lnd/itest/lnd_misc_test.go

1300 lines
42 KiB
Go

package itest
import (
"context"
"encoding/hex"
"fmt"
"io/ioutil"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcwallet/wallet"
"github.com/lightningnetwork/lnd/chainreg"
"github.com/lightningnetwork/lnd/funding"
"github.com/lightningnetwork/lnd/input"
"github.com/lightningnetwork/lnd/lncfg"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lnrpc/walletrpc"
"github.com/lightningnetwork/lnd/lntest"
"github.com/lightningnetwork/lnd/lntest/node"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwallet"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/stretchr/testify/require"
)
// testDisconnectingTargetPeer performs a test which disconnects Alice-peer
// from Bob-peer and then re-connects them again. We expect Alice to be able to
// disconnect at any point.
//
// TODO(yy): move to lnd_network_test.
func testDisconnectingTargetPeer(ht *lntest.HarnessTest) {
// We'll start both nodes with a high backoff so that they don't
// reconnect automatically during our test.
args := []string{
"--minbackoff=1m",
"--maxbackoff=1m",
}
alice, bob := ht.Alice, ht.Bob
ht.RestartNodeWithExtraArgs(alice, args)
ht.RestartNodeWithExtraArgs(bob, args)
// Start by connecting Alice and Bob with no channels.
ht.EnsureConnected(alice, bob)
chanAmt := funding.MaxBtcFundingAmount
pushAmt := btcutil.Amount(0)
// Create a new channel that requires 1 confs before it's considered
// open, then broadcast the funding transaction
const numConfs = 1
p := lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
}
stream := ht.OpenChannelAssertStream(alice, bob, p)
// At this point, the channel's funding transaction will have been
// broadcast, but not confirmed. Alice and Bob's nodes should reflect
// this when queried via RPC.
ht.AssertNumPendingOpenChannels(alice, 1)
ht.AssertNumPendingOpenChannels(bob, 1)
// Disconnect Alice-peer from Bob-peer should have no error.
ht.DisconnectNodes(alice, bob)
// Assert that the connection was torn down.
ht.AssertNotConnected(alice, bob)
// Mine a block, then wait for Alice's node to notify us that the
// channel has been opened.
ht.MineBlocksAndAssertNumTxes(numConfs, 1)
// At this point, the channel should be fully opened and there should
// be no pending channels remaining for either node.
ht.AssertNumPendingOpenChannels(alice, 0)
ht.AssertNumPendingOpenChannels(bob, 0)
// Reconnect the nodes so that the channel can become active.
ht.ConnectNodes(alice, bob)
// The channel should be listed in the peer information returned by
// both peers.
chanPoint := ht.WaitForChannelOpenEvent(stream)
// Check both nodes to ensure that the channel is ready for operation.
ht.AssertChannelExists(alice, chanPoint)
ht.AssertChannelExists(bob, chanPoint)
// Disconnect Alice-peer from Bob-peer should have no error.
ht.DisconnectNodes(alice, bob)
// Check existing connection.
ht.AssertNotConnected(alice, bob)
// Reconnect both nodes before force closing the channel.
ht.ConnectNodes(alice, bob)
// Finally, immediately close the channel. This function will also
// block until the channel is closed and will additionally assert the
// relevant channel closing post conditions.
ht.ForceCloseChannel(alice, chanPoint)
// Disconnect Alice-peer from Bob-peer should have no error.
ht.DisconnectNodes(alice, bob)
// Check that the nodes not connected.
ht.AssertNotConnected(alice, bob)
// Finally, re-connect both nodes.
ht.ConnectNodes(alice, bob)
// Check existing connection.
ht.AssertConnected(alice, bob)
}
// testSphinxReplayPersistence verifies that replayed onion packets are
// rejected by a remote peer after a restart. We use a combination of unsafe
// configuration arguments to force Carol to replay the same sphinx packet
// after reconnecting to Dave, and compare the returned failure message with
// what we expect for replayed onion packets.
func testSphinxReplayPersistence(ht *lntest.HarnessTest) {
// Open a channel with 100k satoshis between Carol and Dave with Carol
// being the sole funder of the channel.
chanAmt := btcutil.Amount(100000)
// First, we'll create Dave, the receiver, and start him in hodl mode.
dave := ht.NewNode("Dave", []string{"--hodl.exit-settle"})
// Next, we'll create Carol and establish a channel to from her to
// Dave. Carol is started in both unsafe-replay which will cause her to
// replay any pending Adds held in memory upon reconnection.
carol := ht.NewNode("Carol", []string{"--unsafe-replay"})
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
ht.ConnectNodes(carol, dave)
chanPoint := ht.OpenChannel(
carol, dave, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Next, we'll create Fred who is going to initiate the payment and
// establish a channel to from him to Carol. We can't perform this test
// by paying from Carol directly to Dave, because the '--unsafe-replay'
// setup doesn't apply to locally added htlcs. In that case, the
// mailbox, that is responsible for generating the replay, is bypassed.
fred := ht.NewNode("Fred", nil)
ht.FundCoins(btcutil.SatoshiPerBitcoin, fred)
ht.ConnectNodes(fred, carol)
chanPointFC := ht.OpenChannel(
fred, carol, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
defer ht.CloseChannel(fred, chanPointFC)
// Now that the channel is open, create an invoice for Dave which
// expects a payment of 1000 satoshis from Carol paid via a particular
// preimage.
