lnd/graph/builder_test.go
Elle Mouton 90dff730ce
graph: updated builder to use atomic ints
Instead of relying on devs to remember that they must only be accessed
atomically.
2024-07-15 15:56:33 +02:00

2074 lines
59 KiB
Go

package graph
import (
"bytes"
"crypto/sha256"
"encoding/hex"
"encoding/json"
"fmt"
"image/color"
"math/rand"
"net"
"os"
"strings"
"testing"
"time"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
"github.com/go-errors/errors"
"github.com/lightningnetwork/lnd/chainntnfs"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/channeldb/models"
"github.com/lightningnetwork/lnd/htlcswitch"
"github.com/lightningnetwork/lnd/lntest/wait"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/stretchr/testify/require"
)
const (
// basicGraphFilePath is the file path for a basic graph used within
// the tests. The basic graph consists of 5 nodes with 5 channels
// connecting them.
basicGraphFilePath = "testdata/basic_graph.json"
testTimeout = 5 * time.Second
)
// TestAddProof checks that we can update the channel proof after channel
// info was added to the database.
func TestAddProof(t *testing.T) {
t.Parallel()
ctx := createTestCtxSingleNode(t, 0)
// Before creating out edge, we'll create two new nodes within the
// network that the channel will connect.
node1 := createTestNode(t)
node2 := createTestNode(t)
// In order to be able to add the edge we should have a valid funding
// UTXO within the blockchain.
fundingTx, _, chanID, err := createChannelEdge(
ctx, bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(), 100, 0,
)
require.NoError(t, err, "unable create channel edge")
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
// After utxo was recreated adding the edge without the proof.
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
AuthProof: nil,
}
copy(edge.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
require.NoError(t, ctx.builder.AddEdge(edge))
// Now we'll attempt to update the proof and check that it has been
// properly updated.
require.NoError(t, ctx.builder.AddProof(*chanID, &testAuthProof))
info, _, _, err := ctx.builder.GetChannelByID(*chanID)
require.NoError(t, err, "unable to get channel")
require.NotNil(t, info.AuthProof)
}
// TestIgnoreNodeAnnouncement tests that adding a node to the router that is
// not known from any channel announcement, leads to the announcement being
// ignored.
func TestIgnoreNodeAnnouncement(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxFromFile(t, startingBlockHeight, basicGraphFilePath)
pub := priv1.PubKey()
node := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
LastUpdate: time.Unix(123, 0),
Addresses: testAddrs,
Color: color.RGBA{1, 2, 3, 0},
Alias: "node11",
AuthSigBytes: testSig.Serialize(),
Features: testFeatures,
}
copy(node.PubKeyBytes[:], pub.SerializeCompressed())
err := ctx.builder.AddNode(node)
if !IsError(err, ErrIgnored) {
t.Fatalf("expected to get ErrIgnore, instead got: %v", err)
}
}
// TestIgnoreChannelEdgePolicyForUnknownChannel checks that a router will
// ignore a channel policy for a channel not in the graph.
func TestIgnoreChannelEdgePolicyForUnknownChannel(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
// Setup an initially empty network.
var testChannels []*testChannel
testGraph, err := createTestGraphFromChannels(
t, true, testChannels, "roasbeef",
)
require.NoError(t, err, "unable to create graph")
ctx := createTestCtxFromGraphInstance(
t, startingBlockHeight, testGraph, false,
)
var pub1 [33]byte
copy(pub1[:], priv1.PubKey().SerializeCompressed())
var pub2 [33]byte
copy(pub2[:], priv2.PubKey().SerializeCompressed())
// Add the edge between the two unknown nodes to the graph, and check
// that the nodes are found after the fact.
fundingTx, _, chanID, err := createChannelEdge(
ctx, bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(), 10000, 500,
)
require.NoError(t, err, "unable to create channel edge")
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: pub1,
NodeKey2Bytes: pub2,
BitcoinKey1Bytes: pub1,
BitcoinKey2Bytes: pub2,
AuthProof: nil,
}
edgePolicy := &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
ChannelID: edge.ChannelID,
LastUpdate: testTime,
TimeLockDelta: 10,
MinHTLC: 1,
FeeBaseMSat: 10,
FeeProportionalMillionths: 10000,
}
// Attempt to update the edge. This should be ignored, since the edge
// is not yet added to the router.
err = ctx.builder.UpdateEdge(edgePolicy)
if !IsError(err, ErrIgnored) {
t.Fatalf("expected to get ErrIgnore, instead got: %v", err)
}
// Add the edge.
