lnd/itest/lnd_psbt_test.go
yyforyongyu 8259e0fb5f
itest: remove redundant call to ht.WaitForBlockchainSync
This check has already been done when mining blocks.
2024-08-09 22:01:57 +08:00

1945 lines
61 KiB
Go

package itest
import (
"bytes"
"encoding/hex"
"testing"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/ecdsa"
"github.com/btcsuite/btcd/btcec/v2/schnorr"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/btcutil/hdkeychain"
"github.com/btcsuite/btcd/btcutil/psbt"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/keychain"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/signrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lnwallet/chanfunding"
"github.com/stretchr/testify/require"
)
// testPsbtChanFunding makes sure a channel can be opened between carol and dave
// by using a Partially Signed Bitcoin Transaction that funds the channel
// multisig funding output.
func testPsbtChanFunding(ht *lntest.HarnessTest) {
const (
burnAddr = "bcrt1qxsnqpdc842lu8c0xlllgvejt6rhy49u6fmpgyz"
)
testCases := []struct {
name string
commitmentType lnrpc.CommitmentType
private bool
}{
{
name: "anchors",
commitmentType: lnrpc.CommitmentType_ANCHORS,
private: false,
},
{
name: "simple taproot",
commitmentType: lnrpc.CommitmentType_SIMPLE_TAPROOT,
// Set this to true once simple taproot channels can be
// announced to the network.
private: true,
},
}
for _, tc := range testCases {
tc := tc
success := ht.T.Run(tc.name, func(tt *testing.T) {
st := ht.Subtest(tt)
args := lntest.NodeArgsForCommitType(tc.commitmentType)
// First, we'll create two new nodes that we'll use to
// open channels between for this test. Dave gets some
// coins that will be used to fund the PSBT, just to
// make sure that Carol has an empty wallet.
carol := st.NewNode("carol", args)
dave := st.NewNode("dave", args)
// We just send enough funds to satisfy the anchor
// channel reserve for 5 channels (50k sats).
st.FundCoins(50_000, carol)
st.FundCoins(50_000, dave)
st.RunTestCase(&lntest.TestCase{
Name: tc.name,
TestFunc: func(sst *lntest.HarnessTest) {
runPsbtChanFunding(
sst, carol, dave, tc.private,
tc.commitmentType,
)
},
})
// Empty out the wallets so there aren't any lingering
// coins.
sendAllCoinsConfirm(st, carol, burnAddr)
sendAllCoinsConfirm(st, dave, burnAddr)
// Now we test the second scenario. Again, we just send
// enough funds to satisfy the anchor channel reserve
// for 5 channels (50k sats).
st.FundCoins(50_000, carol)
st.FundCoins(50_000, dave)
st.RunTestCase(&lntest.TestCase{
Name: tc.name,
TestFunc: func(sst *lntest.HarnessTest) {
runPsbtChanFundingExternal(
sst, carol, dave, tc.private,
tc.commitmentType,
)
},
})
// Empty out the wallets a last time, so there aren't
// any lingering coins.
sendAllCoinsConfirm(st, carol, burnAddr)
sendAllCoinsConfirm(st, dave, burnAddr)
// The last test case tests the anchor channel reserve
// itself, so we need empty wallets.
st.RunTestCase(&lntest.TestCase{
Name: tc.name,
TestFunc: func(sst *lntest.HarnessTest) {
runPsbtChanFundingSingleStep(
sst, carol, dave, tc.private,
tc.commitmentType,
)
},
})
})
if !success {
// Log failure time to help relate the lnd logs to the
// failure.
ht.Logf("Failure time: %v", time.Now().Format(
"2006-01-02 15:04:05.000",
))
break
}
}
}
// runPsbtChanFunding makes sure a channel can be opened between carol and dave
// by using a Partially Signed Bitcoin Transaction that funds the channel
// multisig funding output.
func runPsbtChanFunding(ht *lntest.HarnessTest, carol, dave *node.HarnessNode,
private bool, commitType lnrpc.CommitmentType) {
const chanSize = funding.MaxBtcFundingAmount
ht.FundCoins(btcutil.SatoshiPerBitcoin, dave)
// Before we start the test, we'll ensure both sides are connected so
// the funding flow can be properly executed.
alice := ht.Alice
ht.EnsureConnected(carol, dave)
ht.EnsureConnected(carol, alice)
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID := ht.Random32Bytes()
// We'll also test batch funding of two channels so we need another ID.
pendingChanID2 := ht.Random32Bytes()
// Now that we have the pending channel ID, Carol will open the channel
// by specifying a PSBT shim. We use the NoPublish flag here to avoid
// publishing the whole batch TX too early.
chanUpdates, tempPsbt := ht.OpenChannelPsbt(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
NoPublish: true,
},
},
},
Private: private,
CommitmentType: commitType,
},
)
// Let's add a second channel to the batch. This time between Carol and
// Alice. We will publish the batch TX once this channel funding is
// complete.
chanUpdates2, psbtBytes2 := ht.OpenChannelPsbt(
carol, alice, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID2,
NoPublish: false,
BasePsbt: tempPsbt,
},
},
},
// We haven't started Alice with the explicit params to
// support the current commit type, so we'll just use
// the default for this channel. That also allows us to
// test batches of different channel types.
},
)
// We'll now ask Dave's wallet to fund the PSBT for us. This will return
// a packet with inputs and outputs set but without any witness data.
// This is exactly what we need for the next step.
fundReq := &walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Psbt{
Psbt: psbtBytes2,
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 2,
},
}
fundResp := dave.RPC.FundPsbt(fundReq)
// We have a PSBT that has no witness data yet, which is exactly what we
// need for the next step: Verify the PSBT with the funding intents.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID,
FundedPsbt: fundResp.FundedPsbt,
},
},
})
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID2,
FundedPsbt: fundResp.FundedPsbt,
},
},
})
// Now we'll ask Dave's wallet to sign the PSBT so we can finish the
// funding flow.
finalizeReq := &walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
}
finalizeRes := dave.RPC.FinalizePsbt(finalizeReq)
// We've signed our PSBT now, let's pass it to the intent again.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtFinalize{
PsbtFinalize: &lnrpc.FundingPsbtFinalize{
PendingChanId: pendingChanID,
SignedPsbt: finalizeRes.SignedPsbt,
},
},
})
// Consume the "channel pending" update. This waits until the funding
// transaction was fully compiled.
updateResp := ht.ReceiveOpenChannelUpdate(chanUpdates)
upd, ok := updateResp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd.ChanPending.Txid,
},
OutputIndex: upd.ChanPending.OutputIndex,
}
// No transaction should have been published yet.
ht.AssertNumTxsInMempool(0)
// Let's progress the second channel now. This time we'll use the raw
// wire format transaction directly.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtFinalize{
PsbtFinalize: &lnrpc.FundingPsbtFinalize{
PendingChanId: pendingChanID2,
FinalRawTx: finalizeRes.RawFinalTx,
},
},
})
// Consume the "channel pending" update for the second channel. This
// waits until the funding transaction was fully compiled and in this
// case published.
updateResp2 := ht.ReceiveOpenChannelUpdate(chanUpdates2)
upd2, ok := updateResp2.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
chanPoint2 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd2.ChanPending.Txid,
},
OutputIndex: upd2.ChanPending.OutputIndex,
}
// Great, now we can mine a block to get the transaction confirmed, then
// wait for the new channel to be propagated through the network.
