lnd/contractcourt/htlc_success_resolver.go
yyforyongyu 49cfb91af1
contractcourt: make sure sweep happens immediately on startup
This commit makes sure the time-sensitive outputs are swept immediately
during startup.
2024-04-19 21:33:39 +08:00

734 lines
23 KiB
Go

package contractcourt
import (
"encoding/binary"
"io"
"sync"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/davecgh/go-spew/spew"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/labels"
"github.com/lightningnetwork/lnd/lnutils"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/sweep"
)
// htlcSuccessResolver is a resolver that's capable of sweeping an incoming
// HTLC output on-chain. If this is the remote party's commitment, we'll sweep
// it directly from the commitment output *immediately*. If this is our
// commitment, we'll first broadcast the success transaction, then send it to
// the incubator for sweeping. That's it, no need to send any clean up
// messages.
//
// TODO(roasbeef): don't need to broadcast?
type htlcSuccessResolver struct {
// htlcResolution is the incoming HTLC resolution for this HTLC. It
// contains everything we need to properly resolve this HTLC.
htlcResolution lnwallet.IncomingHtlcResolution
// outputIncubating returns true if we've sent the output to the output
// incubator (utxo nursery). In case the htlcResolution has non-nil
// SignDetails, it means we will let the Sweeper handle broadcasting
// the secondd-level transaction, and sweeping its output. In this case
// we let this field indicate whether we need to broadcast the
// second-level tx (false) or if it has confirmed and we must sweep the
// second-level output (true).
outputIncubating bool
// resolved reflects if the contract has been fully resolved or not.
resolved bool
// broadcastHeight is the height that the original contract was
// broadcast to the main-chain at. We'll use this value to bound any
// historical queries to the chain for spends/confirmations.
broadcastHeight uint32
// htlc contains information on the htlc that we are resolving on-chain.
htlc channeldb.HTLC
// currentReport stores the current state of the resolver for reporting
// over the rpc interface. This should only be reported in case we have
// a non-nil SignDetails on the htlcResolution, otherwise the nursery
// will produce reports.
currentReport ContractReport
// reportLock prevents concurrent access to the resolver report.
reportLock sync.Mutex
contractResolverKit
htlcLeaseResolver
}
// newSuccessResolver instanties a new htlc success resolver.
func newSuccessResolver(res lnwallet.IncomingHtlcResolution,
broadcastHeight uint32, htlc channeldb.HTLC,
resCfg ResolverConfig) *htlcSuccessResolver {
h := &htlcSuccessResolver{
contractResolverKit: *newContractResolverKit(resCfg),
htlcResolution: res,
broadcastHeight: broadcastHeight,
htlc: htlc,
}
h.initReport()
return h
}
// ResolverKey returns an identifier which should be globally unique for this
// particular resolver within the chain the original contract resides within.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcSuccessResolver) ResolverKey() []byte {
// The primary key for this resolver will be the outpoint of the HTLC
// on the commitment transaction itself. If this is our commitment,
// then the output can be found within the signed success tx,
// otherwise, it's just the ClaimOutpoint.
var op wire.OutPoint
if h.htlcResolution.SignedSuccessTx != nil {
op = h.htlcResolution.SignedSuccessTx.TxIn[0].PreviousOutPoint
} else {
op = h.htlcResolution.ClaimOutpoint
}
key := newResolverID(op)
return key[:]
}
// Resolve attempts to resolve an unresolved incoming HTLC that we know the
// preimage to. If the HTLC is on the commitment of the remote party, then we'll
// simply sweep it directly. Otherwise, we'll hand this off to the utxo nursery
// to do its duty. There is no need to make a call to the invoice registry
// anymore. Every HTLC has already passed through the incoming contest resolver
// and in there the invoice was already marked as settled.
