
}
// At this point, the set of accepted HTLCs should be fully
// populated with added HTLCs or removed of canceled ones. Update
// invoice state if the update descriptor indicates an invoice state
// change, which depends on having an accurate view of the accepted
// HTLCs.
if update.State != nil {
newState, err := updateInvoiceState(
&invoice, hash, *update.State,
)
if err != nil {
return nil, err
}
// If this isn't an AMP invoice, then we'll go ahead and update
// the invoice state directly here. For AMP invoices, we
// instead will keep the top-level invoice open, and instead
// update the state of each _htlc set_ instead. However, we'll
// allow the invoice to transition to the cancelled state
// regardless.
if !invoiceIsAMP || *newState == ContractCanceled {
invoice.State = *newState
}
// If this is a non-AMP invoice, then the state can eventually
// go to ContractSettled, so we pass in nil value as part of
// setSettleMetaFields.
if !invoiceIsAMP && update.State.NewState == ContractSettled {
err := setSettleMetaFields(
settleIndex, invoiceNum, &invoice, now, nil,
)
if err != nil {
return nil, err
}
}
}
// The set of HTLC pre-images will only be set if we were actually able
// to reconstruct all the AMP pre-images.
var settleEligibleAMP bool
if update.State != nil {
settleEligibleAMP = len(update.State.HTLCPreimages) != 0
}
// With any invoice level state transitions recorded, we'll now
// finalize the process by updating the state transitions for
// individual HTLCs
var (
settledSetIDs = make(map[SetID]struct{})
amtPaid lnwire.MilliSatoshi
)
for key, htlc := range invoice.Htlcs {
// Set the HTLC preimage for any AMP HTLCs.
if setID != nil && update.State != nil {
preimage, ok := update.State.HTLCPreimages[key]
switch {
// If we don't already have a preimage for this HTLC, we
// can set it now.
case ok && htlc.AMP.Preimage == nil:
htlc.AMP.Preimage = &preimage
// Otherwise, prevent over-writing an existing
// preimage. Ignore the case where the preimage is
// identical.
case ok && *htlc.AMP.Preimage != preimage:
return nil, ErrHTLCPreimageAlreadyExists
}
}
// The invoice state may have changed and this could have
// implications for the states of the individual htlcs. Align
// the htlc state with the current invoice state.
//
// If we have all the pre-images for an AMP invoice, then we'll
// act as if we're able to settle the entire invoice. We need
// to do this since it's possible for us to settle AMP invoices
// while the contract state (on disk) is still in the accept
// state.
htlcContextState := invoice.State
if settleEligibleAMP {
htlcContextState = ContractSettled
}
htlcSettled, err := updateHtlc(
now, htlc, htlcContextState, setID,
)
if err != nil {
return nil, err
}
// If the HTLC has being settled for the first time, and this
// is an AMP invoice, then we'll need to update some additional
// meta data state.
if htlcSettled && invoiceIsAMP {
settleHtlcsAmp(
&invoice, settledSetIDs, htlcsAmpUpdate, htlc, key,
)
}
invoiceStateReady := (htlc.State == HtlcStateAccepted ||
htlc.State == HtlcStateSettled)
if !invoiceIsAMP {
// Update the running amount paid to this invoice. We
// don't include accepted htlcs when the invoice is
// still open.
if invoice.State != ContractOpen && invoiceStateReady {
amtPaid += htlc.Amt
}
} else {
// For AMP invoices, since we won't always be reading
// out the total invoice set each time, we'll instead
// accumulate newly added invoices to the total amount
// paid.
if _, ok := update.AddHtlcs[key]; !ok {
continue
}
// Update the running amount paid to this invoice. AMP
// invoices never go to the settled state, so if it's
// open, then we tally the HTLC.
if invoice.State == ContractOpen && invoiceStateReady {
amtPaid += htlc.Amt
}
}
}
// For non-AMP invoices we recalculate the amount paid from scratch
// each time, while for AMP invoices, we'll accumulate only based on
// newly added HTLCs.