var finalTx wire.MsgTx
err := finalTx.Deserialize(bytes.NewReader(finalizeRes.RawFinalTx))
require.NoError(ht, err)
txHash := finalTx.TxHash()
block := ht.MineBlocksAndAssertNumTxes(6, 1)[0]
ht.AssertTxInBlock(block, &txHash)
ht.AssertTopologyChannelOpen(carol, chanPoint)
ht.AssertTopologyChannelOpen(carol, chanPoint2)
// With the channel open, ensure that it is counted towards Carol's
// total channel balance.
balRes := carol.RPC.ChannelBalance()
require.NotZero(ht, balRes.LocalBalance.Sat)
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := dave.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// To conclude, we'll close the newly created channel between Carol and
// Dave. This function will also block until the channel is closed and
// will additionally assert the relevant channel closing post
// conditions.
ht.CloseChannel(carol, chanPoint)
ht.CloseChannel(carol, chanPoint2)
}
// runPsbtChanFundingExternal makes sure a channel can be opened between carol
// and dave by using a Partially Signed Bitcoin Transaction that funds the
// channel multisig funding output and is fully funded by an external third
// party.
func runPsbtChanFundingExternal(ht *lntest.HarnessTest, carol,
dave *node.HarnessNode, private bool, commitType lnrpc.CommitmentType) {
const chanSize = funding.MaxBtcFundingAmount
// Before we start the test, we'll ensure both sides are connected so
// the funding flow can be properly executed.
alice := ht.Alice
ht.EnsureConnected(carol, dave)
ht.EnsureConnected(carol, alice)
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID := ht.Random32Bytes()
// We'll also test batch funding of two channels so we need another ID.
pendingChanID2 := ht.Random32Bytes()
// Now that we have the pending channel ID, Carol will open the channel
// by specifying a PSBT shim. We use the NoPublish flag here to avoid
// publishing the whole batch TX too early.
chanUpdates, tempPsbt := ht.OpenChannelPsbt(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
NoPublish: true,
},
},
},
Private: private,
CommitmentType: commitType,
},
)
// Let's add a second channel to the batch. This time between Carol and
// Alice. We will publish the batch TX once this channel funding is
// complete.
chanUpdates2, psbtBytes2 := ht.OpenChannelPsbt(
carol, alice, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID2,
NoPublish: true,
BasePsbt: tempPsbt,
},
},
},
// We haven't started Alice with the explicit params to
// support the current commit type, so we'll just use
// the default for this channel. That also allows us to
// test batches of different channel types.
},
)
// We'll now ask Alice's wallet to fund the PSBT for us. This will
// return a packet with inputs and outputs set but without any witness
// data. This is exactly what we need for the next step.
fundReq := &walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Psbt{
Psbt: psbtBytes2,
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 2,
},
}
fundResp := alice.RPC.FundPsbt(fundReq)
// We have a PSBT that has no witness data yet, which is exactly what we
// need for the next step: Verify the PSBT with the funding intents.
// We tell the PSBT intent to skip the finalize step because we know the
// final transaction will not be broadcast by Carol herself but by
// Alice. And we assume that Alice is a third party that is not in
// direct communication with Carol and won't send the signed TX to her
// before broadcasting it. So we cannot call the finalize step but
// instead just tell lnd to wait for a TX to be published/confirmed.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID,
FundedPsbt: fundResp.FundedPsbt,
SkipFinalize: true,
},
},
})
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID2,
FundedPsbt: fundResp.FundedPsbt,
SkipFinalize: true,
},
},
})
// Consume the "channel pending" update. This waits until the funding
// transaction was fully compiled for both channels.
updateResp := ht.ReceiveOpenChannelUpdate(chanUpdates)
upd, ok := updateResp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd.ChanPending.Txid,
},
OutputIndex: upd.ChanPending.OutputIndex,
}
updateResp2 := ht.ReceiveOpenChannelUpdate(chanUpdates2)
upd2, ok := updateResp2.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
chanPoint2 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd2.ChanPending.Txid,
},
OutputIndex: upd2.ChanPending.OutputIndex,
}
ht.AssertNumPendingOpenChannels(carol, 2)
// Now we'll ask Alice's wallet to sign the PSBT so we can finish the
// funding flow.
finalizeReq := &walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
}
finalizeRes := alice.RPC.FinalizePsbt(finalizeReq)
// No transaction should have been published yet.
ht.AssertNumTxsInMempool(0)
// Great, now let's publish the final raw transaction.
var finalTx wire.MsgTx
err := finalTx.Deserialize(bytes.NewReader(finalizeRes.RawFinalTx))
require.NoError(ht, err)
txHash := finalTx.TxHash()
_, err = ht.SendRawTransaction(&finalTx, false)
require.NoError(ht, err)
// Now we can mine a block to get the transaction confirmed, then wait
// for the new channel to be propagated through the network.
block := ht.MineBlocksAndAssertNumTxes(6, 1)[0]
ht.AssertTxInBlock(block, &txHash)
ht.AssertTopologyChannelOpen(carol, chanPoint)
ht.AssertTopologyChannelOpen(carol, chanPoint2)
// With the channel open, ensure that it is counted towards Carol's
// total channel balance.
balRes := carol.RPC.ChannelBalance()
require.NotZero(ht, balRes.LocalBalance.Sat)
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := dave.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// To conclude, we'll close the newly created channel between Carol and
// Dave. This function will also block until the channels are closed and
// will additionally assert the relevant channel closing post
// conditions.
ht.CloseChannel(carol, chanPoint)
ht.CloseChannel(carol, chanPoint2)
}
// runPsbtChanFundingSingleStep checks whether PSBT funding works also when
// the wallet of both nodes are empty and one of them uses PSBT and an external
// wallet to fund the channel while creating reserve output in the same
// transaction.
func runPsbtChanFundingSingleStep(ht *lntest.HarnessTest, carol,
dave *node.HarnessNode, private bool, commitType lnrpc.CommitmentType) {
const chanSize = funding.MaxBtcFundingAmount
alice := ht.Alice
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
// Get new address for anchor reserve.
req := &lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
}
addrResp := carol.RPC.NewAddress(req)
reserveAddr, err := btcutil.DecodeAddress(
addrResp.Address, harnessNetParams,
)
require.NoError(ht, err)
reserveAddrScript, err := txscript.PayToAddrScript(reserveAddr)
require.NoError(ht, err)
// Before we start the test, we'll ensure both sides are connected so
// the funding flow can be properly executed.
ht.EnsureConnected(carol, dave)
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID := ht.Random32Bytes()
// Now that we have the pending channel ID, Carol will open the channel
// by specifying a PSBT shim.