//
// TODO(roasbeef): create multi to batch
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcSuccessResolver) Resolve(
immediate bool) (ContractResolver, error) {
// If we're already resolved, then we can exit early.
if h.resolved {
return nil, nil
}
// If we don't have a success transaction, then this means that this is
// an output on the remote party's commitment transaction.
if h.htlcResolution.SignedSuccessTx == nil {
return h.resolveRemoteCommitOutput(immediate)
}
// Otherwise this an output on our own commitment, and we must start by
// broadcasting the second-level success transaction.
secondLevelOutpoint, err := h.broadcastSuccessTx(immediate)
if err != nil {
return nil, err
}
// To wrap this up, we'll wait until the second-level transaction has
// been spent, then fully resolve the contract.
log.Infof("%T(%x): waiting for second-level HTLC output to be spent "+
"after csv_delay=%v", h, h.htlc.RHash[:], h.htlcResolution.CsvDelay)
spend, err := waitForSpend(
secondLevelOutpoint,
h.htlcResolution.SweepSignDesc.Output.PkScript,
h.broadcastHeight, h.Notifier, h.quit,
)
if err != nil {
return nil, err
}
h.reportLock.Lock()
h.currentReport.RecoveredBalance = h.currentReport.LimboBalance
h.currentReport.LimboBalance = 0
h.reportLock.Unlock()
h.resolved = true
return nil, h.checkpointClaim(
spend.SpenderTxHash, channeldb.ResolverOutcomeClaimed,
)
}
// broadcastSuccessTx handles an HTLC output on our local commitment by
// broadcasting the second-level success transaction. It returns the ultimate
// outpoint of the second-level tx, that we must wait to be spent for the
// resolver to be fully resolved.
func (h *htlcSuccessResolver) broadcastSuccessTx(
immediate bool) (*wire.OutPoint, error) {
// If we have non-nil SignDetails, this means that have a 2nd level
// HTLC transaction that is signed using sighash SINGLE|ANYONECANPAY
// (the case for anchor type channels). In this case we can re-sign it
// and attach fees at will. We let the sweeper handle this job. We use
// the checkpointed outputIncubating field to determine if we already
// swept the HTLC output into the second level transaction.
if h.htlcResolution.SignDetails != nil {
return h.broadcastReSignedSuccessTx(immediate)
}
// Otherwise we'll publish the second-level transaction directly and
// offer the resolution to the nursery to handle.
log.Infof("%T(%x): broadcasting second-layer transition tx: %v",
h, h.htlc.RHash[:], spew.Sdump(h.htlcResolution.SignedSuccessTx))
// We'll now broadcast the second layer transaction so we can kick off
// the claiming process.
//
// TODO(roasbeef): after changing sighashes send to tx bundler
label := labels.MakeLabel(
labels.LabelTypeChannelClose, &h.ShortChanID,
)
err := h.PublishTx(h.htlcResolution.SignedSuccessTx, label)
if err != nil {
return nil, err
}
// Otherwise, this is an output on our commitment transaction. In this
// case, we'll send it to the incubator, but only if we haven't already
// done so.
if !h.outputIncubating {
log.Infof("%T(%x): incubating incoming htlc output",
h, h.htlc.RHash[:])
err := h.IncubateOutputs(
h.ChanPoint, fn.None[lnwallet.OutgoingHtlcResolution](),
fn.Some(h.htlcResolution),
h.broadcastHeight, fn.Some(int32(h.htlc.RefundTimeout)),
)
if err != nil {
return nil, err
}
h.outputIncubating = true
if err := h.Checkpoint(h); err != nil {
log.Errorf("unable to Checkpoint: %v", err)
return nil, err
}
}
return &h.htlcResolution.ClaimOutpoint, nil
}
// broadcastReSignedSuccessTx handles the case where we have non-nil
// SignDetails, and offers the second level transaction to the Sweeper, that
// will re-sign it and attach fees at will.
