lnd/fn/list_test.go
2024-07-10 16:55:29 -07:00

730 lines
15 KiB
Go

package fn
import (
"math/rand"
"reflect"
"testing"
"testing/quick"
)
func GenList(r *rand.Rand) *List[uint32] {
size := int(r.Uint32() >> 24)
l := NewList[uint32]()
for i := 0; i < size; i++ {
l.PushBack(rand.Uint32())
}
return l
}
func GetRandNode(l *List[uint32], r *rand.Rand) *Node[uint32] {
if l.Len() == 0 {
return nil
}
idx := r.Uint32() % uint32(l.Len())
n := l.Front()
for i := 0; i < int(idx); i++ {
n = n.Next()
}
return n
}
func TestPushLenIncrement(t *testing.T) {
err := quick.Check(
func(l *List[uint32], x uint32, front bool) bool {
sz := l.Len()
if front {
l.PushFront(x)
} else {
l.PushBack(x)
}
sz2 := l.Len()
return sz2 == sz+1
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
vs[0] = reflect.ValueOf(GenList(r))
vs[1] = reflect.ValueOf(r.Uint32())
vs[2] = reflect.ValueOf(r.Uint32()%2 == 0)
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestRemoveLenDecrement(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32]) bool {
if l.Len() == 0 {
return true
}
sz := l.Len()
l.Remove(n)
sz2 := l.Len()
return sz2 == sz-1
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestPushGetCongruence(t *testing.T) {
err := quick.Check(
func(l *List[uint32], x uint32, front bool) bool {
if front {
l.PushFront(x)
return l.Front().Value == x
} else {
l.PushBack(x)
return l.Back().Value == x
}
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
vs[0] = reflect.ValueOf(GenList(r))
vs[1] = reflect.ValueOf(r.Uint32())
vs[2] = reflect.ValueOf(r.Uint32()%2 == 0)
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestInsertBeforeFrontIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], x uint32) bool {
if l == nil {
return true
}
nodeX := l.InsertBefore(x, l.Front())
return nodeX == l.Front()
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(r.Uint32())
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestInsertAfterBackIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], x uint32) bool {
if l == nil {
return true
}
nodeX := l.InsertAfter(x, l.Back())
return nodeX == l.Back()
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(r.Uint32())
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestInsertBeforeNextIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32], x uint32) bool {
if n == nil {
return true
}
nodeX := l.InsertBefore(x, n)
return nodeX.Next() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
vs[2] = reflect.ValueOf(r.Uint32())
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestInsertAfterPrevIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32], x uint32) bool {
if n == nil {
return true
}
nodeX := l.InsertAfter(x, n)
return nodeX.Prev() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
vs[2] = reflect.ValueOf(r.Uint32())
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestMoveToFrontFrontIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32]) bool {
if n == nil {
return true
}
l.MoveToFront(n)
return l.Front() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestMoveToBackBackIdentity(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32]) bool {