const paymentAmt = 1000
preimage := ht.Random32Bytes()
invoice := &lnrpc.Invoice{
Memo: "testing",
RPreimage: preimage,
Value: paymentAmt,
}
invoiceResp := dave.RPC.AddInvoice(invoice)
// Wait for all channels to be recognized and advertized.
ht.AssertTopologyChannelOpen(carol, chanPoint)
ht.AssertTopologyChannelOpen(dave, chanPoint)
ht.AssertTopologyChannelOpen(carol, chanPointFC)
ht.AssertTopologyChannelOpen(fred, chanPointFC)
// With the invoice for Dave added, send a payment from Fred paying
// to the above generated invoice.
req := &routerrpc.SendPaymentRequest{
PaymentRequest: invoiceResp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
payStream := fred.RPC.SendPayment(req)
// Dave's invoice should not be marked as settled.
msg := &invoicesrpc.LookupInvoiceMsg{
InvoiceRef: &invoicesrpc.LookupInvoiceMsg_PaymentAddr{
PaymentAddr: invoiceResp.PaymentAddr,
},
}
dbInvoice := dave.RPC.LookupInvoiceV2(msg)
require.NotEqual(ht, lnrpc.InvoiceHTLCState_SETTLED, dbInvoice.State,
"dave's invoice should not be marked as settled")
// With the payment sent but hedl, all balance related stats should not
// have changed.
ht.AssertAmountPaid("carol => dave", carol, chanPoint, 0, 0)
ht.AssertAmountPaid("dave <= carol", dave, chanPoint, 0, 0)
// Before we restart Dave, make sure both Carol and Dave have added the
// HTLC.
ht.AssertNumActiveHtlcs(carol, 2)
ht.AssertNumActiveHtlcs(dave, 1)
// With the first payment sent, restart dave to make sure he is
// persisting the information required to detect replayed sphinx
// packets.
ht.RestartNode(dave)
// Carol should retransmit the Add hedl in her mailbox on startup. Dave
// should not accept the replayed Add, and actually fail back the
// pending payment. Even though he still holds the original settle, if
// he does fail, it is almost certainly caused by the sphinx replay
// protection, as it is the only validation we do in hodl mode.
//
// Assert that Fred receives the expected failure after Carol sent a
// duplicate packet that fails due to sphinx replay detection.
ht.AssertPaymentStatusFromStream(payStream, lnrpc.Payment_FAILED)
ht.AssertLastHTLCError(fred, lnrpc.Failure_INVALID_ONION_VERSION)
// Since the payment failed, the balance should still be left
// unaltered.
ht.AssertAmountPaid("carol => dave", carol, chanPoint, 0, 0)
ht.AssertAmountPaid("dave <= carol", dave, chanPoint, 0, 0)
// Cleanup by mining the force close and sweep transaction.
ht.ForceCloseChannel(carol, chanPoint)
}
// testListChannels checks that the response from ListChannels is correct. It
// tests the values in all ChannelConstraints are returned as expected. Once
// ListChannels becomes mature, a test against all fields in ListChannels
// should be performed.
func testListChannels(ht *lntest.HarnessTest) {
const aliceRemoteMaxHtlcs = 50
const bobRemoteMaxHtlcs = 100
// Get the standby nodes and open a channel between them.
alice, bob := ht.Alice, ht.Bob
args := []string{fmt.Sprintf(
"--default-remote-max-htlcs=%v",
bobRemoteMaxHtlcs,
)}
ht.RestartNodeWithExtraArgs(bob, args)
// Connect Alice to Bob.
ht.EnsureConnected(alice, bob)
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel. The minial HTLC amount is set
// to 4200 msats.
const customizedMinHtlc = 4200
chanAmt := btcutil.Amount(100000)
pushAmt := btcutil.Amount(1000)
p := lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
MinHtlc: customizedMinHtlc,
RemoteMaxHtlcs: aliceRemoteMaxHtlcs,
}
chanPoint := ht.OpenChannel(alice, bob, p)
defer ht.CloseChannel(alice, chanPoint)
// Alice should have one channel opened with Bob.
ht.AssertNodeNumChannels(alice, 1)
// Bob should have one channel opened with Alice.
ht.AssertNodeNumChannels(bob, 1)
// Check the returned response is correct.
aliceChannel := ht.QueryChannelByChanPoint(alice, chanPoint)
// Query the channel again, this time with peer alias lookup.
aliceChannelWithAlias := ht.QueryChannelByChanPoint(
alice, chanPoint, lntest.WithPeerAliasLookup(),
)
// Since Alice is the initiator, she pays the commit fee.
aliceBalance := int64(chanAmt) - aliceChannel.CommitFee - int64(pushAmt)
bobAlias := bob.RPC.GetInfo().Alias
// Check the balance related fields are correct.
require.Equal(ht, aliceBalance, aliceChannel.LocalBalance)
require.Empty(ht, aliceChannel.PeerAlias)
require.Equal(ht, bobAlias, aliceChannelWithAlias.PeerAlias)
require.EqualValues(ht, pushAmt, aliceChannel.RemoteBalance)
require.EqualValues(ht, pushAmt, aliceChannel.PushAmountSat)
// Calculate the dust limit we'll use for the test.
dustLimit := lnwallet.DustLimitForSize(input.UnknownWitnessSize)
// defaultConstraints is a ChannelConstraints with default values. It
// is used to test against Alice's local channel constraints.
