lnd/lntest/itest/lnd_multi-hop-payments_test.go
Oliver Gugger 906011f278
itest: add _test file name suffix to tests
To fix the compiler of some IDEs complaining about types and functions
it cannot find, we rename all files that contain tests back to lnd_xxx_test.go to make
sure they are compiled correctly.
2020-09-04 09:50:39 +02:00

416 lines
13 KiB
Go

// +build rpctest
package itest
import (
"context"
"time"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/lightningnetwork/lnd"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/routerrpc"
"github.com/lightningnetwork/lnd/lntest"
)
func testMultiHopPayments(net *lntest.NetworkHarness, t *harnessTest) {
ctxb := context.Background()
const chanAmt = btcutil.Amount(100000)
var networkChans []*lnrpc.ChannelPoint
// Open a channel with 100k satoshis between Alice and Bob with Alice
// being the sole funder of the channel.
ctxt, _ := context.WithTimeout(ctxb, channelOpenTimeout)
chanPointAlice := openChannelAndAssert(
ctxt, t, net, net.Alice, net.Bob,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointAlice)
aliceChanTXID, err := lnd.GetChanPointFundingTxid(chanPointAlice)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
aliceFundPoint := wire.OutPoint{
Hash: *aliceChanTXID,
Index: chanPointAlice.OutputIndex,
}
// As preliminary setup, we'll create two new nodes: Carol and Dave,
// such that we now have a 4 node, 3 channel topology. Dave will make a
// channel with Alice, and Carol with Dave. After this setup, the
// network topology should now look like:
// Carol -> Dave -> Alice -> Bob
//
// First, we'll create Dave and establish a channel to Alice. Dave will
// be running an older node that requires the legacy onion payload.
daveArgs := []string{"--protocol.legacy.onion"}
dave, err := net.NewNode("Dave", daveArgs)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, dave)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, dave, net.Alice); err != nil {
t.Fatalf("unable to connect dave to alice: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, dave)
if err != nil {
t.Fatalf("unable to send coins to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointDave := openChannelAndAssert(
ctxt, t, net, dave, net.Alice,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointDave)
daveChanTXID, err := lnd.GetChanPointFundingTxid(chanPointDave)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
daveFundPoint := wire.OutPoint{
Hash: *daveChanTXID,
Index: chanPointDave.OutputIndex,
}
// Next, we'll create Carol and establish a channel to from her to
// Dave.
carol, err := net.NewNode("Carol", nil)
if err != nil {
t.Fatalf("unable to create new nodes: %v", err)
}
defer shutdownAndAssert(net, t, carol)
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
if err := net.ConnectNodes(ctxt, carol, dave); err != nil {
t.Fatalf("unable to connect carol to dave: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = net.SendCoins(ctxt, btcutil.SatoshiPerBitcoin, carol)
if err != nil {
t.Fatalf("unable to send coins to carol: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, channelOpenTimeout)
chanPointCarol := openChannelAndAssert(
ctxt, t, net, carol, dave,
lntest.OpenChannelParams{
Amt: chanAmt,
},
)
networkChans = append(networkChans, chanPointCarol)
carolChanTXID, err := lnd.GetChanPointFundingTxid(chanPointCarol)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
carolFundPoint := wire.OutPoint{
Hash: *carolChanTXID,
Index: chanPointCarol.OutputIndex,
}
// Wait for all nodes to have seen all channels.
nodes := []*lntest.HarnessNode{net.Alice, net.Bob, carol, dave}
nodeNames := []string{"Alice", "Bob", "Carol", "Dave"}
for _, chanPoint := range networkChans {
for i, node := range nodes {
txid, err := lnd.GetChanPointFundingTxid(chanPoint)
if err != nil {
t.Fatalf("unable to get txid: %v", err)
}
point := wire.OutPoint{
Hash: *txid,
Index: chanPoint.OutputIndex,
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = node.WaitForNetworkChannelOpen(ctxt, chanPoint)
if err != nil {
t.Fatalf("%s(%d): timeout waiting for "+
"channel(%s) open: %v", nodeNames[i],
node.NodeID, point, err)
}
}
}
// Create 5 invoices for Bob, which expect a payment from Carol for 1k
// satoshis with a different preimage each time.
