lnd/routing/probability_estimator_test.go
2022-02-10 11:02:02 +01:00

164 lines
4.8 KiB
Go

package routing
import (
"testing"
"time"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
)
const (
// Define node identifiers.
node1 = 1
node2 = 2
node3 = 3
// untriedNode is a node id for which we don't record any results in
// this test. This can be used to assert the probability for untried
// ndoes.
untriedNode = 255
// Define test estimator parameters.
aprioriHopProb = 0.6
aprioriWeight = 0.75
aprioriPrevSucProb = 0.95
)
type estimatorTestContext struct {
t *testing.T
estimator *probabilityEstimator
// results contains a list of last results. Every element in the list
// corresponds to the last result towards a node. The list index equals
// the node id. So the first element in the list is the result towards
// node 0.
results map[int]TimedPairResult
}
func newEstimatorTestContext(t *testing.T) *estimatorTestContext {
return &estimatorTestContext{
t: t,
estimator: &probabilityEstimator{
ProbabilityEstimatorCfg: ProbabilityEstimatorCfg{
AprioriHopProbability: aprioriHopProb,
AprioriWeight: aprioriWeight,
PenaltyHalfLife: time.Hour,
},
prevSuccessProbability: aprioriPrevSucProb,
},
}
}
// assertPairProbability asserts that the calculated success probability is
// correct.
func (c *estimatorTestContext) assertPairProbability(now time.Time,
toNode byte, amt lnwire.MilliSatoshi, expectedProb float64) {
c.t.Helper()
results := make(NodeResults)
for i, r := range c.results {
results[route.Vertex{byte(i)}] = r
}
const tolerance = 0.01
p := c.estimator.getPairProbability(now, results, route.Vertex{toNode}, amt)
diff := p - expectedProb
if diff > tolerance || diff < -tolerance {
c.t.Fatalf("expected probability %v for node %v, but got %v",
expectedProb, toNode, p)
}
}
// TestProbabilityEstimatorNoResults tests the probability estimation when no
// results are available.
func TestProbabilityEstimatorNoResults(t *testing.T) {
ctx := newEstimatorTestContext(t)
ctx.assertPairProbability(testTime, 0, 0, aprioriHopProb)
}
// TestProbabilityEstimatorOneSuccess tests the probability estimation for nodes
// that have a single success result.
func TestProbabilityEstimatorOneSuccess(t *testing.T) {
ctx := newEstimatorTestContext(t)
ctx.results = map[int]TimedPairResult{
node1: {
SuccessAmt: lnwire.MilliSatoshi(1000),
},
}
// Because of the previous success, this channel keep reporting a high
// probability.
ctx.assertPairProbability(
testTime, node1, 100, aprioriPrevSucProb,
)
// Untried channels are also influenced by the success. With a
// aprioriWeight of 0.75, the a priori probability is assigned weight 3.
expectedP := (3*aprioriHopProb + 1*aprioriPrevSucProb) / 4
ctx.assertPairProbability(testTime, untriedNode, 100, expectedP)
}
// TestProbabilityEstimatorOneFailure tests the probability estimation for nodes
// that have a single failure.
func TestProbabilityEstimatorOneFailure(t *testing.T) {
ctx := newEstimatorTestContext(t)
ctx.results = map[int]TimedPairResult{
node1: {
FailTime: testTime.Add(-time.Hour),
FailAmt: lnwire.MilliSatoshi(50),
},
}
// For an untried node, we expected the node probability. The weight for
// the failure after one hour is 0.5. This makes the node probability
// 0.51:
expectedNodeProb := (3*aprioriHopProb + 0.5*0) / 3.5
ctx.assertPairProbability(testTime, untriedNode, 100, expectedNodeProb)
// The pair probability decays back to the node probability. With the
// weight at 0.5, we expected a pair probability of 0.5 * 0.51 = 0.25.
ctx.assertPairProbability(testTime, node1, 100, expectedNodeProb/2)
}
// TestProbabilityEstimatorMix tests the probability estimation for nodes for
// which a mix of successes and failures is recorded.
func TestProbabilityEstimatorMix(t *testing.T) {
ctx := newEstimatorTestContext(t)
ctx.results = map[int]TimedPairResult{
node1: {
SuccessAmt: lnwire.MilliSatoshi(1000),
},
node2: {
FailTime: testTime.Add(-2 * time.Hour),
FailAmt: lnwire.MilliSatoshi(50),
},
node3: {
FailTime: testTime.Add(-3 * time.Hour),
FailAmt: lnwire.MilliSatoshi(50),
},
}
// We expect the probability for a previously successful channel to
// remain high.
ctx.assertPairProbability(testTime, node1, 100, prevSuccessProbability)
// For an untried node, we expected the node probability to be returned.
// This is a weighted average of the results above and the a priori
// probability: 0.62.
expectedNodeProb := (3*aprioriHopProb + 1*prevSuccessProbability) /
(3 + 1 + 0.25 + 0.125)
ctx.assertPairProbability(testTime, untriedNode, 100, expectedNodeProb)
// For the previously failed connection with node 1, we expect 0.75 *
// the node probability = 0.47.
ctx.assertPairProbability(testTime, node2, 100, expectedNodeProb*0.75)
}