defaultConstraints := &lnrpc.ChannelConstraints{
CsvDelay: 4,
ChanReserveSat: 1000,
DustLimitSat: uint64(dustLimit),
MaxPendingAmtMsat: 99000000,
MinHtlcMsat: 1,
MaxAcceptedHtlcs: bobRemoteMaxHtlcs,
}
assertChannelConstraintsEqual(
ht, defaultConstraints, aliceChannel.LocalConstraints,
)
// customizedConstraints is a ChannelConstraints with customized
// values. Ideally, all these values can be passed in when creating the
// channel. Currently, only the MinHtlcMsat is customized. It is used
// to check against Alice's remote channel constratins.
customizedConstraints := &lnrpc.ChannelConstraints{
CsvDelay: 4,
ChanReserveSat: 1000,
DustLimitSat: uint64(dustLimit),
MaxPendingAmtMsat: 99000000,
MinHtlcMsat: customizedMinHtlc,
MaxAcceptedHtlcs: aliceRemoteMaxHtlcs,
}
assertChannelConstraintsEqual(
ht, customizedConstraints, aliceChannel.RemoteConstraints,
)
// Get the ListChannel response for Bob.
bobChannel := ht.QueryChannelByChanPoint(bob, chanPoint)
require.Equal(ht, aliceChannel.ChannelPoint, bobChannel.ChannelPoint,
"Bob's channel point mismatched")
// Query the channel again, this time with node alias lookup.
bobChannelWithAlias := ht.QueryChannelByChanPoint(
bob, chanPoint, lntest.WithPeerAliasLookup(),
)
aliceAlias := alice.RPC.GetInfo().Alias
// Check the balance related fields are correct.
require.Equal(ht, aliceBalance, bobChannel.RemoteBalance)
require.Empty(ht, bobChannel.PeerAlias)
require.Equal(ht, aliceAlias, bobChannelWithAlias.PeerAlias)
require.EqualValues(ht, pushAmt, bobChannel.LocalBalance)
require.EqualValues(ht, pushAmt, bobChannel.PushAmountSat)
// Check channel constraints match. Alice's local channel constraint
// should be equal to Bob's remote channel constraint, and her remote
// one should be equal to Bob's local one.
assertChannelConstraintsEqual(
ht, aliceChannel.LocalConstraints, bobChannel.RemoteConstraints,
)
assertChannelConstraintsEqual(
ht, aliceChannel.RemoteConstraints, bobChannel.LocalConstraints,
)
}
// testMaxPendingChannels checks that error is returned from remote peer if
// max pending channel number was exceeded and that '--maxpendingchannels' flag
// exists and works properly.
func testMaxPendingChannels(ht *lntest.HarnessTest) {
maxPendingChannels := lncfg.DefaultMaxPendingChannels + 1
amount := funding.MaxBtcFundingAmount
// Create a new node (Carol) with greater number of max pending
// channels.
args := []string{
fmt.Sprintf("--maxpendingchannels=%v", maxPendingChannels),
}
carol := ht.NewNode("Carol", args)
alice := ht.Alice
ht.ConnectNodes(alice, carol)
carolBalance := btcutil.Amount(maxPendingChannels) * amount
ht.FundCoins(carolBalance, carol)
// Send open channel requests without generating new blocks thereby
// increasing pool of pending channels. Then check that we can't open
// the channel if the number of pending channels exceed max value.
openStreams := make(
[]lnrpc.Lightning_OpenChannelClient, maxPendingChannels,
)
for i := 0; i < maxPendingChannels; i++ {
stream := ht.OpenChannelAssertStream(
alice, carol, lntest.OpenChannelParams{
Amt: amount,
},
)
openStreams[i] = stream
}
// Carol exhausted available amount of pending channels, next open
// channel request should cause ErrorGeneric to be sent back to Alice.
ht.OpenChannelAssertErr(
alice, carol, lntest.OpenChannelParams{
Amt: amount,
}, lnwire.ErrMaxPendingChannels,
)
// For now our channels are in pending state, in order to not interfere
// with other tests we should clean up - complete opening of the
// channel and then close it.
// Mine 6 blocks, then wait for node's to notify us that the channel
// has been opened. The funding transactions should be found within the
// first newly mined block. 6 blocks make sure the funding transaction
// has enough confirmations to be announced publicly.
block := ht.MineBlocksAndAssertNumTxes(6, maxPendingChannels)[0]
chanPoints := make([]*lnrpc.ChannelPoint, maxPendingChannels)
for i, stream := range openStreams {
fundingChanPoint := ht.WaitForChannelOpenEvent(stream)
fundingTxID := ht.GetChanPointFundingTxid(fundingChanPoint)
// Ensure that the funding transaction enters a block, and is
// properly advertised by Alice.
ht.Miner.AssertTxInBlock(block, fundingTxID)
ht.AssertTopologyChannelOpen(alice, fundingChanPoint)
// The channel should be listed in the peer information
// returned by both peers.
ht.AssertChannelExists(alice, fundingChanPoint)
chanPoints[i] = fundingChanPoint
}
// Next, close the channel between Alice and Carol, asserting that the
// channel has been properly closed on-chain.
for _, chanPoint := range chanPoints {
ht.CloseChannel(alice, chanPoint)
}
}
// testGarbageCollectLinkNodes tests that we properly garbage collect link
// nodes from the database and the set of persistent connections within the
// server.
func testGarbageCollectLinkNodes(ht *lntest.HarnessTest) {
const chanAmt = 1000000
alice, bob := ht.Alice, ht.Bob
// Open a channel between Alice and Bob which will later be
// cooperatively closed.
coopChanPoint := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Create Carol's node and connect Alice to her.
carol := ht.NewNode("Carol", nil)
ht.ConnectNodes(alice, carol)
// Open a channel between Alice and Carol which will later be force
// closed.