//
//nolint:funlen
func (h *htlcSuccessResolver) broadcastReSignedSuccessTx(immediate bool) (
*wire.OutPoint, error) {
// Keep track of the tx spending the HTLC output on the commitment, as
// this will be the confirmed second-level tx we'll ultimately sweep.
var commitSpend *chainntnfs.SpendDetail
// We will have to let the sweeper re-sign the success tx and wait for
// it to confirm, if we haven't already.
isTaproot := txscript.IsPayToTaproot(
h.htlcResolution.SweepSignDesc.Output.PkScript,
)
if !h.outputIncubating {
var secondLevelInput input.HtlcSecondLevelAnchorInput
if isTaproot {
//nolint:lll
secondLevelInput = input.MakeHtlcSecondLevelSuccessTaprootInput(
h.htlcResolution.SignedSuccessTx,
h.htlcResolution.SignDetails, h.htlcResolution.Preimage,
h.broadcastHeight,
)
} else {
//nolint:lll
secondLevelInput = input.MakeHtlcSecondLevelSuccessAnchorInput(
h.htlcResolution.SignedSuccessTx,
h.htlcResolution.SignDetails, h.htlcResolution.Preimage,
h.broadcastHeight,
)
}
// Calculate the budget for this sweep.
value := btcutil.Amount(
secondLevelInput.SignDesc().Output.Value,
)
budget := calculateBudget(
value, h.Budget.DeadlineHTLCRatio,
h.Budget.DeadlineHTLC,
)
// The deadline would be the CLTV in this HTLC output. If we
// are the initiator of this force close, with the default
// `IncomingBroadcastDelta`, it means we have 10 blocks left
// when going onchain. Given we need to mine one block to
// confirm the force close tx, and one more block to trigger
// the sweep, we have 8 blocks left to sweep the HTLC.
deadline := fn.Some(int32(h.htlc.RefundTimeout))
log.Infof("%T(%x): offering second-level HTLC success tx to "+
"sweeper with deadline=%v, budget=%v", h,
h.htlc.RHash[:], h.htlc.RefundTimeout, budget)
// We'll now offer the second-level transaction to the sweeper.
_, err := h.Sweeper.SweepInput(
&secondLevelInput,
sweep.Params{
Budget: budget,
DeadlineHeight: deadline,
Immediate: immediate,
},
)
if err != nil {
return nil, err
}
log.Infof("%T(%x): waiting for second-level HTLC success "+
"transaction to confirm", h, h.htlc.RHash[:])
// Wait for the second level transaction to confirm.
commitSpend, err = waitForSpend(
&h.htlcResolution.SignedSuccessTx.TxIn[0].PreviousOutPoint,
h.htlcResolution.SignDetails.SignDesc.Output.PkScript,
h.broadcastHeight, h.Notifier, h.quit,
)
if err != nil {
return nil, err
}
// Now that the second-level transaction has confirmed, we
// checkpoint the state so we'll go to the next stage in case
// of restarts.
h.outputIncubating = true
if err := h.Checkpoint(h); err != nil {
log.Errorf("unable to Checkpoint: %v", err)
return nil, err
}
log.Infof("%T(%x): second-level HTLC success transaction "+
"confirmed!", h, h.htlc.RHash[:])
}
// If we ended up here after a restart, we must again get the
// spend notification.
if commitSpend == nil {
var err error
commitSpend, err = waitForSpend(
&h.htlcResolution.SignedSuccessTx.TxIn[0].PreviousOutPoint,
h.htlcResolution.SignDetails.SignDesc.Output.PkScript,
h.broadcastHeight, h.Notifier, h.quit,
)
if err != nil {
return nil, err
}
}
// The HTLC success tx has a CSV lock that we must wait for, and if
// this is a lease enforced channel and we're the imitator, we may need
// to wait for longer.
waitHeight := h.deriveWaitHeight(
h.htlcResolution.CsvDelay, commitSpend,
)
// Now that the sweeper has broadcasted the second-level transaction,
// it has confirmed, and we have checkpointed our state, we'll sweep
// the second level output. We report the resolver has moved the next
// stage.
h.reportLock.Lock()
h.currentReport.Stage = 2
h.currentReport.MaturityHeight = waitHeight
h.reportLock.Unlock()
if h.hasCLTV() {
log.Infof("%T(%x): waiting for CSV and CLTV lock to "+
"expire at height %v", h, h.htlc.RHash[:],
waitHeight)
} else {
log.Infof("%T(%x): waiting for CSV lock to expire at "+
"height %v", h, h.htlc.RHash[:], waitHeight)
}
// Deduct one block so this input is offered to the sweeper one block
// earlier since the sweeper will wait for one block to trigger the
// sweeping.
