lnd/channeldb/migration30/lnwallet.go
2022-08-23 22:10:24 +08:00

361 lines
12 KiB
Go

package migration30
import (
"bytes"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/chaincfg/chainhash"
mig25 "github.com/lightningnetwork/lnd/channeldb/migration25"
mig26 "github.com/lightningnetwork/lnd/channeldb/migration26"
mig "github.com/lightningnetwork/lnd/channeldb/migration_01_to_11"
"github.com/lightningnetwork/lnd/input"
)
// CommitmentKeyRing holds all derived keys needed to construct commitment and
// HTLC transactions. The keys are derived differently depending whether the
// commitment transaction is ours or the remote peer's. Private keys associated
// with each key may belong to the commitment owner or the "other party" which
// is referred to in the field comments, regardless of which is local and which
// is remote.
type CommitmentKeyRing struct {
// CommitPoint is the "per commitment point" used to derive the tweak
// for each base point.
CommitPoint *btcec.PublicKey
// LocalCommitKeyTweak is the tweak used to derive the local public key
// from the local payment base point or the local private key from the
// base point secret. This may be included in a SignDescriptor to
// generate signatures for the local payment key.
//
// NOTE: This will always refer to "our" local key, regardless of
// whether this is our commit or not.
LocalCommitKeyTweak []byte
// TODO(roasbeef): need delay tweak as well?
// LocalHtlcKeyTweak is the tweak used to derive the local HTLC key
// from the local HTLC base point. This value is needed in order to
// derive the final key used within the HTLC scripts in the commitment
// transaction.
//
// NOTE: This will always refer to "our" local HTLC key, regardless of
// whether this is our commit or not.
LocalHtlcKeyTweak []byte
// LocalHtlcKey is the key that will be used in any clause paying to
// our node of any HTLC scripts within the commitment transaction for
// this key ring set.
//
// NOTE: This will always refer to "our" local HTLC key, regardless of
// whether this is our commit or not.
LocalHtlcKey *btcec.PublicKey
// RemoteHtlcKey is the key that will be used in clauses within the
// HTLC script that send money to the remote party.
//
// NOTE: This will always refer to "their" remote HTLC key, regardless
// of whether this is our commit or not.
RemoteHtlcKey *btcec.PublicKey
// ToLocalKey is the commitment transaction owner's key which is
// included in HTLC success and timeout transaction scripts. This is
// the public key used for the to_local output of the commitment
// transaction.
//
// NOTE: Who's key this is depends on the current perspective. If this
// is our commitment this will be our key.
ToLocalKey *btcec.PublicKey
// ToRemoteKey is the non-owner's payment key in the commitment tx.
// This is the key used to generate the to_remote output within the
// commitment transaction.
//
// NOTE: Who's key this is depends on the current perspective. If this
// is our commitment this will be their key.
ToRemoteKey *btcec.PublicKey
// RevocationKey is the key that can be used by the other party to
// redeem outputs from a revoked commitment transaction if it were to
// be published.
//
// NOTE: Who can sign for this key depends on the current perspective.
// If this is our commitment, it means the remote node can sign for
// this key in case of a breach.
RevocationKey *btcec.PublicKey
}
// ScriptInfo holds a redeem script and hash.
type ScriptInfo struct {
// PkScript is the output's PkScript.
PkScript []byte
// WitnessScript is the full script required to properly redeem the
// output. This field should be set to the full script if a p2wsh
// output is being signed. For p2wkh it should be set equal to the
// PkScript.
WitnessScript []byte
}
// findOutputIndexesFromRemote finds the index of our and their outputs from
// the remote commitment transaction. It derives the key ring to compute the
// output scripts and compares them against the outputs inside the commitment
// to find the match.
func findOutputIndexesFromRemote(revocationPreimage *chainhash.Hash,
chanState *mig26.OpenChannel,
oldLog *mig.ChannelCommitment) (uint32, uint32, error) {
// Init the output indexes as empty.
ourIndex := uint32(OutputIndexEmpty)
theirIndex := uint32(OutputIndexEmpty)
chanCommit := oldLog
_, commitmentPoint := btcec.PrivKeyFromBytes(revocationPreimage[:])
// With the commitment point generated, we can now derive the king ring
// which will be used to generate the output scripts.
keyRing := DeriveCommitmentKeys(
commitmentPoint, false, chanState.ChanType,
&chanState.LocalChanCfg, &chanState.RemoteChanCfg,
)
// Since it's remote commitment chain, we'd used the mirrored values.