chanUpdates, tempPsbt := ht.OpenChannelPsbt(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
NoPublish: false,
},
},
},
Private: private,
CommitmentType: commitType,
},
)
decodedPsbt, err := psbt.NewFromRawBytes(
bytes.NewReader(tempPsbt), false,
)
require.NoError(ht, err)
reserveTxOut := wire.TxOut{
Value: 10000,
PkScript: reserveAddrScript,
}
decodedPsbt.UnsignedTx.TxOut = append(
decodedPsbt.UnsignedTx.TxOut, &reserveTxOut,
)
decodedPsbt.Outputs = append(decodedPsbt.Outputs, psbt.POutput{})
var psbtBytes bytes.Buffer
err = decodedPsbt.Serialize(&psbtBytes)
require.NoError(ht, err)
fundReq := &walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Psbt{
Psbt: psbtBytes.Bytes(),
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 2,
},
}
fundResp := alice.RPC.FundPsbt(fundReq)
// Make sure the wallets are actually empty
ht.AssertNumUTXOsUnconfirmed(alice, 0)
ht.AssertNumUTXOsUnconfirmed(dave, 0)
// We have a PSBT that has no witness data yet, which is exactly what we
// need for the next step: Verify the PSBT with the funding intents.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID,
FundedPsbt: fundResp.FundedPsbt,
},
},
})
// Now we'll ask Alice's wallet to sign the PSBT so we can finish the
// funding flow.
finalizeReq := &walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
}
finalizeRes := alice.RPC.FinalizePsbt(finalizeReq)
// We've signed our PSBT now, let's pass it to the intent again.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtFinalize{
PsbtFinalize: &lnrpc.FundingPsbtFinalize{
PendingChanId: pendingChanID,
SignedPsbt: finalizeRes.SignedPsbt,
},
},
})
// Consume the "channel pending" update. This waits until the funding
// transaction was fully compiled.
updateResp := ht.ReceiveOpenChannelUpdate(chanUpdates)
upd, ok := updateResp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
chanPoint := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd.ChanPending.Txid,
},
OutputIndex: upd.ChanPending.OutputIndex,
}
var finalTx wire.MsgTx
err = finalTx.Deserialize(bytes.NewReader(finalizeRes.RawFinalTx))
require.NoError(ht, err)
txHash := finalTx.TxHash()
block := ht.MineBlocksAndAssertNumTxes(6, 1)[0]
ht.AssertTxInBlock(block, &txHash)
ht.AssertTopologyChannelOpen(carol, chanPoint)
// Next, to make sure the channel functions as normal, we'll make some
// payments within the channel.
payAmt := btcutil.Amount(100000)
invoice := &lnrpc.Invoice{
Memo: "new chans",
Value: int64(payAmt),
}
resp := dave.RPC.AddInvoice(invoice)
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// To conclude, we'll close the newly created channel between Carol and
// Dave. This function will also block until the channel is closed and
// will additionally assert the relevant channel closing post
// conditions.
ht.CloseChannel(carol, chanPoint)
}
// testSignPsbt tests that the SignPsbt RPC works correctly.
func testSignPsbt(ht *lntest.HarnessTest) {
psbtTestRunners := []struct {
name string
runner func(*lntest.HarnessTest, *node.HarnessNode)
}{
{
name: "sign psbt segwit v0 P2WPKH",
runner: runSignPsbtSegWitV0P2WKH,
},
{
name: "sign psbt segwit v0 P2WSH",
runner: runSignPsbtSegWitV0NP2WKH,
},
{
name: "sign psbt segwit v1 key spend bip86",
runner: runSignPsbtSegWitV1KeySpendBip86,
},
{
name: "sign psbt segwit v1 key spend root hash",
runner: runSignPsbtSegWitV1KeySpendRootHash,
},
{
name: "sign psbt segwit v1 script spend",
runner: runSignPsbtSegWitV1ScriptSpend,
},
{
// The above tests all make sure we can sign for keys
// that aren't in the wallet. But we also want to make
// sure we can fund and then sign PSBTs from our
// wallet.
name: "fund and sign psbt",
runner: runFundAndSignPsbt,
},
}
for _, tc := range psbtTestRunners {
succeed := ht.Run(tc.name, func(t *testing.T) {
st := ht.Subtest(t)
tc.runner(st, st.Alice)
})
// Abort the test if failed.
if !succeed {
return
}
}
}
// runSignPsbtSegWitV0P2WKH tests that the SignPsbt RPC works correctly for a
// SegWit v0 p2wkh input.
func runSignPsbtSegWitV0P2WKH(ht *lntest.HarnessTest, alice *node.HarnessNode) {
// We test that we can sign a PSBT that spends funds from an input that
// the wallet doesn't know about. To set up that test case, we first
// derive an address manually that the wallet won't be watching on
// chain. We can do that by exporting the account xpub of lnd's main
// account.
accounts := alice.RPC.ListAccounts(&walletrpc.ListAccountsRequest{})
require.NotEmpty(ht, accounts.Accounts)
// We also need to parse the accounts, so we have easy access to the
// parsed derivation paths.
parsedAccounts, err := walletrpc.AccountsToWatchOnly(accounts.Accounts)
require.NoError(ht, err)
account := parsedAccounts[0]
xpub, err := hdkeychain.NewKeyFromString(account.Xpub)
require.NoError(ht, err)
const (
changeIndex = 1
addrIndex = 1337
)
fullDerivationPath := []uint32{
hdkeychain.HardenedKeyStart + account.Purpose,
hdkeychain.HardenedKeyStart + account.CoinType,
hdkeychain.HardenedKeyStart + account.Account,
changeIndex,
addrIndex,
}
// Let's simulate a change address.
change, err := xpub.DeriveNonStandard(changeIndex)
require.NoError(ht, err)
// At an index that we are certainly not watching in the wallet.
addrKey, err := change.DeriveNonStandard(addrIndex)
require.NoError(ht, err)
addrPubKey, err := addrKey.ECPubKey()
require.NoError(ht, err)
pubKeyHash := btcutil.Hash160(addrPubKey.SerializeCompressed())
witnessAddr, err := btcutil.NewAddressWitnessPubKeyHash(
pubKeyHash, harnessNetParams,
)
require.NoError(ht, err)
pkScript, err := txscript.PayToAddrScript(witnessAddr)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ht, alice, pkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: addrPubKey.SerializeCompressed(),
Bip32Path: fullDerivationPath,
}}
in.SighashType = txscript.SigHashAll
},
func(packet *psbt.Packet) {
require.Len(ht, packet.Inputs, 1)
require.Len(ht, packet.Inputs[0].PartialSigs, 1)
partialSig := packet.Inputs[0].PartialSigs[0]
require.Equal(
ht, partialSig.PubKey,
addrPubKey.SerializeCompressed(),
)
require.Greater(
ht, len(partialSig.Signature), ecdsa.MinSigLen,
)
},
)
}
// runSignPsbtSegWitV0NP2WKH tests that the SignPsbt RPC works correctly for a
// SegWit v0 np2wkh input.
func runSignPsbtSegWitV0NP2WKH(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// We test that we can sign a PSBT that spends funds from an input that
// the wallet doesn't know about. To set up that test case, we first
// derive an address manually that the wallet won't be watching on
// chain. We can do that by exporting the account xpub of lnd's main
// account.
accounts := alice.RPC.ListAccounts(&walletrpc.ListAccountsRequest{})
require.NotEmpty(ht, accounts.Accounts)
// We also need to parse the accounts, so we have easy access to the
// parsed derivation paths.
parsedAccounts, err := walletrpc.AccountsToWatchOnly(accounts.Accounts)
require.NoError(ht, err)
account := parsedAccounts[0]
xpub, err := hdkeychain.NewKeyFromString(account.Xpub)
require.NoError(ht, err)
const (
changeIndex = 1
addrIndex = 1337
)
fullDerivationPath := []uint32{
hdkeychain.HardenedKeyStart + account.Purpose,
hdkeychain.HardenedKeyStart + account.CoinType,
hdkeychain.HardenedKeyStart + account.Account,
changeIndex,
addrIndex,
}
// Let's simulate a change address.