//
// TODO(yy): this is done so the outputs can be aggregated
// properly. Suppose CSV locks of five 2nd-level outputs all
// expire at height 840000, there is a race in block digestion
// between contractcourt and sweeper:
// - G1: block 840000 received in contractcourt, it now offers
// the outputs to the sweeper.
// - G2: block 840000 received in sweeper, it now starts to
// sweep the received outputs - there's no guarantee all
// fives have been received.
// To solve this, we either offer the outputs earlier, or
// implement `blockbeat`, and force contractcourt and sweeper
// to consume each block sequentially.
waitHeight--
// TODO(yy): let sweeper handles the wait?
err := waitForHeight(waitHeight, h.Notifier, h.quit)
if err != nil {
return nil, err
}
// We'll use this input index to determine the second-level output
// index on the transaction, as the signatures requires the indexes to
// be the same. We don't look for the second-level output script
// directly, as there might be more than one HTLC output to the same
// pkScript.
op := &wire.OutPoint{
Hash: *commitSpend.SpenderTxHash,
Index: commitSpend.SpenderInputIndex,
}
// Let the sweeper sweep the second-level output now that the
// CSV/CLTV locks have expired.
var witType input.StandardWitnessType
if isTaproot {
witType = input.TaprootHtlcAcceptedSuccessSecondLevel
} else {
witType = input.HtlcAcceptedSuccessSecondLevel
}
inp := h.makeSweepInput(
op, witType,
input.LeaseHtlcAcceptedSuccessSecondLevel,
&h.htlcResolution.SweepSignDesc,
h.htlcResolution.CsvDelay, uint32(commitSpend.SpendingHeight),
h.htlc.RHash,
)
// Calculate the budget for this sweep.
budget := calculateBudget(
btcutil.Amount(inp.SignDesc().Output.Value),
h.Budget.NoDeadlineHTLCRatio,
h.Budget.NoDeadlineHTLC,
)
log.Infof("%T(%x): offering second-level success tx output to sweeper "+
"with no deadline and budget=%v at height=%v", h,
h.htlc.RHash[:], budget, waitHeight)
// TODO(roasbeef): need to update above for leased types
_, err = h.Sweeper.SweepInput(
inp,
sweep.Params{
Budget: budget,
// For second level success tx, there's no rush to get
// it confirmed, so we use a nil deadline.
DeadlineHeight: fn.None[int32](),
},
)
if err != nil {
return nil, err
}
// Will return this outpoint, when this is spent the resolver is fully
// resolved.
return op, nil
}
// resolveRemoteCommitOutput handles sweeping an HTLC output on the remote
// commitment with the preimage. In this case we can sweep the output directly,
// and don't have to broadcast a second-level transaction.
func (h *htlcSuccessResolver) resolveRemoteCommitOutput(immediate bool) (
ContractResolver, error) {
isTaproot := txscript.IsPayToTaproot(
h.htlcResolution.SweepSignDesc.Output.PkScript,
)
// Before we can craft out sweeping transaction, we need to
// create an input which contains all the items required to add
// this input to a sweeping transaction, and generate a
// witness.
var inp input.Input
if isTaproot {
inp = lnutils.Ptr(input.MakeTaprootHtlcSucceedInput(
&h.htlcResolution.ClaimOutpoint,
&h.htlcResolution.SweepSignDesc,
h.htlcResolution.Preimage[:],
h.broadcastHeight,
h.htlcResolution.CsvDelay,
))
} else {
inp = lnutils.Ptr(input.MakeHtlcSucceedInput(
&h.htlcResolution.ClaimOutpoint,
&h.htlcResolution.SweepSignDesc,
h.htlcResolution.Preimage[:],
h.broadcastHeight,
h.htlcResolution.CsvDelay,
))
}
// Calculate the budget for this sweep.
budget := calculateBudget(
btcutil.Amount(inp.SignDesc().Output.Value),
h.Budget.DeadlineHTLCRatio,
h.Budget.DeadlineHTLC,
)
deadline := fn.Some(int32(h.htlc.RefundTimeout))
log.Infof("%T(%x): offering direct-preimage HTLC output to sweeper "+
"with deadline=%v, budget=%v", h, h.htlc.RHash[:],
h.htlc.RefundTimeout, budget)
// We'll now offer the direct preimage HTLC to the sweeper.