if !invoiceIsAMP {
invoice.AmtPaid = amtPaid
} else {
invoice.AmtPaid += amtPaid
}
// As we don't update the settle index above for AMP invoices, we'll do
// it here for each sub-AMP invoice that was settled.
for settledSetID := range settledSetIDs {
settledSetID := settledSetID
err := setSettleMetaFields(
settleIndex, invoiceNum, &invoice, now, &settledSetID,
)
if err != nil {
return nil, err
}
}
// Reserialize and update invoice.
var buf bytes.Buffer
if err := serializeInvoice(&buf, &invoice); err != nil {
return nil, err
}
if err := invoices.Put(invoiceNum[:], buf.Bytes()); err != nil {
return nil, err
}
// If this is an AMP invoice, then we'll actually store the rest of the
// HTLCs in-line with the invoice, using the invoice ID as a prefix,
// and the AMP key as a suffix: invoiceNum || setID.
if invoiceIsAMP {
err := updateAMPInvoices(invoices, invoiceNum, htlcsAmpUpdate)
if err != nil {
return nil, err
}
}
return &invoice, nil
}
// updateInvoiceState validates and processes an invoice state update. The new
// state to transition to is returned, so the caller is able to select exactly
// how the invoice state is updated.
func updateInvoiceState(invoice *Invoice, hash *lntypes.Hash,
update InvoiceStateUpdateDesc) (*ContractState, error) {
// Returning to open is never allowed from any state.
if update.NewState == ContractOpen {
return nil, ErrInvoiceCannotOpen
}
switch invoice.State {
// Once a contract is accepted, we can only transition to settled or
// canceled. Forbid transitioning back into this state. Otherwise this
// state is identical to ContractOpen, so we fallthrough to apply the
// same checks that we apply to open invoices.
case ContractAccepted:
if update.NewState == ContractAccepted {
return nil, ErrInvoiceCannotAccept
}
fallthrough
// If a contract is open, permit a state transition to accepted, settled
// or canceled. The only restriction is on transitioning to settled
// where we ensure the preimage is valid.
case ContractOpen:
if update.NewState == ContractCanceled {
return &update.NewState, nil
}
// Sanity check that the user isn't trying to settle or accept a
// non-existent HTLC set.
if len(invoice.HTLCSet(update.SetID, HtlcStateAccepted)) == 0 {
return nil, ErrEmptyHTLCSet
}
// For AMP invoices, there are no invoice-level preimage checks.
// However, we still sanity check that we aren't trying to
// settle an AMP invoice with a preimage.
if update.SetID != nil {
if update.Preimage != nil {
return nil, errors.New("AMP set cannot have " +
"preimage")
}
return &update.NewState, nil
}
switch {
// If an invoice-level preimage was supplied, but the InvoiceRef
// doesn't specify a hash (e.g. AMP invoices) we fail.
case update.Preimage != nil && hash == nil:
return nil, ErrUnexpectedInvoicePreimage
// Validate the supplied preimage for non-AMP invoices.
case update.Preimage != nil:
if update.Preimage.Hash() != *hash {
return nil, ErrInvoicePreimageMismatch
}
invoice.Terms.PaymentPreimage = update.Preimage
// Permit non-AMP invoices to be accepted without knowing the
// preimage. When trying to settle we'll have to pass through
// the above check in order to not hit the one below.
case update.NewState == ContractAccepted:
// Fail if we still don't have a preimage when transitioning to
// settle the non-AMP invoice.
case update.NewState == ContractSettled &&
invoice.Terms.PaymentPreimage == nil:
return nil, errors.New("unknown preimage")
}
return &update.NewState, nil
// Once settled, we are in a terminal state.
case ContractSettled:
return nil, ErrInvoiceAlreadySettled
// Once canceled, we are in a terminal state.