change, err := xpub.DeriveNonStandard(changeIndex)
require.NoError(ht, err)
// At an index that we are certainly not watching in the wallet.
addrKey, err := change.DeriveNonStandard(addrIndex)
require.NoError(ht, err)
addrPubKey, err := addrKey.ECPubKey()
require.NoError(ht, err)
pubKeyHash := btcutil.Hash160(addrPubKey.SerializeCompressed())
witnessAddr, err := btcutil.NewAddressWitnessPubKeyHash(
pubKeyHash, harnessNetParams,
)
require.NoError(ht, err)
witnessProgram, err := txscript.PayToAddrScript(witnessAddr)
require.NoError(ht, err)
np2wkhAddr, err := btcutil.NewAddressScriptHash(
witnessProgram, harnessNetParams,
)
require.NoError(ht, err)
pkScript, err := txscript.PayToAddrScript(np2wkhAddr)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ht, alice, pkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.RedeemScript = witnessProgram
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: addrPubKey.SerializeCompressed(),
Bip32Path: fullDerivationPath,
}}
in.SighashType = txscript.SigHashAll
},
func(packet *psbt.Packet) {
require.Len(ht, packet.Inputs, 1)
require.Len(ht, packet.Inputs[0].PartialSigs, 1)
partialSig := packet.Inputs[0].PartialSigs[0]
require.Equal(
ht, partialSig.PubKey,
addrPubKey.SerializeCompressed(),
)
require.Greater(
ht, len(partialSig.Signature), ecdsa.MinSigLen,
)
},
)
}
// runSignPsbtSegWitV1KeySpendBip86 tests that the SignPsbt RPC works correctly
// for a SegWit v1 p2tr key spend BIP-0086 input.
func runSignPsbtSegWitV1KeySpendBip86(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Our taproot key is a BIP0086 key spend only construction that just
// commits to the internal key and no root hash.
taprootKey := txscript.ComputeTaprootKeyNoScript(internalKey)
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: keyDesc.RawKeyBytes,
Bip32Path: fullDerivationPath,
}}
p2trDerivation := []*psbt.TaprootBip32Derivation{{
XOnlyPubKey: keyDesc.RawKeyBytes[1:],
Bip32Path: fullDerivationPath,
}}
in.TaprootBip32Derivation = p2trDerivation
in.SighashType = txscript.SigHashDefault
},
func(packet *psbt.Packet) {
require.Len(ht, packet.Inputs, 1)
require.Len(
ht, packet.Inputs[0].TaprootKeySpendSig, 64,
)
},
)
}
// runSignPsbtSegWitV1KeySpendRootHash tests that the SignPsbt RPC works
// correctly for a SegWit v1 p2tr key spend that also commits to a script tree
// root hash.
func runSignPsbtSegWitV1KeySpendRootHash(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptHashLock(ht.T, []byte("foobar"))
rootHash := leaf1.TapHash()
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: keyDesc.RawKeyBytes,
Bip32Path: fullDerivationPath,
}}
p2trDerivation := []*psbt.TaprootBip32Derivation{{
XOnlyPubKey: keyDesc.RawKeyBytes[1:],
Bip32Path: fullDerivationPath,
}}
in.TaprootBip32Derivation = p2trDerivation
in.TaprootMerkleRoot = rootHash[:]
in.SighashType = txscript.SigHashDefault
},
func(packet *psbt.Packet) {
require.Len(ht, packet.Inputs, 1)
require.Len(
ht, packet.Inputs[0].TaprootKeySpendSig, 64,
)
},
)
}
// runSignPsbtSegWitV1ScriptSpend tests that the SignPsbt RPC works correctly
// for a SegWit v1 p2tr script spend.
func runSignPsbtSegWitV1ScriptSpend(ht *lntest.HarnessTest,
alice *node.HarnessNode) {
// Derive a key we can use for signing.
keyDesc, internalKey, fullDerivationPath := deriveInternalKey(ht, alice)
// Let's create a taproot script output now. This is a hash lock with a
// simple preimage of "foobar".
leaf1 := testScriptSchnorrSig(ht.T, internalKey)
rootHash := leaf1.TapHash()
taprootKey := txscript.ComputeTaprootOutputKey(internalKey, rootHash[:])
tapScriptAddr, err := btcutil.NewAddressTaproot(
schnorr.SerializePubKey(taprootKey), harnessNetParams,
)
require.NoError(ht, err)
p2trPkScript, err := txscript.PayToAddrScript(tapScriptAddr)
require.NoError(ht, err)
// We need to assemble the control block to be able to spend through the
// script path.
tapscript := input.TapscriptPartialReveal(internalKey, leaf1, nil)
controlBlockBytes, err := tapscript.ControlBlock.ToBytes()
require.NoError(ht, err)
// Send some funds to the output and then try to get a signature through
// the SignPsbt RPC to spend that output again.
assertPsbtSpend(
ht, alice, p2trPkScript,
func(packet *psbt.Packet) {
in := &packet.Inputs[0]
in.Bip32Derivation = []*psbt.Bip32Derivation{{
PubKey: keyDesc.RawKeyBytes,
Bip32Path: fullDerivationPath,
}}
p2trDerivation := []*psbt.TaprootBip32Derivation{{
XOnlyPubKey: keyDesc.RawKeyBytes[1:],
Bip32Path: fullDerivationPath,
LeafHashes: [][]byte{rootHash[:]},
}}
in.TaprootBip32Derivation = p2trDerivation
in.SighashType = txscript.SigHashDefault
in.TaprootLeafScript = []*psbt.TaprootTapLeafScript{{
ControlBlock: controlBlockBytes,
Script: leaf1.Script,
LeafVersion: leaf1.LeafVersion,
}}
},
func(packet *psbt.Packet) {
require.Len(ht, packet.Inputs, 1)
require.Len(
ht, packet.Inputs[0].TaprootScriptSpendSig, 1,
)
spendSig := packet.Inputs[0].TaprootScriptSpendSig[0]
require.Len(ht, spendSig.Signature, 64)
},
)
}
// runFundAndSignPsbt makes sure we can sign PSBTs that were funded by our
// internal wallet.
func runFundAndSignPsbt(ht *lntest.HarnessTest, alice *node.HarnessNode) {
alice.AddToLogf("================ runFundAndSignPsbt ===============")
// We'll be using a "main" address where we send the funds to and from
// several times.
mainAddrResp := alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
})
fundOutputs := map[string]uint64{
mainAddrResp.Address: 999000,
}
spendAddrTypes := []lnrpc.AddressType{
lnrpc.AddressType_NESTED_PUBKEY_HASH,
lnrpc.AddressType_WITNESS_PUBKEY_HASH,
lnrpc.AddressType_TAPROOT_PUBKEY,
}
changeAddrTypes := []walletrpc.ChangeAddressType{
walletrpc.ChangeAddressType_CHANGE_ADDRESS_TYPE_UNSPECIFIED,
walletrpc.ChangeAddressType_CHANGE_ADDRESS_TYPE_P2TR,
}
for _, addrType := range spendAddrTypes {
for _, changeType := range changeAddrTypes {
ht.Logf("testing with address type %s and "+
"change address type %s", addrType, changeType)
// First, spend all the coins in the wallet to an
// address of the given type so that UTXO will be picked
// when funding a PSBT.