if n == nil {
return true
}
l.MoveToBack(n)
return l.Back() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestMoveBeforeFrontIsFront(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32]) bool {
if n == nil {
return true
}
l.MoveBefore(n, l.Front())
return l.Front() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestMoveAfterBackIsBack(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32]) bool {
if n == nil {
return true
}
l.MoveAfter(n, l.Back())
return l.Back() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestMultiMoveErasure(t *testing.T) {
err := quick.Check(
func(l *List[uint32], n *Node[uint32], m *Node[uint32]) bool {
if n == nil || m == nil || n == m {
return true
}
l.MoveToFront(n)
l.MoveToBack(n)
l.MoveBefore(n, m)
l.MoveAfter(n, m)
return m.Next() == n
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(GetRandNode(l, r))
vs[2] = reflect.ValueOf(GetRandNode(l, r))
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestPushListSymmetry(t *testing.T) {
copyList := func(l *List[uint32]) *List[uint32] {
c := NewList[uint32]()
for n := l.Front(); n != nil; n = n.Next() {
c.PushBack(n.Value)
}
return c
}
err := quick.Check(
func(l1 *List[uint32], l2 *List[uint32]) bool {
if l1.Len() == 0 || l2.Len() == 0 {
return true
}
l1Copy := copyList(l1)
l2Copy := copyList(l2)
l1.PushBackList(l2Copy)
l2.PushFrontList(l1Copy)
iter1 := l1.Front()
iter2 := l2.Front()
for i := 0; i < l1Copy.Len()+l2Copy.Len()-1; i++ {
if iter1.Value != iter2.Value {
return false
}
iter1 = iter1.Next()
iter2 = iter2.Next()
}
return true
},
&quick.Config{
Values: func(vs []reflect.Value, r *rand.Rand) {
l := GenList(r)
l2 := GenList(r)
vs[0] = reflect.ValueOf(l)
vs[1] = reflect.ValueOf(l2)
},
},
)
if err != nil {
t.Fatal(err)
}
}
func TestIssue4103(t *testing.T) {
l1 := NewList[int]()
l1.PushBack(1)
l1.PushBack(2)
l2 := NewList[int]()
l2.PushBack(3)
l2.PushBack(4)
e := l1.Front()
l2.Remove(e) // l2 should not change because e is not an element of l2
if n := l2.Len(); n != 2 {
t.Errorf("l2.Len() = %d, want 2", n)
}
l1.InsertBefore(8, e)
if n := l1.Len(); n != 3 {
t.Errorf("l1.Len() = %d, want 3", n)
}
}
func TestIssue6349(t *testing.T) {
l := NewList[int]()
l.PushBack(1)
l.PushBack(2)
e := l.Front()
l.Remove(e)
if e.Value != 1 {
t.Errorf("e.value = %d, want 1", e.Value)
}
if e.Next() != nil {
t.Errorf("e.Next() != nil")
}
if e.Prev() != nil {
t.Errorf("e.Prev() != nil")
}
}
func checkListLen[V any](t *testing.T, l *List[V], length int) bool {
if n := l.Len(); n != length {
t.Errorf("l.Len() = %d, want %d", n, length)
return false
}
return true
}
func checkListPointers[V any](t *testing.T, l *List[V], es []*Node[V]) {
root := &l.root
if !checkListLen(t, l, len(es)) {
return
}
// zero length lists must be the zero value or properly initialized
// (sentinel circle)
if len(es) == 0 {
if l.root.next != nil && l.root.next != root ||
l.root.prev != nil && l.root.prev != root {
t.Errorf("l.root.next = %p, l.root.prev = %p;"+
"both should both be nil or %p", l.root.next,
l.root.prev, root)
}
return
}
// len(es) > 0
// check internal and external prev/next connections