forceCloseChanPoint := ht.OpenChannel(
alice, carol, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Now, create Dave's a node and also open a channel between Alice and
// him. This link will serve as the only persistent link throughout
// restarts in this test.
dave := ht.NewNode("Dave", nil)
ht.ConnectNodes(alice, dave)
persistentChanPoint := ht.OpenChannel(
alice, dave, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Restart both Bob and Carol to ensure Alice is able to reconnect to
// them.
ht.RestartNode(bob)
ht.RestartNode(carol)
ht.AssertConnected(alice, bob)
ht.AssertConnected(alice, carol)
// We'll also restart Alice to ensure she can reconnect to her peers
// with open channels.
ht.RestartNode(alice)
ht.AssertConnected(alice, bob)
ht.AssertConnected(alice, carol)
ht.AssertConnected(alice, dave)
// testReconnection is a helper closure that restarts the nodes at both
// ends of a channel to ensure they do not reconnect after restarting.
// When restarting Alice, we'll first need to ensure she has
// reestablished her connection with Dave, as they still have an open
// channel together.
testReconnection := func(node *node.HarnessNode) {
// Restart both nodes, to trigger the pruning logic.
ht.RestartNode(node)
ht.RestartNode(alice)
// Now restart both nodes and make sure they don't reconnect.
ht.RestartNode(node)
ht.AssertNotConnected(alice, node)
ht.RestartNode(alice)
ht.AssertConnected(alice, dave)
ht.AssertNotConnected(alice, node)
}
// Now, we'll close the channel between Alice and Bob and ensure there
// is no reconnection logic between the both once the channel is fully
// closed.
ht.CloseChannel(alice, coopChanPoint)
testReconnection(bob)
// We'll do the same with Alice and Carol, but this time we'll force
// close the channel instead.
ht.ForceCloseChannel(alice, forceCloseChanPoint)
// We'll need to mine some blocks in order to mark the channel fully
// closed.
ht.MineBlocks(
chainreg.DefaultBitcoinTimeLockDelta - defaultCSV,
)
// Before we test reconnection, we'll ensure that the channel has been
// fully cleaned up for both Carol and Alice.
ht.AssertNumPendingForceClose(alice, 0)
ht.AssertNumPendingForceClose(carol, 0)
testReconnection(carol)
// Finally, we'll ensure that Bob and Carol no longer show in Alice's
// channel graph.
req := &lnrpc.ChannelGraphRequest{IncludeUnannounced: true}
channelGraph := alice.RPC.DescribeGraph(req)
require.NotContains(ht, channelGraph.Nodes, bob.PubKeyStr,
"did not expect to find bob in the channel graph, but did")
require.NotContains(ht, channelGraph.Nodes, carol.PubKeyStr,
"did not expect to find carol in the channel graph, but did")
// Now that the test is done, we can also close the persistent link.
ht.CloseChannel(alice, persistentChanPoint)
}
// testRejectHTLC tests that a node can be created with the flag --rejecthtlc.
// This means that the node will reject all forwarded HTLCs but can still
// accept direct HTLCs as well as send HTLCs.
func testRejectHTLC(ht *lntest.HarnessTest) {
// RejectHTLC
// Alice ------> Carol ------> Bob
//
const chanAmt = btcutil.Amount(1000000)
alice, bob := ht.Alice, ht.Bob
// Create Carol with reject htlc flag.
carol := ht.NewNode("Carol", []string{"--rejecthtlc"})
// Connect Alice to Carol.
ht.ConnectNodes(alice, carol)
// Connect Carol to Bob.
ht.ConnectNodes(carol, bob)
// Send coins to Carol.
ht.FundCoins(btcutil.SatoshiPerBitcoin, carol)
// Open a channel between Alice and Carol.
chanPointAlice := ht.OpenChannel(
alice, carol, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Open a channel between Carol and Bob.
chanPointCarol := ht.OpenChannel(
carol, bob, lntest.OpenChannelParams{
Amt: chanAmt,
},
)
// Channel should be ready for payments.
const payAmt = 100
// Create an invoice from Carol of 100 satoshis.
// We expect Alice to be able to pay this invoice.
carolInvoice := &lnrpc.Invoice{
Memo: "testing - alice should pay carol",
RPreimage: ht.Random32Bytes(),
Value: payAmt,
}
// Carol adds the invoice to her database.
resp := carol.RPC.AddInvoice(carolInvoice)
// Alice pays Carols invoice.
ht.CompletePaymentRequests(alice, []string{resp.PaymentRequest})
// Create an invoice from Bob of 100 satoshis.
// We expect Carol to be able to pay this invoice.
bobInvoice := &lnrpc.Invoice{
Memo: "testing - carol should pay bob",
RPreimage: ht.Random32Bytes(),
Value: payAmt,
}
// Bob adds the invoice to his database.
resp = bob.RPC.AddInvoice(bobInvoice)
// Carol pays Bobs invoice.
ht.CompletePaymentRequests(carol, []string{resp.PaymentRequest})
// Create an invoice from Bob of 100 satoshis.