sendAllCoinsToAddrType(ht, alice, addrType)
// Let's fund a PSBT now where we want to send a few
// sats to our main address.
assertPsbtFundSignSpend(
ht, alice, fundOutputs, changeType, false,
)
// Send all coins back to a single address once again.
sendAllCoinsToAddrType(ht, alice, addrType)
// And now make sure the alternate way of signing a
// PSBT, which is calling FinalizePsbt directly, also
// works for this address type.
assertPsbtFundSignSpend(
ht, alice, fundOutputs, changeType, true,
)
}
}
}
// testFundPsbt tests the FundPsbt RPC use cases that aren't covered by the PSBT
// channel funding tests above. These specifically are the use cases of funding
// a PSBT that already specifies an input but where the user still wants the
// wallet to perform coin selection.
func testFundPsbt(ht *lntest.HarnessTest) {
// We test a pay-join between Alice and Bob. Bob wants to send Alice
// 5 million Satoshis in a non-obvious way. So Bob selects a UTXO that's
// bigger than 5 million Satoshis and expects the change minus the send
// amount back. Alice then funds the PSBT with coins of her own and
// combines her change with the 5 million Satoshis from Bob. With this
// Alice ends up paying the fees for a transfer to her.
const sendAmount = 5_000_000
aliceAddr := ht.Alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
bobAddr := ht.Bob.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
ht.Alice.UpdateState()
ht.Bob.UpdateState()
aliceStartBalance := ht.Alice.State.Wallet.TotalBalance
bobStartBalance := ht.Bob.State.Wallet.TotalBalance
var bobUtxo *lnrpc.Utxo
bobUnspent := ht.Bob.RPC.ListUnspent(&walletrpc.ListUnspentRequest{})
for _, utxo := range bobUnspent.Utxos {
if utxo.AmountSat > sendAmount {
bobUtxo = utxo
break
}
}
if bobUtxo == nil {
ht.Fatalf("Bob doesn't have a UTXO of at least %d sats",
sendAmount)
}
bobUtxoTxHash, err := chainhash.NewHash(bobUtxo.Outpoint.TxidBytes)
require.NoError(ht, err)
tx := wire.NewMsgTx(2)
tx.TxIn = append(tx.TxIn, &wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: *bobUtxoTxHash,
Index: bobUtxo.Outpoint.OutputIndex,
},
})
tx.TxOut = append(tx.TxOut, &wire.TxOut{
// Change going back to Bob.
PkScript: addressToPkScript(ht, bobAddr.Address),
Value: bobUtxo.AmountSat - sendAmount,
}, &wire.TxOut{
// Amount to be sent to Alice, but we'll also send her change
// here.
PkScript: addressToPkScript(ht, aliceAddr.Address),
Value: sendAmount,
})
packet, err := psbt.NewFromUnsignedTx(tx)
require.NoError(ht, err)
derivation, trDerivation := getAddressBip32Derivation(
ht, bobUtxo.Address, ht.Bob,
)
bobUtxoPkScript, _ := hex.DecodeString(bobUtxo.PkScript)
firstInput := &packet.Inputs[0]
firstInput.WitnessUtxo = &wire.TxOut{
PkScript: bobUtxoPkScript,
Value: bobUtxo.AmountSat,
}
firstInput.Bip32Derivation = []*psbt.Bip32Derivation{derivation}
firstInput.TaprootBip32Derivation = []*psbt.TaprootBip32Derivation{
trDerivation,
}
if txscript.IsPayToWitnessPubKeyHash(bobUtxoPkScript) {
packet.Inputs[0].SighashType = txscript.SigHashAll
}
// We have the template now. Bob basically funds the 5 million Sats to
// send to Alice and Alice now only needs to coin select to pay for the
// fees.
fundedPacket := fundPsbtCoinSelect(ht, ht.Alice, packet, 1)
txFee, err := fundedPacket.GetTxFee()
require.NoError(ht, err)
// We now let Bob sign the transaction.
signedPacket := signPacket(ht, ht.Bob, fundedPacket)
// And then Alice, which should give us a fully signed TX.
signedPacket = signPacket(ht, ht.Alice, signedPacket)
// We should be able to finalize the PSBT and extract the final TX now.
extractPublishAndMine(ht, ht.Alice, signedPacket)
// Make sure the new wallet balances are reflected correctly.
ht.AssertActiveNodesSynced()
ht.Alice.UpdateState()
ht.Bob.UpdateState()
require.Equal(
ht, aliceStartBalance+sendAmount-int64(txFee),
ht.Alice.State.Wallet.TotalBalance,
)
require.Equal(
ht, bobStartBalance-sendAmount,
ht.Bob.State.Wallet.TotalBalance,
)
}
// addressToPkScript parses the given address string and returns the pkScript
// for the regtest environment.
func addressToPkScript(t testing.TB, addr string) []byte {
parsed, err := btcutil.DecodeAddress(addr, harnessNetParams)
require.NoError(t, err)
pkScript, err := txscript.PayToAddrScript(parsed)
require.NoError(t, err)
return pkScript
}
// getAddressBip32Derivation returns the PSBT BIP-0032 derivation info of an
// address.
func getAddressBip32Derivation(t testing.TB, addr string,
node *node.HarnessNode) (*psbt.Bip32Derivation,
*psbt.TaprootBip32Derivation) {
// We can't query a single address directly, so we just query all wallet
// addresses.
addresses := node.RPC.ListAddresses(
&walletrpc.ListAddressesRequest{},
)
var (
path []uint32
pubKeyBytes []byte
err error
)
for _, account := range addresses.AccountWithAddresses {
for _, address := range account.Addresses {
if address.Address == addr {
path, err = lntest.ParseDerivationPath(
address.DerivationPath,
)
require.NoError(t, err)
pubKeyBytes = address.PublicKey
}
}
}
if len(path) != 5 || len(pubKeyBytes) == 0 {
t.Fatalf("Derivation path for address %s not found or invalid",
addr)
}
// The actual derivation path in a PSBT needs to be using the hardened
// uint32 notation for the first three elements.
path[0] += hdkeychain.HardenedKeyStart
path[1] += hdkeychain.HardenedKeyStart
path[2] += hdkeychain.HardenedKeyStart
return &psbt.Bip32Derivation{
PubKey: pubKeyBytes,
Bip32Path: path,
}, &psbt.TaprootBip32Derivation{
XOnlyPubKey: pubKeyBytes[1:],
Bip32Path: path,
}
}
// fundPsbtCoinSelect calls the FundPsbt RPC on the given node using the coin
// selection with template PSBT mode.
func fundPsbtCoinSelect(t testing.TB, node *node.HarnessNode,
packet *psbt.Packet, changeIndex int32) *psbt.Packet {
var buf bytes.Buffer
err := packet.Serialize(&buf)
require.NoError(t, err)
cs := &walletrpc.PsbtCoinSelect{
Psbt: buf.Bytes(),
}
if changeIndex >= 0 {
cs.ChangeOutput = &walletrpc.PsbtCoinSelect_ExistingOutputIndex{
ExistingOutputIndex: 1,
}
} else {
cs.ChangeOutput = &walletrpc.PsbtCoinSelect_Add{
Add: true,
}
}
fundResp := node.RPC.FundPsbt(&walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_CoinSelect{
CoinSelect: cs,
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 50,
},
})
fundedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(fundResp.FundedPsbt), false,
)
require.NoError(t, err)
return fundedPacket
}
// signPacket calls the SignPsbt RPC on the given node.