_, err := h.Sweeper.SweepInput(
inp,
sweep.Params{
Budget: budget,
DeadlineHeight: deadline,
Immediate: immediate,
},
)
if err != nil {
return nil, err
}
// Wait for the direct-preimage HTLC sweep tx to confirm.
sweepTxDetails, err := waitForSpend(
&h.htlcResolution.ClaimOutpoint,
h.htlcResolution.SweepSignDesc.Output.PkScript,
h.broadcastHeight, h.Notifier, h.quit,
)
if err != nil {
return nil, err
}
// Once the transaction has received a sufficient number of
// confirmations, we'll mark ourselves as fully resolved and exit.
h.resolved = true
// Checkpoint the resolver, and write the outcome to disk.
return nil, h.checkpointClaim(
sweepTxDetails.SpenderTxHash,
channeldb.ResolverOutcomeClaimed,
)
}
// checkpointClaim checkpoints the success resolver with the reports it needs.
// If this htlc was claimed two stages, it will write reports for both stages,
// otherwise it will just write for the single htlc claim.
func (h *htlcSuccessResolver) checkpointClaim(spendTx *chainhash.Hash,
outcome channeldb.ResolverOutcome) error {
// Mark the htlc as final settled.
err := h.ChainArbitratorConfig.PutFinalHtlcOutcome(
h.ChannelArbitratorConfig.ShortChanID, h.htlc.HtlcIndex, true,
)
if err != nil {
return err
}
// Send notification.
h.ChainArbitratorConfig.HtlcNotifier.NotifyFinalHtlcEvent(
models.CircuitKey{
ChanID: h.ShortChanID,
HtlcID: h.htlc.HtlcIndex,
},
channeldb.FinalHtlcInfo{
Settled: true,
Offchain: false,
},
)
// Create a resolver report for claiming of the htlc itself.
amt := btcutil.Amount(h.htlcResolution.SweepSignDesc.Output.Value)
reports := []*channeldb.ResolverReport{
{
OutPoint: h.htlcResolution.ClaimOutpoint,
Amount: amt,
ResolverType: channeldb.ResolverTypeIncomingHtlc,
ResolverOutcome: outcome,
SpendTxID: spendTx,
},
}
// If we have a success tx, we append a report to represent our first
// stage claim.
if h.htlcResolution.SignedSuccessTx != nil {
// If the SignedSuccessTx is not nil, we are claiming the htlc
// in two stages, so we need to create a report for the first
// stage transaction as well.
spendTx := h.htlcResolution.SignedSuccessTx
spendTxID := spendTx.TxHash()
report := &channeldb.ResolverReport{
OutPoint: spendTx.TxIn[0].PreviousOutPoint,
Amount: h.htlc.Amt.ToSatoshis(),
ResolverType: channeldb.ResolverTypeIncomingHtlc,
ResolverOutcome: channeldb.ResolverOutcomeFirstStage,
SpendTxID: &spendTxID,
}
reports = append(reports, report)
}
// Finally, we checkpoint the resolver with our report(s).
return h.Checkpoint(h, reports...)