require.NoErrorf(t, ctx.builder.AddEdge(edge), "expected to be able "+
"to add edge to the channel graph, even though the vertexes "+
"were unknown: %v.", err)
// Now updating the edge policy should succeed.
require.NoError(t, ctx.builder.UpdateEdge(edgePolicy))
}
// TestWakeUpOnStaleBranch tests that upon startup of the ChannelRouter, if the
// chain previously reflected in the channel graph is stale (overtaken by a
// longer chain), the channel router will prune the graph for any channels
// confirmed on the stale chain, and resync to the main chain.
func TestWakeUpOnStaleBranch(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxSingleNode(t, startingBlockHeight)
const chanValue = 10000
// chanID1 will not be reorged out.
var chanID1 uint64
// chanID2 will be reorged out.
var chanID2 uint64
// Create 10 common blocks, confirming chanID1.
for i := uint32(1); i <= 10; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := startingBlockHeight + i
if i == 5 {
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
chanValue, height)
if err != nil {
t.Fatalf("unable create channel edge: %v", err)
}
block.Transactions = append(block.Transactions,
fundingTx)
chanID1 = chanID.ToUint64()
}
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
ctx.chainView.notifyBlock(block.BlockHash(), height,
[]*wire.MsgTx{}, t)
}
// Give time to process new blocks
time.Sleep(time.Millisecond * 500)
_, forkHeight, err := ctx.chain.GetBestBlock()
require.NoError(t, err, "unable to ge best block")
// Create 10 blocks on the minority chain, confirming chanID2.
for i := uint32(1); i <= 10; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := uint32(forkHeight) + i
if i == 5 {
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
chanValue, height)
if err != nil {
t.Fatalf("unable create channel edge: %v", err)
}
block.Transactions = append(block.Transactions,
fundingTx)
chanID2 = chanID.ToUint64()
}
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
ctx.chainView.notifyBlock(block.BlockHash(), height,
[]*wire.MsgTx{}, t)
}
// Give time to process new blocks
time.Sleep(time.Millisecond * 500)
// Now add the two edges to the channel graph, and check that they
// correctly show up in the database.
node1 := createTestNode(t)
node2 := createTestNode(t)
edge1 := &models.ChannelEdgeInfo{
ChannelID: chanID1,
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
AuthProof: &models.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
}
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if err := ctx.builder.AddEdge(edge1); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
edge2 := &models.ChannelEdgeInfo{
ChannelID: chanID2,
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
AuthProof: &models.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
}
copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if err := ctx.builder.AddEdge(edge2); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// Check that the fundingTxs are in the graph db.
_, _, has, isZombie, err := ctx.graph.HasChannelEdge(chanID1)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID1)
}
if !has {
t.Fatalf("could not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID2)
}
if !has {
t.Fatalf("could not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
// Stop the router, so we can reorg the chain while its offline.
if err := ctx.builder.Stop(); err != nil {
t.Fatalf("unable to stop router: %v", err)
}
// Create a 15 block fork.
for i := uint32(1); i <= 15; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := uint32(forkHeight) + i
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
}
// Give time to process new blocks.
time.Sleep(time.Millisecond * 500)
selfNode, err := ctx.graph.SourceNode()
require.NoError(t, err)
// Create new router with same graph database.
router, err := NewBuilder(&Config{
SelfNode: selfNode.PubKeyBytes,
Graph: ctx.graph,
Chain: ctx.chain,
ChainView: ctx.chainView,
ChannelPruneExpiry: time.Hour * 24,
GraphPruneInterval: time.Hour * 2,
// We'll set the delay to zero to prune immediately.
FirstTimePruneDelay: 0,
IsAlias: func(scid lnwire.ShortChannelID) bool {
return false
},
})
require.NoError(t, err)
// It should resync to the longer chain on startup.
if err := router.Start(); err != nil {
t.Fatalf("unable to start router: %v", err)
}
// The channel with chanID2 should not be in the database anymore,
// since it is not confirmed on the longest chain. chanID1 should
// still be.