// Alice attempts to pay Bob but this should fail, since we are
// using Carol as a hop and her node will reject onward HTLCs.
bobInvoice = &lnrpc.Invoice{
Memo: "testing - alice tries to pay bob",
RPreimage: ht.Random32Bytes(),
Value: payAmt,
}
// Bob adds the invoice to his database.
resp = bob.RPC.AddInvoice(bobInvoice)
// Alice attempts to pay Bobs invoice. This payment should be rejected
// since we are using Carol as an intermediary hop, Carol is running
// lnd with --rejecthtlc.
paymentReq := &routerrpc.SendPaymentRequest{
PaymentRequest: resp.PaymentRequest,
TimeoutSeconds: 60,
FeeLimitMsat: noFeeLimitMsat,
}
payStream := alice.RPC.SendPayment(paymentReq)
ht.AssertPaymentStatusFromStream(payStream, lnrpc.Payment_FAILED)
ht.AssertLastHTLCError(alice, lnrpc.Failure_CHANNEL_DISABLED)
// Close all channels.
ht.CloseChannel(alice, chanPointAlice)
ht.CloseChannel(carol, chanPointCarol)
}
// testNodeSignVerify checks that only connected nodes are allowed to perform
// signing and verifying messages.
func testNodeSignVerify(ht *lntest.HarnessTest) {
chanAmt := funding.MaxBtcFundingAmount
pushAmt := btcutil.Amount(100000)
alice, bob := ht.Alice, ht.Bob
// Create a channel between alice and bob.
aliceBobCh := ht.OpenChannel(
alice, bob, lntest.OpenChannelParams{
Amt: chanAmt,
PushAmt: pushAmt,
},
)
// alice signs "alice msg" and sends her signature to bob.
aliceMsg := []byte("alice msg")
sigResp := alice.RPC.SignMessage(aliceMsg)
aliceSig := sigResp.Signature
// bob verifying alice's signature should succeed since alice and bob
// are connected.
verifyResp := bob.RPC.VerifyMessage(aliceMsg, aliceSig)
require.True(ht, verifyResp.Valid, "alice's signature didn't validate")
require.Equal(ht, verifyResp.Pubkey, alice.PubKeyStr,
"alice's signature doesn't contain alice's pubkey.")
// carol is a new node that is unconnected to alice or bob.
carol := ht.NewNode("Carol", nil)
// carol signs "carol msg" and sends her signature to bob.
carolMsg := []byte("carol msg")
sigResp = carol.RPC.SignMessage(carolMsg)
carolSig := sigResp.Signature
// bob verifying carol's signature should fail since they are not
// connected.
verifyResp = bob.RPC.VerifyMessage(carolMsg, carolSig)
require.False(ht, verifyResp.Valid, "carol's signature didn't validate")
require.Equal(ht, verifyResp.Pubkey, carol.PubKeyStr,
"carol's signature doesn't contain alice's pubkey.")
// Close the channel between alice and bob.
ht.CloseChannel(alice, aliceBobCh)
}
// testAbandonChannel abandons a channel and asserts that it is no longer open
// and not in one of the pending closure states. It also verifies that the
// abandoned channel is reported as closed with close type 'abandoned'.
func testAbandonChannel(ht *lntest.HarnessTest) {
alice, bob := ht.Alice, ht.Bob
// First establish a channel between Alice and Bob.
channelParam := lntest.OpenChannelParams{
Amt: funding.MaxBtcFundingAmount,
PushAmt: btcutil.Amount(100000),
}
chanPoint := ht.OpenChannel(alice, bob, channelParam)
// Now that the channel is open, we'll obtain its channel ID real quick
// so we can use it to query the graph below.
chanID := ht.QueryChannelByChanPoint(alice, chanPoint).ChanId
// To make sure the channel is removed from the backup file as well
// when being abandoned, grab a backup snapshot so we can compare it
// with the later state.
bkupBefore, err := ioutil.ReadFile(alice.Cfg.ChanBackupPath())
require.NoError(ht, err, "channel backup before abandoning channel")
// Send request to abandon channel.
abandonChannelRequest := &lnrpc.AbandonChannelRequest{
ChannelPoint: chanPoint,
}
alice.RPC.AbandonChannel(abandonChannelRequest)
// Assert that channel in no longer open.
ht.AssertNodeNumChannels(alice, 0)
// Assert that channel is not pending closure.
ht.AssertNumWaitingClose(alice, 0)
// Assert that channel is listed as abandoned.
req := &lnrpc.ClosedChannelsRequest{Abandoned: true}
aliceClosedList := alice.RPC.ClosedChannels(req)
require.Len(ht, aliceClosedList.Channels, 1, "alice closed channels")
// Ensure that the channel can no longer be found in the channel graph.
ht.AssertZombieChannel(alice, chanID)
// Make sure the channel is no longer in the channel backup list.
err = wait.NoError(func() error {
bkupAfter, err := ioutil.ReadFile(alice.Cfg.ChanBackupPath())
if err != nil {
return fmt.Errorf("could not get channel backup "+
"before abandoning channel: %v", err)
}
if len(bkupAfter) >= len(bkupBefore) {
return fmt.Errorf("expected backups after to be less "+
"than %d but was %d", bkupBefore, bkupAfter)
}
return nil
}, defaultTimeout)
require.NoError(ht, err, "channel removed from backup file")
// Calling AbandonChannel again, should result in no new errors, as the
// channel has already been removed.
alice.RPC.AbandonChannel(abandonChannelRequest)
// Now that we're done with the test, the channel can be closed. This
// is necessary to avoid unexpected outcomes of other tests that use
// Bob's lnd instance.
ht.ForceCloseChannel(bob, chanPoint)
}
// testSweepAllCoins tests that we're able to properly sweep all coins from the
// wallet into a single target address at the specified fee rate.
func testSweepAllCoins(ht *lntest.HarnessTest) {
// First, we'll make a new node, Ainz who'll we'll use to test wallet
// sweeping.