case ContractCanceled:
return nil, ErrInvoiceAlreadyCanceled
default:
return nil, errors.New("unknown state transition")
}
}
// cancelSingleHtlc validates cancellation of a single htlc and update its state.
func cancelSingleHtlc(resolveTime time.Time, htlc *InvoiceHTLC,
invState ContractState) error {
// It is only possible to cancel individual htlcs on an open invoice.
if invState != ContractOpen {
return fmt.Errorf("htlc canceled on invoice in "+
"state %v", invState)
}
// It is only possible if the htlc is still pending.
if htlc.State != HtlcStateAccepted {
return fmt.Errorf("htlc canceled in state %v",
htlc.State)
}
htlc.State = HtlcStateCanceled
htlc.ResolveTime = resolveTime
return nil
}
// updateHtlc aligns the state of an htlc with the given invoice state. A
// boolean is returned if the HTLC was settled.
func updateHtlc(resolveTime time.Time, htlc *InvoiceHTLC,
invState ContractState, setID *[32]byte) (bool, error) {
trySettle := func(persist bool) (bool, error) {
if htlc.State != HtlcStateAccepted {
return false, nil
}
// Settle the HTLC if it matches the settled set id. If
// there're other HTLCs with distinct setIDs, then we'll leave
// them, as they may eventually be settled as we permit
// multiple settles to a single pay_addr for AMP.
var htlcState HtlcState
if htlc.IsInHTLCSet(setID) {
// Non-AMP HTLCs can be settled immediately since we
// already know the preimage is valid due to checks at
// the invoice level. For AMP HTLCs, verify that the
// per-HTLC preimage-hash pair is valid.
switch {
// Non-AMP HTLCs can be settle immediately since we
// already know the preimage is valid due to checks at
// the invoice level.
case setID == nil:
// At this point, the setID is non-nil, meaning this is
// an AMP HTLC. We know that htlc.AMP cannot be nil,
// otherwise IsInHTLCSet would have returned false.
//
// Fail if an accepted AMP HTLC has no preimage.
case htlc.AMP.Preimage == nil:
return false, ErrHTLCPreimageMissing
// Fail if the accepted AMP HTLC has an invalid
// preimage.
case !htlc.AMP.Preimage.Matches(htlc.AMP.Hash):
return false, ErrHTLCPreimageMismatch
}
htlcState = HtlcStateSettled
}
// Only persist the changes if the invoice is moving to the
// settled state, and we're actually updating the state to
// settled.
if persist && htlcState == HtlcStateSettled {
htlc.State = htlcState
htlc.ResolveTime = resolveTime
}
return persist && htlcState == HtlcStateSettled, nil
}
if invState == ContractSettled {
// Check that we can settle the HTLCs. For legacy and MPP HTLCs
// this will be a NOP, but for AMP HTLCs this asserts that we
// have a valid hash/preimage pair. Passing true permits the
// method to update the HTLC to HtlcStateSettled.
return trySettle(true)
}
// We should never find a settled HTLC on an invoice that isn't in
// ContractSettled.
if htlc.State == HtlcStateSettled {
return false, ErrHTLCAlreadySettled
}
switch invState {
case ContractCanceled:
if htlc.State == HtlcStateAccepted {
htlc.State = HtlcStateCanceled
htlc.ResolveTime = resolveTime
}
return false, nil
// TODO(roasbeef): never fully passed thru now?
case ContractAccepted:
// Check that we can settle the HTLCs. For legacy and MPP HTLCs
// this will be a NOP, but for AMP HTLCs this asserts that we
// have a valid hash/preimage pair. Passing false prevents the
// method from putting the HTLC in HtlcStateSettled, leaving it
// in HtlcStateAccepted.
return trySettle(false)
case ContractOpen:
return false, nil
default:
return false, errors.New("unknown state transition")
}
}
// setSettleMetaFields updates the metadata associated with settlement of an
// invoice. If a non-nil setID is passed in, then the value will be append to
// the invoice number as well, in order to allow us to detect repeated payments
// to the same AMP invoices "across time".