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID1)
require.NoError(t, err)
if !has {
t.Fatalf("did not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID2)
}
if has {
t.Fatalf("found edge in graph")
}
if isZombie {
t.Fatal("reorged edge should not be marked as zombie")
}
}
// TestDisconnectedBlocks checks that the router handles a reorg happening when
// it is active.
func TestDisconnectedBlocks(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxSingleNode(t, startingBlockHeight)
const chanValue = 10000
// chanID1 will not be reorged out, while chanID2 will be reorged out.
var chanID1, chanID2 uint64
// Create 10 common blocks, confirming chanID1.
for i := uint32(1); i <= 10; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := startingBlockHeight + i
if i == 5 {
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
chanValue, height)
if err != nil {
t.Fatalf("unable create channel edge: %v", err)
}
block.Transactions = append(block.Transactions,
fundingTx)
chanID1 = chanID.ToUint64()
}
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
ctx.chainView.notifyBlock(block.BlockHash(), height,
[]*wire.MsgTx{}, t)
}
// Give time to process new blocks
time.Sleep(time.Millisecond * 500)
_, forkHeight, err := ctx.chain.GetBestBlock()
require.NoError(t, err, "unable to get best block")
// Create 10 blocks on the minority chain, confirming chanID2.
var minorityChain []*wire.MsgBlock
for i := uint32(1); i <= 10; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := uint32(forkHeight) + i
if i == 5 {
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
chanValue, height)
if err != nil {
t.Fatalf("unable create channel edge: %v", err)
}
block.Transactions = append(block.Transactions,
fundingTx)
chanID2 = chanID.ToUint64()
}
minorityChain = append(minorityChain, block)
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
ctx.chainView.notifyBlock(block.BlockHash(), height,
[]*wire.MsgTx{}, t)
}
// Give time to process new blocks
time.Sleep(time.Millisecond * 500)
// Now add the two edges to the channel graph, and check that they
// correctly show up in the database.
node1 := createTestNode(t)
node2 := createTestNode(t)
edge1 := &models.ChannelEdgeInfo{
ChannelID: chanID1,
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
BitcoinKey1Bytes: node1.PubKeyBytes,
BitcoinKey2Bytes: node2.PubKeyBytes,
AuthProof: &models.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
}
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if err := ctx.builder.AddEdge(edge1); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
edge2 := &models.ChannelEdgeInfo{
ChannelID: chanID2,
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
BitcoinKey1Bytes: node1.PubKeyBytes,
BitcoinKey2Bytes: node2.PubKeyBytes,
AuthProof: &models.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
}
copy(edge2.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge2.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if err := ctx.builder.AddEdge(edge2); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// Check that the fundingTxs are in the graph db.
_, _, has, isZombie, err := ctx.graph.HasChannelEdge(chanID1)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID1)
}
if !has {
t.Fatalf("could not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID2)
}
if !has {
t.Fatalf("could not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
// Create a 15 block fork. We first let the chainView notify the router
// about stale blocks, before sending the now connected blocks. We do
// this because we expect this order from the chainview.
ctx.chainView.notifyStaleBlockAck = make(chan struct{}, 1)
for i := len(minorityChain) - 1; i >= 0; i-- {
block := minorityChain[i]
height := uint32(forkHeight) + uint32(i) + 1
ctx.chainView.notifyStaleBlock(block.BlockHash(), height,
block.Transactions, t)
<-ctx.chainView.notifyStaleBlockAck
}
time.Sleep(time.Second * 2)
ctx.chainView.notifyBlockAck = make(chan struct{}, 1)
for i := uint32(1); i <= 15; i++ {
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
height := uint32(forkHeight) + i
ctx.chain.addBlock(block, height, rand.Uint32())
ctx.chain.setBestBlock(int32(height))
ctx.chainView.notifyBlock(block.BlockHash(), height,
block.Transactions, t)
<-ctx.chainView.notifyBlockAck
}
time.Sleep(time.Millisecond * 500)
// chanID2 should not be in the database anymore, since it is not
// confirmed on the longest chain. chanID1 should still be.
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID1)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID1)
}
if !has {
t.Fatalf("did not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
_, _, has, isZombie, err = ctx.graph.HasChannelEdge(chanID2)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID2)
}
if has {
t.Fatalf("found edge in graph")
}
if isZombie {
t.Fatal("reorged edge should not be marked as zombie")
}
}
// TestChansClosedOfflinePruneGraph tests that if channels we know of are
// closed while we're offline, then once we resume operation of the
// ChannelRouter, then the channels are properly pruned.
func TestRouterChansClosedOfflinePruneGraph(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxSingleNode(t, startingBlockHeight)
const chanValue = 10000
// First, we'll create a channel, to be mined shortly at height 102.
block102 := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
nextHeight := startingBlockHeight + 1
fundingTx1, chanUTXO, chanID1, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
chanValue, uint32(nextHeight))
require.NoError(t, err, "unable create channel edge")
block102.Transactions = append(block102.Transactions, fundingTx1)
ctx.chain.addBlock(block102, uint32(nextHeight), rand.Uint32())
ctx.chain.setBestBlock(int32(nextHeight))
ctx.chainView.notifyBlock(block102.BlockHash(), uint32(nextHeight),
[]*wire.MsgTx{}, t)
// We'll now create the edges and nodes within the database required
// for the ChannelRouter to properly recognize the channel we added
// above.