//
// NOTE: we won't use standby nodes here since the test will change
// each of the node's wallet state.
ainz := ht.NewNode("Ainz", nil)
// Next, we'll give Ainz exactly 2 utxos of 1 BTC each, with one of
// them being p2wkh and the other being a n2wpkh address.
ht.FundCoins(btcutil.SatoshiPerBitcoin, ainz)
ht.FundCoinsNP2WKH(btcutil.SatoshiPerBitcoin, ainz)
// Create a label that will be used to label the transaction with.
sendCoinsLabel := "send all coins"
// Ensure that we can't send coins to our own Pubkey.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: ainz.RPC.GetInfo().IdentityPubkey,
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// Ensure that we can't send coins to another user's Pubkey.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: ht.Alice.RPC.GetInfo().IdentityPubkey,
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// With the two coins above mined, we'll now instruct Ainz to sweep all
// the coins to an external address not under its control. We will first
// attempt to send the coins to addresses that are not compatible
// with the current network. This is to test that the wallet will
// prevent any on-chain transactions to addresses that are not on the
// same network as the user.
// Send coins to a testnet3 address.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: "tb1qfc8fusa98jx8uvnhzavxccqlzvg749tvjw82tg",
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// Send coins to a mainnet address.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: "1MPaXKp5HhsLNjVSqaL7fChE3TVyrTMRT3",
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// Send coins to a compatible address without specifying fee rate or
// conf target.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: ht.Miner.NewMinerAddress().String(),
SendAll: true,
Label: sendCoinsLabel,
})
// Send coins to a compatible address.
ainz.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: ht.Miner.NewMinerAddress().String(),
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// We'll mine a block which should include the sweep transaction we
// generated above.
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
// The sweep transaction should have exactly two inputs as we only had
// two UTXOs in the wallet.
sweepTx := block.Transactions[1]
require.Len(ht, sweepTx.TxIn, 2, "expected 2 inputs")
// assertTxLabel is a helper function which finds a target tx in our
// set of transactions and checks that it has the desired label.
assertTxLabel := func(targetTx, label string) error {
// Get the transaction from our wallet so that we can check
// that the correct label has been set.
txResp := ainz.RPC.GetTransaction(
&walletrpc.GetTransactionRequest{
Txid: targetTx,
},
)
require.NotNilf(ht, txResp, "target tx %v not found", targetTx)
// Make sure the labels match.
if txResp.Label == label {
return nil
}
return fmt.Errorf("labels not match, want: "+
"%v, got %v", label, txResp.Label)
}
// waitTxLabel waits until the desired tx label is found or timeout.
waitTxLabel := func(targetTx, label string) {
err := wait.NoError(func() error {
return assertTxLabel(targetTx, label)
}, defaultTimeout)
require.NoError(ht, err, "timeout assertTxLabel")
}
sweepTxStr := sweepTx.TxHash().String()
waitTxLabel(sweepTxStr, sendCoinsLabel)
// While we are looking at labels, we test our label transaction
// command to make sure it is behaving as expected. First, we try to
// label our transaction with an empty label, and check that we fail as
// expected.
sweepHash := sweepTx.TxHash()
err := ainz.RPC.LabelTransactionAssertErr(
&walletrpc.LabelTransactionRequest{
Txid: sweepHash[:],
Label: "",
Overwrite: false,
},
)
// Our error will be wrapped in a rpc error, so we check that it
// contains the error we expect.
errZeroLabel := "cannot label transaction with empty label"
require.Contains(ht, err.Error(), errZeroLabel)
// Next, we try to relabel our transaction without setting the overwrite
// boolean. We expect this to fail, because the wallet requires setting
// of this param to prevent accidental overwrite of labels.
err = ainz.RPC.LabelTransactionAssertErr(
&walletrpc.LabelTransactionRequest{
Txid: sweepHash[:],
Label: "label that will not work",
Overwrite: false,
},
)
// Our error will be wrapped in a rpc error, so we check that it
// contains the error we expect.
require.Contains(ht, err.Error(), wallet.ErrTxLabelExists.Error())
// Finally, we overwrite our label with a new label, which should not
// fail.
newLabel := "new sweep tx label"
ainz.RPC.LabelTransaction(&walletrpc.LabelTransactionRequest{
Txid: sweepHash[:],
Label: newLabel,
Overwrite: true,
})
waitTxLabel(sweepTxStr, newLabel)
// Finally, Ainz should now have no coins at all within his wallet.
resp := ainz.RPC.WalletBalance()
require.Zero(ht, resp.ConfirmedBalance, "wrong confirmed balance")
require.Zero(ht, resp.UnconfirmedBalance, "wrong unconfirmed balance")
// If we try again, but this time specifying an amount, then the call
// should fail.
ainz.RPC.SendCoinsAssertErr(&lnrpc.SendCoinsRequest{
Addr: ht.Miner.NewMinerAddress().String(),
Amount: 10000,
SendAll: true,
Label: sendCoinsLabel,
TargetConf: 6,
})
// With all the edge cases tested, we'll now test the happy paths of
// change output types.