func setSettleMetaFields(settleIndex kvdb.RwBucket, invoiceNum []byte,
invoice *Invoice, now time.Time, setID *SetID) error {
// Now that we know the invoice hasn't already been settled, we'll
// update the settle index so we can place this settle event in the
// proper location within our time series.
nextSettleSeqNo, err := settleIndex.NextSequence()
if err != nil {
return err
}
// Make a new byte array on the stack that can potentially store the 4
// byte invoice number along w/ the 32 byte set ID. We capture valueLen
// here which is the number of bytes copied so we can only store the 4
// bytes if this is a non-AMP invoice.
var indexKey [invoiceSetIDKeyLen]byte
valueLen := copy(indexKey[:], invoiceNum)
if setID != nil {
valueLen += copy(indexKey[valueLen:], setID[:])
}
var seqNoBytes [8]byte
byteOrder.PutUint64(seqNoBytes[:], nextSettleSeqNo)
if err := settleIndex.Put(seqNoBytes[:], indexKey[:valueLen]); err != nil {
return err
}
// If the setID is nil, then this means that this is a non-AMP settle,
// so we'll update the invoice settle index directly.
if setID == nil {
invoice.SettleDate = now
invoice.SettleIndex = nextSettleSeqNo
} else {
// If the set ID isn't blank, we'll update the AMP state map
// which tracks when each of the setIDs associated with a given
// AMP invoice are settled.
ampState := invoice.AMPState[*setID]
ampState.SettleDate = now
ampState.SettleIndex = nextSettleSeqNo
invoice.AMPState[*setID] = ampState
}
return nil
}
// delAMPInvoices attempts to delete all the "sub" invoices associated with a
// greater AMP invoices. We do this by deleting the set of keys that share the
// invoice number as a prefix.
func delAMPInvoices(invoiceNum []byte, invoiceBucket kvdb.RwBucket) error {
// Since it isn't safe to delete using an active cursor, we'll use the
// cursor simply to collect the set of keys we need to delete, _then_
// delete them in another pass.
var keysToDel [][]byte
err := forEachAMPInvoice(invoiceBucket, invoiceNum, func(cursorKey, v []byte) error {
keysToDel = append(keysToDel, cursorKey)
return nil
})
if err != nil {
return err
}
// In this next phase, we'll then delete all the relevant invoices.
for _, keyToDel := range keysToDel {
if err := invoiceBucket.Delete(keyToDel); err != nil {
return err
}
}
return nil
}
// delAMPSettleIndex removes all the entries in the settle index associated
// with a given AMP invoice.
func delAMPSettleIndex(invoiceNum []byte, invoices, settleIndex kvdb.RwBucket) error {
// First, we need to grab the AMP invoice state to see if there's
// anything that we even need to delete.
ampState, err := fetchInvoiceStateAMP(invoiceNum, invoices)
if err != nil {
return err
}
// If there's no AMP state at all (non-AMP invoice), then we can return early.
if len(ampState) == 0 {
return nil
}
// Otherwise, we'll need to iterate and delete each settle index within
// the set of returned entries.
var settleIndexKey [8]byte
for _, subState := range ampState {
byteOrder.PutUint64(
settleIndexKey[:], subState.SettleIndex,
)
if err := settleIndex.Delete(settleIndexKey[:]); err != nil {
return err
}
}
return nil
}
// InvoiceDeleteRef holds a reference to an invoice to be deleted.
type InvoiceDeleteRef struct {
// PayHash is the payment hash of the target invoice. All invoices are
// currently indexed by payment hash.
PayHash lntypes.Hash
// PayAddr is the payment addr of the target invoice. Newer invoices
// (0.11 and up) are indexed by payment address in addition to payment
// hash, but pre 0.8 invoices do not have one at all.
PayAddr *[32]byte
// AddIndex is the add index of the invoice.