}
// Stop signals the resolver to cancel any current resolution processes, and
// suspend.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcSuccessResolver) Stop() {
close(h.quit)
}
// IsResolved returns true if the stored state in the resolve is fully
// resolved. In this case the target output can be forgotten.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcSuccessResolver) IsResolved() bool {
return h.resolved
}
// report returns a report on the resolution state of the contract.
func (h *htlcSuccessResolver) report() *ContractReport {
// If the sign details are nil, the report will be created by handled
// by the nursery.
if h.htlcResolution.SignDetails == nil {
return nil
}
h.reportLock.Lock()
defer h.reportLock.Unlock()
cpy := h.currentReport
return &cpy
}
func (h *htlcSuccessResolver) initReport() {
// We create the initial report. This will only be reported for
// resolvers not handled by the nursery.
finalAmt := h.htlc.Amt.ToSatoshis()
if h.htlcResolution.SignedSuccessTx != nil {
finalAmt = btcutil.Amount(
h.htlcResolution.SignedSuccessTx.TxOut[0].Value,
)
}
h.currentReport = ContractReport{
Outpoint: h.htlcResolution.ClaimOutpoint,
Type: ReportOutputIncomingHtlc,
Amount: finalAmt,
MaturityHeight: h.htlcResolution.CsvDelay,
LimboBalance: finalAmt,
Stage: 1,
}
}
// Encode writes an encoded version of the ContractResolver into the passed
// Writer.
//
// NOTE: Part of the ContractResolver interface.
func (h *htlcSuccessResolver) Encode(w io.Writer) error {
// First we'll encode our inner HTLC resolution.
if err := encodeIncomingResolution(w, &h.htlcResolution); err != nil {
return err
}
// Next, we'll write out the fields that are specified to the contract
// resolver.
if err := binary.Write(w, endian, h.outputIncubating); err != nil {
return err
}
if err := binary.Write(w, endian, h.resolved); err != nil {
return err
}
if err := binary.Write(w, endian, h.broadcastHeight); err != nil {
return err
}
if _, err := w.Write(h.htlc.RHash[:]); err != nil {
return err
}
// We encode the sign details last for backwards compatibility.
err := encodeSignDetails(w, h.htlcResolution.SignDetails)
if err != nil {
return err
}
return nil
}
// newSuccessResolverFromReader attempts to decode an encoded ContractResolver
// from the passed Reader instance, returning an active ContractResolver
// instance.
func newSuccessResolverFromReader(r io.Reader, resCfg ResolverConfig) (
*htlcSuccessResolver, error) {
h := &htlcSuccessResolver{
contractResolverKit: *newContractResolverKit(resCfg),
}
// First we'll decode our inner HTLC resolution.
if err := decodeIncomingResolution(r, &h.htlcResolution); err != nil {
return nil, err
}
// Next, we'll read all the fields that are specified to the contract
// resolver.
if err := binary.Read(r, endian, &h.outputIncubating); err != nil {
return nil, err
}
if err := binary.Read(r, endian, &h.resolved); err != nil {
return nil, err
}
if err := binary.Read(r, endian, &h.broadcastHeight); err != nil {
return nil, err
}
if _, err := io.ReadFull(r, h.htlc.RHash[:]); err != nil {
return nil, err
}
// Sign details is a new field that was added to the htlc resolution,
// so it is serialized last for backwards compatibility. We try to read
// it, but don't error out if there are not bytes left.
signDetails, err := decodeSignDetails(r)
if err == nil {
h.htlcResolution.SignDetails = signDetails
} else if err != io.EOF && err != io.ErrUnexpectedEOF {
return nil, err
}
h.initReport()
return h, nil
}
// Supplement adds additional information to the resolver that is required
// before Resolve() is called.
//
// NOTE: Part of the htlcContractResolver interface.
func (h *htlcSuccessResolver) Supplement(htlc channeldb.HTLC) {
h.htlc = htlc
}
// HtlcPoint returns the htlc's outpoint on the commitment tx.
//
// NOTE: Part of the htlcContractResolver interface.
func (h *htlcSuccessResolver) HtlcPoint() wire.OutPoint {
return h.htlcResolution.HtlcPoint()
}
// SupplementDeadline does nothing for an incoming htlc resolver.
//
// NOTE: Part of the htlcContractResolver interface.
func (h *htlcSuccessResolver) SupplementDeadline(_ fn.Option[int32]) {
}
// A compile time assertion to ensure htlcSuccessResolver meets the
// ContractResolver interface.
var _ htlcContractResolver = (*htlcSuccessResolver)(nil)