node1 := createTestNode(t)
node2 := createTestNode(t)
edge1 := &models.ChannelEdgeInfo{
ChannelID: chanID1.ToUint64(),
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
AuthProof: &models.ChannelAuthProof{
NodeSig1Bytes: testSig.Serialize(),
NodeSig2Bytes: testSig.Serialize(),
BitcoinSig1Bytes: testSig.Serialize(),
BitcoinSig2Bytes: testSig.Serialize(),
},
}
copy(edge1.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge1.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if err := ctx.builder.AddEdge(edge1); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// The router should now be aware of the channel we created above.
_, _, hasChan, isZombie, err := ctx.graph.HasChannelEdge(
chanID1.ToUint64(),
)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID1)
}
if !hasChan {
t.Fatalf("could not find edge in graph")
}
if isZombie {
t.Fatal("edge was marked as zombie")
}
// With the transaction included, and the router's database state
// updated, we'll now mine 5 additional blocks on top of it.
for i := 0; i < 5; i++ {
nextHeight++
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32())
ctx.chain.setBestBlock(int32(nextHeight))
ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight),
[]*wire.MsgTx{}, t)
}
// At this point, our starting height should be 107.
_, chainHeight, err := ctx.chain.GetBestBlock()
require.NoError(t, err, "unable to get best block")
if chainHeight != 107 {
t.Fatalf("incorrect chain height: expected %v, got %v",
107, chainHeight)
}
// Next, we'll "shut down" the router in order to simulate downtime.
if err := ctx.builder.Stop(); err != nil {
t.Fatalf("unable to shutdown router: %v", err)
}
// While the router is "offline" we'll mine 5 additional blocks, with
// the second block closing the channel we created above.
for i := 0; i < 5; i++ {
nextHeight++
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
if i == 2 {
// For the second block, we'll add a transaction that
// closes the channel we created above by spending the
// output.
closingTx := wire.NewMsgTx(2)
closingTx.AddTxIn(&wire.TxIn{
PreviousOutPoint: *chanUTXO,
})
block.Transactions = append(block.Transactions,
closingTx)
}
ctx.chain.addBlock(block, uint32(nextHeight), rand.Uint32())
ctx.chain.setBestBlock(int32(nextHeight))
ctx.chainView.notifyBlock(block.BlockHash(), uint32(nextHeight),
[]*wire.MsgTx{}, t)
}
// At this point, our starting height should be 112.
_, chainHeight, err = ctx.chain.GetBestBlock()
require.NoError(t, err, "unable to get best block")
if chainHeight != 112 {
t.Fatalf("incorrect chain height: expected %v, got %v",
112, chainHeight)
}
// Now we'll re-start the ChannelRouter. It should recognize that it's
// behind the main chain and prune all the blocks that it missed while
// it was down.
ctx.RestartBuilder(t)
// At this point, the channel that was pruned should no longer be known
// by the router.
_, _, hasChan, isZombie, err = ctx.graph.HasChannelEdge(
chanID1.ToUint64(),
)
if err != nil {
t.Fatalf("error looking for edge: %v", chanID1)
}
if hasChan {
t.Fatalf("channel was found in graph but shouldn't have been")
}
if isZombie {
t.Fatal("closed channel should not be marked as zombie")
}
}
// TestPruneChannelGraphStaleEdges ensures that we properly prune stale edges
// from the channel graph.
func TestPruneChannelGraphStaleEdges(t *testing.T) {
t.Parallel()
freshTimestamp := time.Now()
staleTimestamp := time.Unix(0, 0)
// We'll create the following test graph so that two of the channels
// are pruned.
testChannels := []*testChannel{
// No edges.
{
Node1: &testChannelEnd{Alias: "a"},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 1,
},
// Only one edge with a stale timestamp.
{
Node1: &testChannelEnd{
Alias: "d",
testChannelPolicy: &testChannelPolicy{
LastUpdate: staleTimestamp,
},
},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 2,
},
// Only one edge with a stale timestamp, but it's the source
// node so it won't get pruned.
{
Node1: &testChannelEnd{
Alias: "a",
testChannelPolicy: &testChannelPolicy{
LastUpdate: staleTimestamp,
},
},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 3,
},
// Only one edge with a fresh timestamp.