AddIndex uint64
// SettleIndex is the settle index of the invoice.
SettleIndex uint64
}
// DeleteInvoice attempts to delete the passed invoices from the database in
// one transaction. The passed delete references hold all keys required to
// delete the invoices without also needing to deserialze them.
func (d *DB) DeleteInvoice(invoicesToDelete []InvoiceDeleteRef) error {
err := kvdb.Update(d, func(tx kvdb.RwTx) error {
invoices := tx.ReadWriteBucket(invoiceBucket)
if invoices == nil {
return ErrNoInvoicesCreated
}
invoiceIndex := invoices.NestedReadWriteBucket(
invoiceIndexBucket,
)
if invoiceIndex == nil {
return ErrNoInvoicesCreated
}
invoiceAddIndex := invoices.NestedReadWriteBucket(
addIndexBucket,
)
if invoiceAddIndex == nil {
return ErrNoInvoicesCreated
}
// settleIndex can be nil, as the bucket is created lazily
// when the first invoice is settled.
settleIndex := invoices.NestedReadWriteBucket(settleIndexBucket)
payAddrIndex := tx.ReadWriteBucket(payAddrIndexBucket)
for _, ref := range invoicesToDelete {
// Fetch the invoice key for using it to check for
// consistency and also to delete from the invoice index.
invoiceKey := invoiceIndex.Get(ref.PayHash[:])
if invoiceKey == nil {
return ErrInvoiceNotFound
}
err := invoiceIndex.Delete(ref.PayHash[:])
if err != nil {
return err
}
// Delete payment address index reference if there's a
// valid payment address passed.
if ref.PayAddr != nil {
// To ensure consistency check that the already
// fetched invoice key matches the one in the
// payment address index.
key := payAddrIndex.Get(ref.PayAddr[:])
if bytes.Equal(key, invoiceKey) {
// Delete from the payment address index.
// Note that since the payment address
// index has been introduced with an
// empty migration it may be possible
// that the index doesn't have an entry
// for this invoice.
// ref: https://github.com/lightningnetwork/lnd/pull/4285/commits/cbf71b5452fa1d3036a43309e490787c5f7f08dc#r426368127
if err := payAddrIndex.Delete(
ref.PayAddr[:],
); err != nil {
return err
}
}
}
var addIndexKey [8]byte
byteOrder.PutUint64(addIndexKey[:], ref.AddIndex)
// To ensure consistency check that the key stored in
// the add index also matches the previously fetched
// invoice key.
key := invoiceAddIndex.Get(addIndexKey[:])
if !bytes.Equal(key, invoiceKey) {
return fmt.Errorf("unknown invoice " +
"in add index")
}
// Remove from the add index.
err = invoiceAddIndex.Delete(addIndexKey[:])
if err != nil {
return err
}
// Remove from the settle index if available and
// if the invoice is settled.
if settleIndex != nil && ref.SettleIndex > 0 {
var settleIndexKey [8]byte
byteOrder.PutUint64(
settleIndexKey[:], ref.SettleIndex,
)
// To ensure consistency check that the already
// fetched invoice key matches the one in the
// settle index
key := settleIndex.Get(settleIndexKey[:])
if !bytes.Equal(key, invoiceKey) {
return fmt.Errorf("unknown invoice " +
"in settle index")
}
err = settleIndex.Delete(settleIndexKey[:])
if err != nil {
return err
}
}
// In addition to deleting the main invoice state, if
// this is an AMP invoice, then we'll also need to
// delete the set HTLC set stored as a key prefix. For
// non-AMP invoices, this'll be a noop.
err = delAMPSettleIndex(
invoiceKey, invoices, settleIndex,
)
if err != nil {
return err
}
err = delAMPInvoices(invoiceKey, invoices)
if err != nil {
return err
}
// Finally remove the serialized invoice from the
// invoice bucket.
err = invoices.Delete(invoiceKey)
if err != nil {
return err
}
}
return nil
}, func() {})
return err
}