//
// We use the remote's channel config for the csv delay.
theirDelay := uint32(chanState.RemoteChanCfg.CsvDelay)
// If we are the initiator of this channel, then it's be false from the
// remote's PoV.
isRemoteInitiator := !chanState.IsInitiator
var leaseExpiry uint32
if chanState.ChanType.HasLeaseExpiration() {
leaseExpiry = chanState.ThawHeight
}
// Map the scripts from our PoV. When facing a local commitment, the to
// local output belongs to us and the to remote output belongs to them.
// When facing a remote commitment, the to local output belongs to them
// and the to remote output belongs to us.
// Compute the to local script. From our PoV, when facing a remote
// commitment, the to local output belongs to them.
theirScript, err := CommitScriptToSelf(
chanState.ChanType, isRemoteInitiator, keyRing.ToLocalKey,
keyRing.RevocationKey, theirDelay, leaseExpiry,
)
if err != nil {
return ourIndex, theirIndex, err
}
// Compute the to remote script. From our PoV, when facing a remote
// commitment, the to remote output belongs to us.
ourScript, _, err := CommitScriptToRemote(
chanState.ChanType, isRemoteInitiator, keyRing.ToRemoteKey,
leaseExpiry,
)
if err != nil {
return ourIndex, theirIndex, err
}
// Now compare the scripts to find our/their output index.
for i, txOut := range chanCommit.CommitTx.TxOut {
switch {
case bytes.Equal(txOut.PkScript, ourScript.PkScript):
ourIndex = uint32(i)
case bytes.Equal(txOut.PkScript, theirScript.PkScript):
theirIndex = uint32(i)
}
}
return ourIndex, theirIndex, nil
}
// DeriveCommitmentKeys generates a new commitment key set using the base points
// and commitment point. The keys are derived differently depending on the type
// of channel, and whether the commitment transaction is ours or the remote
// peer's.
func DeriveCommitmentKeys(commitPoint *btcec.PublicKey,
isOurCommit bool, chanType mig25.ChannelType,
localChanCfg, remoteChanCfg *mig.ChannelConfig) *CommitmentKeyRing {
tweaklessCommit := chanType.IsTweakless()
// Depending on if this is our commit or not, we'll choose the correct
// base point.
localBasePoint := localChanCfg.PaymentBasePoint
if isOurCommit {
localBasePoint = localChanCfg.DelayBasePoint
}
// First, we'll derive all the keys that don't depend on the context of
// whose commitment transaction this is.
keyRing := &CommitmentKeyRing{
CommitPoint: commitPoint,
LocalCommitKeyTweak: input.SingleTweakBytes(
commitPoint, localBasePoint.PubKey,
),
LocalHtlcKeyTweak: input.SingleTweakBytes(
commitPoint, localChanCfg.HtlcBasePoint.PubKey,
),
LocalHtlcKey: input.TweakPubKey(
localChanCfg.HtlcBasePoint.PubKey, commitPoint,
),
RemoteHtlcKey: input.TweakPubKey(
remoteChanCfg.HtlcBasePoint.PubKey, commitPoint,
),
}
// We'll now compute the to_local, to_remote, and revocation key based
// on the current commitment point. All keys are tweaked each state in
// order to ensure the keys from each state are unlinkable. To create
// the revocation key, we take the opposite party's revocation base
// point and combine that with the current commitment point.
var (
toLocalBasePoint *btcec.PublicKey
toRemoteBasePoint *btcec.PublicKey
revocationBasePoint *btcec.PublicKey
)
if isOurCommit {
toLocalBasePoint = localChanCfg.DelayBasePoint.PubKey
toRemoteBasePoint = remoteChanCfg.PaymentBasePoint.PubKey
revocationBasePoint = remoteChanCfg.RevocationBasePoint.PubKey
} else {
toLocalBasePoint = remoteChanCfg.DelayBasePoint.PubKey
toRemoteBasePoint = localChanCfg.PaymentBasePoint.PubKey
revocationBasePoint = localChanCfg.RevocationBasePoint.PubKey
}
// With the base points assigned, we can now derive the actual keys
// using the base point, and the current commitment tweak.