func signPacket(t testing.TB, node *node.HarnessNode,
packet *psbt.Packet) *psbt.Packet {
var buf bytes.Buffer
err := packet.Serialize(&buf)
require.NoError(t, err)
signResp := node.RPC.SignPsbt(&walletrpc.SignPsbtRequest{
FundedPsbt: buf.Bytes(),
})
// Let's make sure we have a partial signature.
signedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(signResp.SignedPsbt), false,
)
require.NoError(t, err)
return signedPacket
}
// extractAndPublish extracts the final transaction from the packet and
// publishes it with the given node, mines a block and asserts the TX was mined
// successfully.
func extractPublishAndMine(ht *lntest.HarnessTest, node *node.HarnessNode,
packet *psbt.Packet) *wire.MsgTx {
err := psbt.MaybeFinalizeAll(packet)
require.NoError(ht, err)
finalTx, err := psbt.Extract(packet)
require.NoError(ht, err)
var buf bytes.Buffer
err = finalTx.Serialize(&buf)
require.NoError(ht, err)
// Publish the second transaction and then mine both of them.
node.RPC.PublishTransaction(&walletrpc.Transaction{TxHex: buf.Bytes()})
// Mine one block which should contain two transactions.
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
txHash := finalTx.TxHash()
ht.AssertTxInBlock(block, &txHash)
return finalTx
}
// assertPsbtSpend creates an output with the given pkScript on chain and then
// attempts to create a sweep transaction that is signed using the SignPsbt RPC
// that spends that output again.
func assertPsbtSpend(ht *lntest.HarnessTest, alice *node.HarnessNode,
pkScript []byte, decorateUnsigned func(*psbt.Packet),
verifySigned func(*psbt.Packet)) {
// Let's send some coins to that address now.
utxo := &wire.TxOut{
Value: 600_000,
PkScript: pkScript,
}
req := &walletrpc.SendOutputsRequest{
Outputs: []*signrpc.TxOut{{
Value: utxo.Value,
PkScript: utxo.PkScript,
}},
MinConfs: 0,
SpendUnconfirmed: true,
SatPerKw: 2500,
}
resp := alice.RPC.SendOutputs(req)
prevTx := wire.NewMsgTx(2)
err := prevTx.Deserialize(bytes.NewReader(resp.RawTx))
require.NoError(ht, err)
prevOut := -1
for idx, txOut := range prevTx.TxOut {
if bytes.Equal(txOut.PkScript, pkScript) {
prevOut = idx
}
}
require.Greater(ht, prevOut, -1)
// Okay, we have everything we need to create a PSBT now.
pendingTx := &wire.MsgTx{
Version: 2,
TxIn: []*wire.TxIn{{
PreviousOutPoint: wire.OutPoint{
Hash: prevTx.TxHash(),
Index: uint32(prevOut),
},
}},
// We send to the same address again, but deduct some fees.
TxOut: []*wire.TxOut{{
Value: utxo.Value - 600,
PkScript: utxo.PkScript,
}},
}
packet, err := psbt.NewFromUnsignedTx(pendingTx)
require.NoError(ht, err)
// We first try to sign the psbt without the necessary input data
// which should fail with the expected error.
var buf bytes.Buffer
err = packet.Serialize(&buf)
require.NoError(ht, err)
signReq := &walletrpc.SignPsbtRequest{FundedPsbt: buf.Bytes()}
err = alice.RPC.SignPsbtErr(signReq)
require.ErrorContains(ht, err, "input (index=0) doesn't specify "+
"any UTXO info", "error does not match")
// Now let's add the meta information that we need for signing.
packet.Inputs[0].WitnessUtxo = utxo
packet.Inputs[0].NonWitnessUtxo = prevTx
decorateUnsigned(packet)
// That's it, we should be able to sign the PSBT now.
signedPacket := signPacket(ht, alice, packet)
// Allow the caller to also verify (and potentially move) some of the
// returned fields.
verifySigned(signedPacket)
// We should be able to finalize the PSBT and extract the final TX now.
err = psbt.MaybeFinalizeAll(signedPacket)
require.NoError(ht, err)
finalTx, err := psbt.Extract(signedPacket)
require.NoError(ht, err)
// Make sure we can also sign a second time. This makes sure any key
// tweaking that happened for the signing didn't affect any keys in the
// cache.
signedPacket2 := signPacket(ht, alice, packet)
verifySigned(signedPacket2)
buf.Reset()
err = finalTx.Serialize(&buf)
require.NoError(ht, err)
// Publish the second transaction and then mine both of them.
txReq := &walletrpc.Transaction{TxHex: buf.Bytes()}
alice.RPC.PublishTransaction(txReq)
// Mine one block which should contain two transactions.
block := ht.MineBlocksAndAssertNumTxes(1, 2)[0]
firstTxHash := prevTx.TxHash()
secondTxHash := finalTx.TxHash()
ht.AssertTxInBlock(block, &firstTxHash)
ht.AssertTxInBlock(block, &secondTxHash)
}
// assertPsbtFundSignSpend funds a PSBT from the internal wallet and then
// attempts to sign it by using the SignPsbt or FinalizePsbt method.
func assertPsbtFundSignSpend(ht *lntest.HarnessTest, alice *node.HarnessNode,
fundOutputs map[string]uint64, changeType walletrpc.ChangeAddressType,
useFinalize bool) {
fundResp := alice.RPC.FundPsbt(&walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Raw{
Raw: &walletrpc.TxTemplate{
Outputs: fundOutputs,
},
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 2,
},
MinConfs: 1,
ChangeType: changeType,
},
)
require.GreaterOrEqual(ht, fundResp.ChangeOutputIndex, int32(-1))
// Make sure our change output has all the meta information required for
// signing.
fundedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(fundResp.FundedPsbt), false,
)
require.NoError(ht, err)
pOut := fundedPacket.Outputs[fundResp.ChangeOutputIndex]
require.NotEmpty(ht, pOut.Bip32Derivation)
derivation := pOut.Bip32Derivation[0]
_, err = btcec.ParsePubKey(derivation.PubKey)
require.NoError(ht, err)
require.Len(ht, derivation.Bip32Path, 5)
// Ensure we get the change output properly decorated with all the new
// Taproot related fields, if it is a Taproot output.
if changeType == walletrpc.ChangeAddressType_CHANGE_ADDRESS_TYPE_P2TR {
require.NotEmpty(ht, pOut.TaprootBip32Derivation)
require.NotEmpty(ht, pOut.TaprootInternalKey)
trDerivation := pOut.TaprootBip32Derivation[0]
require.Equal(
ht, trDerivation.XOnlyPubKey, pOut.TaprootInternalKey,
)
_, err := schnorr.ParsePubKey(pOut.TaprootInternalKey)
require.NoError(ht, err)
}
var signedPsbt []byte
if useFinalize {
finalizeResp := alice.RPC.FinalizePsbt(
&walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
},
)
signedPsbt = finalizeResp.SignedPsbt
} else {
signResp := alice.RPC.SignPsbt(
&walletrpc.SignPsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
},
)
signedPsbt = signResp.SignedPsbt
}
// Let's make sure we have a partial signature.