for i, e := range es {
prev := root
Prev := (*Node[V])(nil)
if i > 0 {
prev = es[i-1]
Prev = prev
}
if p := e.prev; p != prev {
t.Errorf("elt[%d](%p).prev = %p, want %p", i, e, p,
prev)
}
if p := e.Prev(); p != Prev {
t.Errorf("elt[%d](%p).Prev() = %p, want %p", i, e, p,
Prev)
}
next := root
Next := (*Node[V])(nil)
if i < len(es)-1 {
next = es[i+1]
Next = next
}
if n := e.next; n != next {
t.Errorf("elt[%d](%p).next = %p, want %p", i, e, n,
next)
}
if n := e.Next(); n != Next {
t.Errorf("elt[%d](%p).Next() = %p, want %p", i, e, n,
Next)
}
}
}
func TestList(t *testing.T) {
l := NewList[int]()
checkListPointers(t, l, []*Node[int]{})
// Single element list
e := l.PushFront(5)
checkListPointers(t, l, []*Node[int]{e})
l.MoveToFront(e)
checkListPointers(t, l, []*Node[int]{e})
l.MoveToBack(e)
checkListPointers(t, l, []*Node[int]{e})
l.Remove(e)
checkListPointers(t, l, []*Node[int]{})
// Bigger list
e2 := l.PushFront(2)
e1 := l.PushFront(1)
e3 := l.PushBack(3)
e4 := l.PushBack(0)
checkListPointers(t, l, []*Node[int]{e1, e2, e3, e4})
l.Remove(e2)
checkListPointers(t, l, []*Node[int]{e1, e3, e4})
l.MoveToFront(e3) // move from middle
checkListPointers(t, l, []*Node[int]{e3, e1, e4})
l.MoveToFront(e1)
l.MoveToBack(e3) // move from middle
checkListPointers(t, l, []*Node[int]{e1, e4, e3})
l.MoveToFront(e3) // move from back
checkListPointers(t, l, []*Node[int]{e3, e1, e4})
l.MoveToFront(e3) // should be no-op
checkListPointers(t, l, []*Node[int]{e3, e1, e4})
l.MoveToBack(e3) // move from front
checkListPointers(t, l, []*Node[int]{e1, e4, e3})
l.MoveToBack(e3) // should be no-op
checkListPointers(t, l, []*Node[int]{e1, e4, e3})
e2 = l.InsertBefore(2, e1) // insert before front
checkListPointers(t, l, []*Node[int]{e2, e1, e4, e3})
l.Remove(e2)
e2 = l.InsertBefore(2, e4) // insert before middle
checkListPointers(t, l, []*Node[int]{e1, e2, e4, e3})
l.Remove(e2)
e2 = l.InsertBefore(2, e3) // insert before back
checkListPointers(t, l, []*Node[int]{e1, e4, e2, e3})
l.Remove(e2)
e2 = l.InsertAfter(2, e1) // insert after front
checkListPointers(t, l, []*Node[int]{e1, e2, e4, e3})
l.Remove(e2)
e2 = l.InsertAfter(2, e4) // insert after middle
checkListPointers(t, l, []*Node[int]{e1, e4, e2, e3})
l.Remove(e2)
e2 = l.InsertAfter(2, e3) // insert after back
checkListPointers(t, l, []*Node[int]{e1, e4, e3, e2})
l.Remove(e2)
// Check standard iteration.
sum := 0
for e := l.Front(); e != nil; e = e.Next() {
sum += e.Value
}
if sum != 4 {
t.Errorf("sum over l = %d, want 4", sum)
}
// Clear all elements by iterating
var next *Node[int]
for e := l.Front(); e != nil; e = next {
next = e.Next()
l.Remove(e)
}
checkListPointers(t, l, []*Node[int]{})
}
func checkList[V comparable](t *testing.T, l *List[V], es []V) {
if !checkListLen(t, l, len(es)) {
return
}
i := 0
for e := l.Front(); e != nil; e = e.Next() {
le := e.Value
if le != es[i] {
t.Errorf("elt[%d].Value = %v, want %v", i, le, es[i])
}
i++
}
}
func TestExtending(t *testing.T) {
l1 := NewList[int]()
l2 := NewList[int]()
l1.PushBack(1)
l1.PushBack(2)
l1.PushBack(3)
l2.PushBack(4)
l2.PushBack(5)
l3 := NewList[int]()