const numPayments = 5
const paymentAmt = 1000
payReqs, _, _, err := createPayReqs(
net.Bob, paymentAmt, numPayments,
)
if err != nil {
t.Fatalf("unable to create pay reqs: %v", err)
}
// We'll wait for all parties to recognize the new channels within the
// network.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = dave.WaitForNetworkChannelOpen(ctxt, chanPointDave)
if err != nil {
t.Fatalf("dave didn't advertise his channel: %v", err)
}
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = carol.WaitForNetworkChannelOpen(ctxt, chanPointCarol)
if err != nil {
t.Fatalf("carol didn't advertise her channel in time: %v",
err)
}
time.Sleep(time.Millisecond * 50)
// Set the fee policies of the Alice -> Bob and the Dave -> Alice
// channel edges to relatively large non default values. This makes it
// possible to pick up more subtle fee calculation errors.
maxHtlc := uint64(calculateMaxHtlc(chanAmt))
const aliceBaseFeeSat = 1
const aliceFeeRatePPM = 100000
updateChannelPolicy(
t, net.Alice, chanPointAlice, aliceBaseFeeSat*1000,
aliceFeeRatePPM, lnd.DefaultBitcoinTimeLockDelta, maxHtlc,
carol,
)
const daveBaseFeeSat = 5
const daveFeeRatePPM = 150000
updateChannelPolicy(
t, dave, chanPointDave, daveBaseFeeSat*1000, daveFeeRatePPM,
lnd.DefaultBitcoinTimeLockDelta, maxHtlc, carol,
)
// Before we start sending payments, subscribe to htlc events for each
// node.
ctxt, cancel := context.WithTimeout(ctxb, defaultTimeout)
defer cancel()
aliceEvents, err := net.Alice.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
bobEvents, err := net.Bob.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
carolEvents, err := carol.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
daveEvents, err := dave.RouterClient.SubscribeHtlcEvents(
ctxt, &routerrpc.SubscribeHtlcEventsRequest{},
)
if err != nil {
t.Fatalf("could not subscribe events: %v", err)
}
// Using Carol as the source, pay to the 5 invoices from Bob created
// above.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
err = completePaymentRequests(
ctxt, carol, carol.RouterClient, payReqs, true,
)
if err != nil {
t.Fatalf("unable to send payments: %v", err)
}
// At this point all the channels within our proto network should be
// shifted by 5k satoshis in the direction of Bob, the sink within the
// payment flow generated above. The order of asserts corresponds to
// increasing of time is needed to embed the HTLC in commitment
// transaction, in channel Carol->David->Alice->Bob, order is Bob,
// Alice, David, Carol.
// The final node bob expects to get paid five times 1000 sat.
expectedAmountPaidAtoB := int64(numPayments * paymentAmt)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Bob,
aliceFundPoint, int64(0), expectedAmountPaidAtoB)
assertAmountPaid(t, "Alice(local) => Bob(remote)", net.Alice,
aliceFundPoint, expectedAmountPaidAtoB, int64(0))
// To forward a payment of 1000 sat, Alice is charging a fee of
// 1 sat + 10% = 101 sat.
const aliceFeePerPayment = aliceBaseFeeSat +
(paymentAmt * aliceFeeRatePPM / 1_000_000)
const expectedFeeAlice = numPayments * aliceFeePerPayment
// Dave needs to pay what Alice pays plus Alice's fee.
expectedAmountPaidDtoA := expectedAmountPaidAtoB + expectedFeeAlice
assertAmountPaid(t, "Dave(local) => Alice(remote)", net.Alice,
daveFundPoint, int64(0), expectedAmountPaidDtoA)
assertAmountPaid(t, "Dave(local) => Alice(remote)", dave,
daveFundPoint, expectedAmountPaidDtoA, int64(0))
// To forward a payment of 1101 sat, Dave is charging a fee of
// 5 sat + 15% = 170.15 sat. This is rounded down in rpcserver to 170.
const davePaymentAmt = paymentAmt + aliceFeePerPayment
const daveFeePerPayment = daveBaseFeeSat +
(davePaymentAmt * daveFeeRatePPM / 1_000_000)
const expectedFeeDave = numPayments * daveFeePerPayment
// Carol needs to pay what Dave pays plus Dave's fee.
expectedAmountPaidCtoD := expectedAmountPaidDtoA + expectedFeeDave
assertAmountPaid(t, "Carol(local) => Dave(remote)", dave,
carolFundPoint, int64(0), expectedAmountPaidCtoD)
assertAmountPaid(t, "Carol(local) => Dave(remote)", carol,
carolFundPoint, expectedAmountPaidCtoD, int64(0))
// Now that we know all the balances have been settled out properly,
// we'll ensure that our internal record keeping for completed circuits
// was properly updated.