signedPacket, err := psbt.NewFromRawBytes(
bytes.NewReader(signedPsbt), false,
)
require.NoError(ht, err)
// We should be able to finalize the PSBT, extract and publish the final
// TX now.
finalTx := extractPublishAndMine(ht, alice, signedPacket)
// Check type of the change script depending on the change address
// type we provided in FundPsbt.
changeScript := finalTx.TxOut[fundResp.ChangeOutputIndex].PkScript
assertChangeScriptType(ht, changeScript, changeType)
}
// assertChangeScriptType checks if the given script has the right type given
// the change address type we used in FundPsbt. By default, the script should
// be a P2WPKH one.
func assertChangeScriptType(ht *lntest.HarnessTest, script []byte,
fundChangeType walletrpc.ChangeAddressType) {
switch fundChangeType {
case walletrpc.ChangeAddressType_CHANGE_ADDRESS_TYPE_P2TR:
require.True(ht, txscript.IsPayToTaproot(script))
default:
require.True(ht, txscript.IsPayToWitnessPubKeyHash(script))
}
}
// deriveInternalKey derives a signing key and returns its descriptor, full
// derivation path and parsed public key.
func deriveInternalKey(ht *lntest.HarnessTest,
alice *node.HarnessNode) (*signrpc.KeyDescriptor, *btcec.PublicKey,
[]uint32) {
// For the next step, we need a public key. Let's use a special family
// for this.
req := &walletrpc.KeyReq{KeyFamily: testTaprootKeyFamily}
keyDesc := alice.RPC.DeriveNextKey(req)
// The DeriveNextKey returns a key from the internal 1017 scope.
fullDerivationPath := []uint32{
hdkeychain.HardenedKeyStart + keychain.BIP0043Purpose,
hdkeychain.HardenedKeyStart + harnessNetParams.HDCoinType,
hdkeychain.HardenedKeyStart + uint32(keyDesc.KeyLoc.KeyFamily),
0,
uint32(keyDesc.KeyLoc.KeyIndex),
}
parsedPubKey, err := btcec.ParsePubKey(keyDesc.RawKeyBytes)
require.NoError(ht, err)
return keyDesc, parsedPubKey, fullDerivationPath
}
// sendAllCoinsToAddrType sweeps all coins from the wallet and sends them to a
// new address of the given type.
func sendAllCoinsToAddrType(ht *lntest.HarnessTest,
hn *node.HarnessNode, addrType lnrpc.AddressType) {
resp := hn.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: addrType,
})
hn.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
SpendUnconfirmed: true,
TargetConf: 6,
})
ht.MineBlocksAndAssertNumTxes(1, 1)
}
// testPsbtChanFundingFailFlow tests the failing of a funding flow by the
// remote peer and that the initiator receives the expected error and aborts
// the channel opening. The psbt funding flow is used to simulate this behavior
// because we can easily let the remote peer run into the timeout.
func testPsbtChanFundingFailFlow(ht *lntest.HarnessTest) {
const chanSize = funding.MaxBtcFundingAmount
// Decrease the timeout window for the remote peer to accelerate the
// funding fail process.
args := []string{
"--dev.reservationtimeout=1s",
"--dev.zombiesweeperinterval=1s",
}
ht.RestartNodeWithExtraArgs(ht.Bob, args)
// Before we start the test, we'll ensure both sides are connected so
// the funding flow can be properly executed.
alice := ht.Alice
bob := ht.Bob
ht.EnsureConnected(alice, bob)
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID := ht.Random32Bytes()
// Now that we have the pending channel ID, Alice will open the channel
// by specifying a PSBT shim.
chanUpdates, _ := ht.OpenChannelPsbt(
alice, bob, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
},
},
},
},
)
// We received the AcceptChannel msg from our peer but we are not going
// to fund this channel but instead wait for our peer to fail the
// funding workflow with an internal error.
ht.ReceiveOpenChannelError(chanUpdates, chanfunding.ErrRemoteCanceled)
}
// testPsbtChanFundingWithUnstableUtxos tests that channel openings with
// unstable utxos, in this case in particular unconfirmed utxos still in use by
// the sweeper subsystem, are not considered when opening a channel. They bear
// the risk of being RBFed and are therefore not safe to open a channel with.
func testPsbtChanFundingWithUnstableUtxos(ht *lntest.HarnessTest) {
fundingAmt := btcutil.Amount(2_000_000)
// First, we'll create two new nodes that we'll use to open channel
// between for this test.
carol := ht.NewNode("carol", nil)
dave := ht.NewNode("dave", nil)
ht.EnsureConnected(carol, dave)
// Fund Carol's wallet with a confirmed utxo.
ht.FundCoins(fundingAmt, carol)
ht.AssertNumUTXOs(carol, 1)
// Now spend the coins to create an unconfirmed transaction. This is
// necessary to test also the neutrino behaviour. For neutrino nodes
// only unconfirmed transactions originating from this node will be
// recognized as unconfirmed.
req := &lnrpc.NewAddressRequest{Type: AddrTypeTaprootPubkey}
resp := carol.RPC.NewAddress(req)
sendCoinsResp := carol.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: resp.Address,
SendAll: true,
SatPerVbyte: 1,
})
walletUtxo := ht.AssertNumUTXOsUnconfirmed(carol, 1)[0]
require.EqualValues(ht, sendCoinsResp.Txid, walletUtxo.Outpoint.TxidStr)
chanSize := btcutil.Amount(walletUtxo.AmountSat / 2)
// We use STATIC_REMOTE_KEY channels to easily generate sweeps without
// anchor sweeps interfering.
cType := lnrpc.CommitmentType_STATIC_REMOTE_KEY
// We open a normal channel so that we can force-close it and produce
// a sweeper originating utxo.
update := ht.OpenChannelAssertPending(carol, dave,
lntest.OpenChannelParams{
Amt: chanSize,
SpendUnconfirmed: true,
})
channelPoint := lntest.ChanPointFromPendingUpdate(update)
ht.MineBlocksAndAssertNumTxes(1, 2)
// Now force close the channel by dave to generate a utxo which is
// swept by the sweeper. We have STATIC_REMOTE_KEY Channel Types.
ht.CloseChannelAssertPending(dave, channelPoint, true)
ht.MineBlocksAndAssertNumTxes(1, 1)
// Make sure Carol sees her to_remote output from the force close tx.
ht.AssertNumPendingSweeps(carol, 1)
// Mine one block to trigger the sweep transaction.
ht.MineEmptyBlocks(1)
// We wait for the to_remote sweep tx.
ht.AssertNumUTXOsUnconfirmed(carol, 1)
// We need the maximum funding amount to ensure we are opening the next
// channel with all available utxos.
carolBalance := carol.RPC.WalletBalance()
// The max chan size needs to account for the fee opening the channel
// itself.
// NOTE: We need to always account for a change here, because their is
// an inaccurarcy in the backend code.
chanSize = btcutil.Amount(carolBalance.TotalBalance) -
fundingFee(2, true)
// Now open a channel of this amount via a psbt workflow.