keyRing.ToLocalKey = input.TweakPubKey(toLocalBasePoint, commitPoint)
keyRing.RevocationKey = input.DeriveRevocationPubkey(
revocationBasePoint, commitPoint,
)
// If this commitment should omit the tweak for the remote point, then
// we'll use that directly, and ignore the commitPoint tweak.
if tweaklessCommit {
keyRing.ToRemoteKey = toRemoteBasePoint
// If this is not our commitment, the above ToRemoteKey will be
// ours, and we blank out the local commitment tweak to
// indicate that the key should not be tweaked when signing.
if !isOurCommit {
keyRing.LocalCommitKeyTweak = nil
}
} else {
keyRing.ToRemoteKey = input.TweakPubKey(
toRemoteBasePoint, commitPoint,
)
}
return keyRing
}
// CommitScriptToRemote derives the appropriate to_remote script based on the
// channel's commitment type. The `initiator` argument should correspond to the
// owner of the commitment transaction which we are generating the to_remote
// script for. The second return value is the CSV delay of the output script,
// what must be satisfied in order to spend the output.
func CommitScriptToRemote(chanType mig25.ChannelType, initiator bool,
key *btcec.PublicKey, leaseExpiry uint32) (*ScriptInfo, uint32, error) {
switch {
// If we are not the initiator of a leased channel, then the remote
// party has an additional CLTV requirement in addition to the 1 block
// CSV requirement.
case chanType.HasLeaseExpiration() && !initiator:
script, err := input.LeaseCommitScriptToRemoteConfirmed(
key, leaseExpiry,
)
if err != nil {
return nil, 0, err
}
p2wsh, err := input.WitnessScriptHash(script)
if err != nil {
return nil, 0, err
}
return &ScriptInfo{
PkScript: p2wsh,
WitnessScript: script,
}, 1, nil
// If this channel type has anchors, we derive the delayed to_remote
// script.
case chanType.HasAnchors():
script, err := input.CommitScriptToRemoteConfirmed(key)
if err != nil {
return nil, 0, err
}
p2wsh, err := input.WitnessScriptHash(script)
if err != nil {
return nil, 0, err
}
return &ScriptInfo{
PkScript: p2wsh,
WitnessScript: script,
}, 1, nil
default:
// Otherwise the to_remote will be a simple p2wkh.
p2wkh, err := input.CommitScriptUnencumbered(key)
if err != nil {
return nil, 0, err
}
// Since this is a regular P2WKH, the WitnessScipt and PkScript
// should both be set to the script hash.
return &ScriptInfo{
WitnessScript: p2wkh,
PkScript: p2wkh,
}, 0, nil
}
}
// CommitScriptToSelf constructs the public key script for the output on the
// commitment transaction paying to the "owner" of said commitment transaction.
// The `initiator` argument should correspond to the owner of the commitment
// transaction which we are generating the to_local script for. If the other
// party learns of the preimage to the revocation hash, then they can claim all
// the settled funds in the channel, plus the unsettled funds.
func CommitScriptToSelf(chanType mig25.ChannelType, initiator bool,
selfKey, revokeKey *btcec.PublicKey, csvDelay, leaseExpiry uint32) (
*ScriptInfo, error) {
var (
toLocalRedeemScript []byte
err error
)
switch {
// If we are the initiator of a leased channel, then we have an
// additional CLTV requirement in addition to the usual CSV requirement.
case initiator && chanType.HasLeaseExpiration():
toLocalRedeemScript, err = input.LeaseCommitScriptToSelf(
selfKey, revokeKey, csvDelay, leaseExpiry,
)
default:
toLocalRedeemScript, err = input.CommitScriptToSelf(
csvDelay, selfKey, revokeKey,
)
}
if err != nil {
return nil, err
}
toLocalScriptHash, err := input.WitnessScriptHash(toLocalRedeemScript)
if err != nil {
return nil, err
}
return &ScriptInfo{
PkScript: toLocalScriptHash,
WitnessScript: toLocalRedeemScript,
}, nil
}