// We'll be using a "main" address where we send the funds to and from
// several times.
ht.FundCoins(btcutil.SatoshiPerBitcoin, ainz)
mainAddrResp := ainz.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
})
spendAddrTypes := []lnrpc.AddressType{
lnrpc.AddressType_NESTED_PUBKEY_HASH,
lnrpc.AddressType_WITNESS_PUBKEY_HASH,
lnrpc.AddressType_TAPROOT_PUBKEY,
}
for _, addrType := range spendAddrTypes {
ht.Logf("testing with address type %s", addrType)
// First, spend all the coins in the wallet to an address of the
// given type so that UTXO will be picked when sending coins.
sendAllCoinsToAddrType(ht, ainz, addrType)
// Let's send some coins to the main address.
const amt = 123456
resp := ainz.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: mainAddrResp.Address,
Amount: amt,
TargetConf: 6,
})
block := ht.MineBlocksAndAssertNumTxes(1, 1)[0]
sweepTx := block.Transactions[1]
require.Equal(ht, sweepTx.TxHash().String(), resp.Txid)
// Find the change output, it will be the one with an amount
// different from the amount we sent.
var changeOutput *wire.TxOut
for idx := range sweepTx.TxOut {
txOut := sweepTx.TxOut[idx]
if txOut.Value != amt {
changeOutput = txOut
break
}
}
require.NotNil(ht, changeOutput)
// Assert the type of change output to be p2tr.
pkScript, err := txscript.ParsePkScript(changeOutput.PkScript)
require.NoError(ht, err)
require.Equal(ht, txscript.WitnessV1TaprootTy, pkScript.Class())
}
}
// testListAddresses tests that we get all the addresses and their
// corresponding balance correctly.
func testListAddresses(ht *lntest.HarnessTest) {
// First, we'll make a new node - Alice, which will be generating
// new addresses.
alice := ht.NewNode("Alice", nil)
// Next, we'll give Alice exactly 1 utxo of 1 BTC.
ht.FundCoins(btcutil.SatoshiPerBitcoin, alice)
type addressDetails struct {
Balance int64
Type walletrpc.AddressType
}
// A map of generated address and its balance.
generatedAddr := make(map[string]addressDetails)
// Create an address generated from internal keys.
keyLoc := &walletrpc.KeyReq{KeyFamily: 123}
keyDesc := alice.RPC.DeriveNextKey(keyLoc)
// Hex Encode the public key.
pubkeyString := hex.EncodeToString(keyDesc.RawKeyBytes)
// Create a p2tr address.
resp := alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
generatedAddr[resp.Address] = addressDetails{
Balance: 200_000,
Type: walletrpc.AddressType_TAPROOT_PUBKEY,
}
// Create a p2wkh address.
resp = alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
})
generatedAddr[resp.Address] = addressDetails{
Balance: 300_000,
Type: walletrpc.AddressType_WITNESS_PUBKEY_HASH,
}
// Create a np2wkh address.
resp = alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_NESTED_PUBKEY_HASH,
})
generatedAddr[resp.Address] = addressDetails{
Balance: 400_000,
Type: walletrpc.
AddressType_HYBRID_NESTED_WITNESS_PUBKEY_HASH,
}
for addr, addressDetail := range generatedAddr {
alice.RPC.SendCoins(&lnrpc.SendCoinsRequest{
Addr: addr,
Amount: addressDetail.Balance,
SpendUnconfirmed: true,
TargetConf: 6,
})
}
ht.MineBlocksAndAssertNumTxes(1, 3)
// Get all the accounts except LND's custom accounts.
addressLists := alice.RPC.ListAddresses(
&walletrpc.ListAddressesRequest{},
)
foundAddresses := 0
for _, addressList := range addressLists.AccountWithAddresses {
addresses := addressList.Addresses
derivationPath, err := lntest.ParseDerivationPath(
addressList.DerivationPath,
)
require.NoError(ht, err)
// Should not get an account with KeyFamily - 123.
require.NotEqual(
ht, uint32(keyLoc.KeyFamily), derivationPath[2],
)
for _, address := range addresses {
if _, ok := generatedAddr[address.Address]; ok {
addrDetails := generatedAddr[address.Address]
require.Equal(
ht, addrDetails.Balance,
address.Balance,
)
require.Equal(
ht, addrDetails.Type,
addressList.AddressType,
)
foundAddresses++
}
}
}
require.Equal(ht, len(generatedAddr), foundAddresses)
foundAddresses = 0
// Get all the accounts (including LND's custom accounts).
addressLists = alice.RPC.ListAddresses(
&walletrpc.ListAddressesRequest{
ShowCustomAccounts: true,
},
)
for _, addressList := range addressLists.AccountWithAddresses {
addresses := addressList.Addresses
derivationPath, err := lntest.ParseDerivationPath(
addressList.DerivationPath,
)
require.NoError(ht, err)
for _, address := range addresses {
// Check if the KeyFamily in derivation path is 123.
if uint32(keyLoc.KeyFamily) == derivationPath[2] {
// For LND's custom accounts, the address
// represents the public key.
pubkey := address.Address
require.Equal(ht, pubkeyString, pubkey)
} else if _, ok := generatedAddr[address.Address]; ok {
addrDetails := generatedAddr[address.Address]
require.Equal(
ht, addrDetails.Balance,
address.Balance,
)
require.Equal(
ht, addrDetails.Type,
addressList.AddressType,
)
foundAddresses++
}
}
}
require.Equal(ht, len(generatedAddr), foundAddresses)
}
func assertChannelConstraintsEqual(ht *lntest.HarnessTest,
want, got *lnrpc.ChannelConstraints) {
require.Equal(ht, want.CsvDelay, got.CsvDelay, "CsvDelay mismatched")
require.Equal(ht, want.ChanReserveSat, got.ChanReserveSat,
"ChanReserveSat mismatched")
require.Equal(ht, want.DustLimitSat, got.DustLimitSat,
"DustLimitSat mismatched")
require.Equal(ht, want.MaxPendingAmtMsat, got.MaxPendingAmtMsat,
"MaxPendingAmtMsat mismatched")
require.Equal(ht, want.MinHtlcMsat, got.MinHtlcMsat,
"MinHtlcMsat mismatched")
require.Equal(ht, want.MaxAcceptedHtlcs, got.MaxAcceptedHtlcs,
"MaxAcceptedHtlcs mismatched")
}
// testSignVerifyMessageWithAddr tests signing and also verifying a signature
// on a message with a provided address.