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID := ht.Random32Bytes()
// Now that we have the pending channel ID, Carol will open the channel
// by specifying a PSBT shim. We expect it to fail because we try to
// fund a channel with the maximum amount of our wallet, which also
// includes an unstable utxo originating from the sweeper.
chanUpdates, tempPsbt := ht.OpenChannelPsbt(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
},
},
},
CommitmentType: cType,
SpendUnconfirmed: true,
},
)
fundReq := &walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Psbt{
Psbt: tempPsbt,
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 50,
},
MinConfs: 0,
SpendUnconfirmed: true,
}
carol.RPC.FundPsbtAssertErr(fundReq)
// We confirm the sweep transaction and make sure we see it as confirmed
// from the perspective of the underlying wallet.
ht.MineBlocksAndAssertNumTxes(1, 1)
// We expect 2 confirmed utxos, the change of the prior successful
// channel opening and the confirmed to_remote output.
ht.AssertNumUTXOsConfirmed(carol, 2)
// We fund the psbt request again and now all utxo are stable and can
// finally be used to fund the channel.
fundResp := carol.RPC.FundPsbt(fundReq)
// We verify the psbt before finalizing it.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID,
FundedPsbt: fundResp.FundedPsbt,
},
},
})
// Now we'll ask Carol's wallet to sign the PSBT so we can finish the
// funding flow.
finalizeReq := &walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
}
finalizeRes := carol.RPC.FinalizePsbt(finalizeReq)
// We've signed our PSBT now, let's pass it to the intent again.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtFinalize{
PsbtFinalize: &lnrpc.FundingPsbtFinalize{
PendingChanId: pendingChanID,
SignedPsbt: finalizeRes.SignedPsbt,
},
},
})
// Consume the "channel pending" update. This waits until the funding
// transaction was fully compiled.
updateResp := ht.ReceiveOpenChannelUpdate(chanUpdates)
upd, ok := updateResp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
channelPoint2 := &lnrpc.ChannelPoint{
FundingTxid: &lnrpc.ChannelPoint_FundingTxidBytes{
FundingTxidBytes: upd.ChanPending.Txid,
},
OutputIndex: upd.ChanPending.OutputIndex,
}
var finalTx wire.MsgTx
err := finalTx.Deserialize(bytes.NewReader(finalizeRes.RawFinalTx))
require.NoError(ht, err)
txHash := finalTx.TxHash()
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
ht.AssertTxInBlock(block, &txHash)
// Now we do the same but instead use preselected utxos to verify that
// these utxos respects the utxo restrictions on sweeper unconfirmed
// inputs as well.
// Now force close the channel by dave to generate a utxo which is
// swept by the sweeper. We have STATIC_REMOTE_KEY Channel Types.
ht.CloseChannelAssertPending(dave, channelPoint2, true)
ht.MineBlocksAndAssertNumTxes(1, 1)
// Make sure Carol sees her to_remote output from the force close tx.
ht.AssertNumPendingSweeps(carol, 1)
// Mine one block to trigger the sweep transaction.
ht.MineEmptyBlocks(1)
// We wait for the to_remote sweep tx of channelPoint2.
utxos := ht.AssertNumUTXOsUnconfirmed(carol, 1)
// We need the maximum funding amount to ensure we are opening the next
// channel with all available utxos.
carolBalance = carol.RPC.WalletBalance()
// The max chan size needs to account for the fee opening the channel
// itself.
// NOTE: We need to always account for a change here, because their is
// an inaccurarcy in the backend code calculating the fee of a 1 input
// one output transaction, it always account for a channge in that case
// as well.
chanSize = btcutil.Amount(carolBalance.TotalBalance) -
fundingFee(2, true)
// Now open a channel of this amount via a psbt workflow.
// At this point, we can begin our PSBT channel funding workflow. We'll
// start by generating a pending channel ID externally that will be used
// to track this new funding type.
pendingChanID = ht.Random32Bytes()
// Now that we have the pending channel ID, Carol will open the channel
// by specifying a PSBT shim. We expect it to fail because we try to
// fund a channel with the maximum amount of our wallet, which also
// includes an unstable utxo originating from the sweeper.
chanUpdates, tempPsbt = ht.OpenChannelPsbt(
carol, dave, lntest.OpenChannelParams{
Amt: chanSize,
FundingShim: &lnrpc.FundingShim{
Shim: &lnrpc.FundingShim_PsbtShim{
PsbtShim: &lnrpc.PsbtShim{
PendingChanId: pendingChanID,
},
},
},
CommitmentType: cType,
SpendUnconfirmed: true,
},
)
// Add selected utxos to the funding intent.
decodedPsbt, err := psbt.NewFromRawBytes(
bytes.NewReader(tempPsbt), false,
)
require.NoError(ht, err)
for _, input := range utxos {
txHash, err := chainhash.NewHashFromStr(input.Outpoint.TxidStr)
require.NoError(ht, err)
decodedPsbt.UnsignedTx.TxIn = append(
decodedPsbt.UnsignedTx.TxIn, &wire.TxIn{
PreviousOutPoint: wire.OutPoint{
Hash: *txHash,
Index: input.Outpoint.OutputIndex,
},
})
// The inputs we are using to fund the transaction are known to
// the internal wallet that's why we just append an empty input
// element so that the parsing of the psbt package succeeds.
decodedPsbt.Inputs = append(decodedPsbt.Inputs, psbt.PInput{})
}
var psbtBytes bytes.Buffer
err = decodedPsbt.Serialize(&psbtBytes)
require.NoError(ht, err)
fundReq = &walletrpc.FundPsbtRequest{
Template: &walletrpc.FundPsbtRequest_Psbt{
Psbt: psbtBytes.Bytes(),
},
Fees: &walletrpc.FundPsbtRequest_SatPerVbyte{
SatPerVbyte: 50,
},
MinConfs: 0,
SpendUnconfirmed: true,
}
carol.RPC.FundPsbtAssertErr(fundReq)
ht.MineBlocksAndAssertNumTxes(1, 1)
// We expect 2 confirmed utxos, the change of the last successful
// channel opening and the confirmed to_remote output of channelPoint2.
ht.AssertNumUTXOsConfirmed(carol, 2)
// After the confirmation of the sweep to_remote output the funding
// will now proceed.
fundResp = carol.RPC.FundPsbt(fundReq)
// We verify the funded psbt.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtVerify{
PsbtVerify: &lnrpc.FundingPsbtVerify{
PendingChanId: pendingChanID,
FundedPsbt: fundResp.FundedPsbt,
},
},
})
// Now we'll ask Carol's wallet to sign the PSBT so we can finish the
// funding flow.
finalizeReq = &walletrpc.FinalizePsbtRequest{
FundedPsbt: fundResp.FundedPsbt,
}
finalizeRes = carol.RPC.FinalizePsbt(finalizeReq)
// We've signed our PSBT now, let's pass it to the intent again.
carol.RPC.FundingStateStep(&lnrpc.FundingTransitionMsg{
Trigger: &lnrpc.FundingTransitionMsg_PsbtFinalize{
PsbtFinalize: &lnrpc.FundingPsbtFinalize{
PendingChanId: pendingChanID,
SignedPsbt: finalizeRes.SignedPsbt,
},
},
})
// Consume the "channel pending" update. This waits until the funding
// transaction was fully compiled.
updateResp = ht.ReceiveOpenChannelUpdate(chanUpdates)
upd, ok = updateResp.Update.(*lnrpc.OpenStatusUpdate_ChanPending)
require.True(ht, ok)
err = finalTx.Deserialize(bytes.NewReader(finalizeRes.RawFinalTx))
require.NoError(ht, err)
txHash = finalTx.TxHash()
block = ht.MineBlocksAndAssertNumTxes(1, 1)[0]
ht.AssertTxInBlock(block, &txHash)
}