// First, check that the FeeReport response shows the proper fees
// accrued over each time range. Dave should've earned 170 satoshi for
// each of the forwarded payments.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
feeReport, err := dave.FeeReport(ctxt, &lnrpc.FeeReportRequest{})
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
if feeReport.DayFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.DayFeeSum)
}
if feeReport.WeekFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.WeekFeeSum)
}
if feeReport.MonthFeeSum != uint64(expectedFeeDave) {
t.Fatalf("fee mismatch: expected %v, got %v", expectedFeeDave,
feeReport.MonthFeeSum)
}
// Next, ensure that if we issue the vanilla query for the forwarding
// history, it returns 5 values, and each entry is formatted properly.
ctxt, _ = context.WithTimeout(ctxb, defaultTimeout)
fwdingHistory, err := dave.ForwardingHistory(
ctxt, &lnrpc.ForwardingHistoryRequest{},
)
if err != nil {
t.Fatalf("unable to query for fee report: %v", err)
}
if len(fwdingHistory.ForwardingEvents) != numPayments {
t.Fatalf("wrong number of forwarding event: expected %v, "+
"got %v", numPayments,
len(fwdingHistory.ForwardingEvents))
}
expectedForwardingFee := uint64(expectedFeeDave / numPayments)
for _, event := range fwdingHistory.ForwardingEvents {
// Each event should show a fee of 170 satoshi.
if event.Fee != expectedForwardingFee {
t.Fatalf("fee mismatch: expected %v, got %v",
expectedForwardingFee, event.Fee)
}
}
// We expect Carol to have successful forwards and settles for
// her sends.
assertHtlcEvents(
t, numPayments, 0, numPayments, routerrpc.HtlcEvent_SEND,
carolEvents,
)
// Dave and Alice should both have forwards and settles for
// their role as forwarding nodes.
assertHtlcEvents(
t, numPayments, 0, numPayments, routerrpc.HtlcEvent_FORWARD,
daveEvents,
)
assertHtlcEvents(
t, numPayments, 0, numPayments, routerrpc.HtlcEvent_FORWARD,
aliceEvents,
)
// Bob should only have settle events for his receives.
assertHtlcEvents(
t, 0, 0, numPayments, routerrpc.HtlcEvent_RECEIVE, bobEvents,
)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, net.Alice, chanPointAlice, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, dave, chanPointDave, false)
ctxt, _ = context.WithTimeout(ctxb, channelCloseTimeout)
closeChannelAndAssert(ctxt, t, net, carol, chanPointCarol, false)
}
// assertHtlcEvents consumes events from a client and ensures that they are of
// the expected type and contain the expected number of forwards, forward
// failures and settles.
func assertHtlcEvents(t *harnessTest, fwdCount, fwdFailCount, settleCount int,
userType routerrpc.HtlcEvent_EventType,
client routerrpc.Router_SubscribeHtlcEventsClient) {
var forwards, forwardFails, settles int
numEvents := fwdCount + fwdFailCount + settleCount
for i := 0; i < numEvents; i++ {
event := assertEventAndType(t, userType, client)
switch event.Event.(type) {
case *routerrpc.HtlcEvent_ForwardEvent:
forwards++
case *routerrpc.HtlcEvent_ForwardFailEvent:
forwardFails++
case *routerrpc.HtlcEvent_SettleEvent:
settles++
default:
t.Fatalf("unexpected event: %T", event.Event)
}
}
if forwards != fwdCount {
t.Fatalf("expected: %v forwards, got: %v", fwdCount, forwards)
}
if forwardFails != fwdFailCount {
t.Fatalf("expected: %v forward fails, got: %v", fwdFailCount,
forwardFails)
}
if settles != settleCount {
t.Fatalf("expected: %v settles, got: %v", settleCount, settles)
}
}
// assertEventAndType reads an event from the stream provided and ensures that
// it is associated with the correct user related type - a user initiated send,
// a receive to our node or a forward through our node. Note that this event
// type is different from the htlc event type (forward, link failure etc).
func assertEventAndType(t *harnessTest, eventType routerrpc.HtlcEvent_EventType,
client routerrpc.Router_SubscribeHtlcEventsClient) *routerrpc.HtlcEvent {
event, err := client.Recv()
if err != nil {
t.Fatalf("could not get event")
}
if event.EventType != eventType {
t.Fatalf("expected: %v, got: %v", eventType,
event.EventType)
}
return event
}