func testSignVerifyMessageWithAddr(ht *lntest.HarnessTest) {
// Using different nodes to sign the message and verify the signature.
alice, bob := ht.Alice, ht.Bob
// Test an lnd wallet created P2WKH address.
respAddr := alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_WITNESS_PUBKEY_HASH,
})
aliceMsg := []byte("alice msg")
respSig := alice.RPC.SignMessageWithAddr(
&walletrpc.SignMessageWithAddrRequest{
Msg: aliceMsg,
Addr: respAddr.Address,
},
)
respValid := bob.RPC.VerifyMessageWithAddr(
&walletrpc.VerifyMessageWithAddrRequest{
Msg: aliceMsg,
Signature: respSig.Signature,
Addr: respAddr.Address,
},
)
require.True(ht, respValid.Valid, "alice's signature didn't validate")
// Test an lnd wallet created NP2WKH address.
respAddr = alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_NESTED_PUBKEY_HASH,
})
respSig = alice.RPC.SignMessageWithAddr(
&walletrpc.SignMessageWithAddrRequest{
Msg: aliceMsg,
Addr: respAddr.Address,
},
)
respValid = bob.RPC.VerifyMessageWithAddr(
&walletrpc.VerifyMessageWithAddrRequest{
Msg: aliceMsg,
Signature: respSig.Signature,
Addr: respAddr.Address,
},
)
require.True(ht, respValid.Valid, "alice's signature didn't validate")
// Test an lnd wallet created P2TR address.
respAddr = alice.RPC.NewAddress(&lnrpc.NewAddressRequest{
Type: lnrpc.AddressType_TAPROOT_PUBKEY,
})
respSig = alice.RPC.SignMessageWithAddr(
&walletrpc.SignMessageWithAddrRequest{
Msg: aliceMsg,
Addr: respAddr.Address,
},
)
respValid = bob.RPC.VerifyMessageWithAddr(
&walletrpc.VerifyMessageWithAddrRequest{
Msg: aliceMsg,
Signature: respSig.Signature,
Addr: respAddr.Address,
},
)
require.True(ht, respValid.Valid, "alice's signature didn't validate")
// Test verifying a signature with an external P2PKH address.
// P2PKH address type is not supported by the lnd wallet therefore
// using an external source (bitcoin-core) for address and
// signature creation.
externalMsg := []byte("external msg")
externalAddr := "msS5c4VihSiJ64QzvMMEmWh6rYBnuWo2xH"
// Base64 encoded signature created with bitcoin-core regtest.
externalSig := "H5DqqM7Cc8xZnYBr7j3gD4XD+AuQsim9Un/IxBrrhBA7I9//" +
"3exuQRg+u7HpwG65yobPsew6RMUteyuxyNkLF5E="
respValid = alice.RPC.VerifyMessageWithAddr(
&walletrpc.VerifyMessageWithAddrRequest{
Msg: externalMsg,
Signature: externalSig,
Addr: externalAddr,
},
)
require.True(ht, respValid.Valid, "external signature didn't validate")
// Test verifying a signature with a different address which
// initially was used to create the following signature.
// externalAddr is a valid legacy P2PKH bitcoin address created
// with bitcoin-core.
externalAddr = "mugbg8CqFe9CbdrYjFTkMhmL3JxuEXkNbY"
// Base64 encoded signature created with bitcoin-core regtest but with
// the address msS5c4VihSiJ64QzvMMEmWh6rYBnuWo2xH.
externalSig = "H5DqqM7Cc8xZnYBr7j3gD4XD+AuQsim9Un/IxBrrhBA7I9//" +
"3exuQRg+u7HpwG65yobPsew6RMUteyuxyNkLF5E="
respValid = alice.RPC.VerifyMessageWithAddr(
&walletrpc.VerifyMessageWithAddrRequest{
Msg: externalMsg,
Signature: externalSig,
Addr: externalAddr,
},
)
require.False(ht, respValid.Valid, "external signature did validate")
}
// testNativeSQLNoMigration tests that nodes that have invoices would not start
// up with native SQL enabled, as we don't currently support migration of KV
// invoices to the new SQL schema.
func testNativeSQLNoMigration(ht *lntest.HarnessTest) {
alice := ht.Alice
// Make sure we run the test with SQLite or Postgres.
if alice.Cfg.DBBackend != node.BackendSqlite &&
alice.Cfg.DBBackend != node.BackendPostgres {
ht.Skip("node not running with SQLite or Postgres")
}
// Skip the test if the node is already running with native SQL.
if alice.Cfg.NativeSQL {
ht.Skip("node already running with native SQL")
}
alice.RPC.AddInvoice(&lnrpc.Invoice{
Value: 10_000,
})
alice.SetExtraArgs([]string{"--db.use-native-sql"})
// Restart the node manually as we're really only interested in the
// startup error.
require.NoError(ht, alice.Stop())
require.NoError(ht, alice.StartLndCmd(context.Background()))
// We expect the node to fail to start up with native SQL enabled, as we
// have an invoice in the KV store.
require.Error(ht, alice.WaitForProcessExit())
// Reset the extra args and restart alice.
alice.SetExtraArgs(nil)
require.NoError(ht, alice.Start(ht.Context()))
}