l3.PushBackList(l1)
checkList(t, l3, []int{1, 2, 3})
l3.PushBackList(l2)
checkList(t, l3, []int{1, 2, 3, 4, 5})
l3 = NewList[int]()
l3.PushFrontList(l2)
checkList(t, l3, []int{4, 5})
l3.PushFrontList(l1)
checkList(t, l3, []int{1, 2, 3, 4, 5})
checkList(t, l1, []int{1, 2, 3})
checkList(t, l2, []int{4, 5})
l3 = NewList[int]()
l3.PushBackList(l1)
checkList(t, l3, []int{1, 2, 3})
l3.PushBackList(l3)
checkList(t, l3, []int{1, 2, 3, 1, 2, 3})
l3 = NewList[int]()
l3.PushFrontList(l1)
checkList(t, l3, []int{1, 2, 3})
l3.PushFrontList(l3)
checkList(t, l3, []int{1, 2, 3, 1, 2, 3})
l3 = NewList[int]()
l1.PushBackList(l3)
checkList(t, l1, []int{1, 2, 3})
l1.PushFrontList(l3)
checkList(t, l1, []int{1, 2, 3})
}
func TestRemove(t *testing.T) {
l := NewList[int]()
e1 := l.PushBack(1)
e2 := l.PushBack(2)
checkListPointers(t, l, []*Node[int]{e1, e2})
e := l.Front()
l.Remove(e)
checkListPointers(t, l, []*Node[int]{e2})
l.Remove(e)
checkListPointers(t, l, []*Node[int]{e2})
}
func TestMove(t *testing.T) {
l := NewList[int]()
e1 := l.PushBack(1)
e2 := l.PushBack(2)
e3 := l.PushBack(3)
e4 := l.PushBack(4)
l.MoveAfter(e3, e3)
checkListPointers(t, l, []*Node[int]{e1, e2, e3, e4})
l.MoveBefore(e2, e2)
checkListPointers(t, l, []*Node[int]{e1, e2, e3, e4})
l.MoveAfter(e3, e2)
checkListPointers(t, l, []*Node[int]{e1, e2, e3, e4})
l.MoveBefore(e2, e3)
checkListPointers(t, l, []*Node[int]{e1, e2, e3, e4})
l.MoveBefore(e2, e4)
checkListPointers(t, l, []*Node[int]{e1, e3, e2, e4})
e2, e3 = e3, e2
l.MoveBefore(e4, e1)
checkListPointers(t, l, []*Node[int]{e4, e1, e2, e3})
e1, e2, e3, e4 = e4, e1, e2, e3
l.MoveAfter(e4, e1)
checkListPointers(t, l, []*Node[int]{e1, e4, e2, e3})
e2, e3, e4 = e4, e2, e3
l.MoveAfter(e2, e3)
checkListPointers(t, l, []*Node[int]{e1, e3, e2, e4})
}
// Test PushFront, PushBack, PushFrontList, PushBackList with uninitialized List
func TestZeroList(t *testing.T) {
var l1 = new(List[int])
l1.PushFront(1)
checkList(t, l1, []int{1})
var l2 = new(List[int])
l2.PushBack(1)
checkList(t, l2, []int{1})
var l3 = new(List[int])
l3.PushFrontList(l1)
checkList(t, l3, []int{1})
var l4 = new(List[int])
l4.PushBackList(l2)
checkList(t, l4, []int{1})
}
// Test that a list l is not modified when calling InsertBefore with a mark
// that is not an element of l.
func TestInsertBeforeUnknownMark(t *testing.T) {
var l List[int]
l.PushBack(1)
l.PushBack(2)
l.PushBack(3)
l.InsertBefore(1, new(Node[int]))
checkList(t, &l, []int{1, 2, 3})
}
// Test that a list l is not modified when calling InsertAfter with a mark that
// is not an element of l.
func TestInsertAfterUnknownMark(t *testing.T) {
var l List[int]
l.PushBack(1)
l.PushBack(2)
l.PushBack(3)
l.InsertAfter(1, new(Node[int]))
checkList(t, &l, []int{1, 2, 3})
}
// Test that a list l is not modified when calling MoveAfter or MoveBefore with
// a mark that is not an element of l.
func TestMoveUnknownMark(t *testing.T) {
var l1 List[int]
e1 := l1.PushBack(1)
var l2 List[int]
e2 := l2.PushBack(2)
l1.MoveAfter(e1, e2)
checkList(t, &l1, []int{1})
checkList(t, &l2, []int{2})
l1.MoveBefore(e1, e2)
checkList(t, &l1, []int{1})
checkList(t, &l2, []int{2})
}