{
Node1: &testChannelEnd{
Alias: "a",
testChannelPolicy: &testChannelPolicy{
LastUpdate: freshTimestamp,
},
},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 4,
},
// One edge fresh, one edge stale. This will be pruned with
// strict pruning activated.
{
Node1: &testChannelEnd{
Alias: "c",
testChannelPolicy: &testChannelPolicy{
LastUpdate: freshTimestamp,
},
},
Node2: &testChannelEnd{
Alias: "d",
testChannelPolicy: &testChannelPolicy{
LastUpdate: staleTimestamp,
},
},
Capacity: 100000,
ChannelID: 5,
},
// Both edges fresh.
symmetricTestChannel("g", "h", 100000, &testChannelPolicy{
LastUpdate: freshTimestamp,
}, 6),
// Both edges stale, only one pruned. This should be pruned for
// both normal and strict pruning.
symmetricTestChannel("e", "f", 100000, &testChannelPolicy{
LastUpdate: staleTimestamp,
}, 7),
}
for _, strictPruning := range []bool{true, false} {
// We'll create our test graph and router backed with these test
// channels we've created.
testGraph, err := createTestGraphFromChannels(
t, true, testChannels, "a",
)
if err != nil {
t.Fatalf("unable to create test graph: %v", err)
}
const startingHeight = 100
ctx := createTestCtxFromGraphInstance(
t, startingHeight, testGraph, strictPruning,
)
// All of the channels should exist before pruning them.
assertChannelsPruned(t, ctx.graph, testChannels)
// Proceed to prune the channels - only the last one should be
// pruned.
if err := ctx.builder.pruneZombieChans(); err != nil {
t.Fatalf("unable to prune zombie channels: %v", err)
}
// We expect channels that have either both edges stale, or one
// edge stale with both known.
var prunedChannels []uint64
if strictPruning {
prunedChannels = []uint64{2, 5, 7}
} else {
prunedChannels = []uint64{2, 7}
}
assertChannelsPruned(
t, ctx.graph, testChannels, prunedChannels...,
)
}
}
// TestPruneChannelGraphDoubleDisabled test that we can properly prune channels
// with both edges disabled from our channel graph.
func TestPruneChannelGraphDoubleDisabled(t *testing.T) {
t.Parallel()
t.Run("no_assumechannelvalid", func(t *testing.T) {
testPruneChannelGraphDoubleDisabled(t, false)
})
t.Run("assumechannelvalid", func(t *testing.T) {
testPruneChannelGraphDoubleDisabled(t, true)
})
}
func testPruneChannelGraphDoubleDisabled(t *testing.T, assumeValid bool) {
// We'll create the following test graph so that only the last channel
// is pruned. We'll use a fresh timestamp to ensure they're not pruned
// according to that heuristic.
timestamp := time.Now()
testChannels := []*testChannel{
// Channel from self shouldn't be pruned.
symmetricTestChannel(
"self", "a", 100000, &testChannelPolicy{
LastUpdate: timestamp,
Disabled: true,
}, 99,
),
// No edges.
{
Node1: &testChannelEnd{Alias: "a"},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 1,
},
// Only one edge disabled.
{
Node1: &testChannelEnd{
Alias: "a",
testChannelPolicy: &testChannelPolicy{
LastUpdate: timestamp,
Disabled: true,
},
},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 2,
},
// Only one edge enabled.
{
Node1: &testChannelEnd{
Alias: "a",
testChannelPolicy: &testChannelPolicy{
LastUpdate: timestamp,
Disabled: false,
},
},
Node2: &testChannelEnd{Alias: "b"},
Capacity: 100000,
ChannelID: 3,
},
// One edge disabled, one edge enabled.
{
Node1: &testChannelEnd{
Alias: "a",
testChannelPolicy: &testChannelPolicy{
LastUpdate: timestamp,
Disabled: true,
},
},
Node2: &testChannelEnd{
Alias: "b",
testChannelPolicy: &testChannelPolicy{
LastUpdate: timestamp,
Disabled: false,
},
},
Capacity: 100000,
ChannelID: 1,
},
// Both edges enabled.
symmetricTestChannel("c", "d", 100000, &testChannelPolicy{
LastUpdate: timestamp,
Disabled: false,
}, 2),
// Both edges disabled, only one pruned.
symmetricTestChannel("e", "f", 100000, &testChannelPolicy{
LastUpdate: timestamp,
Disabled: true,
}, 3),
}
// We'll create our test graph and router backed with these test
// channels we've created.
testGraph, err := createTestGraphFromChannels(
t, true, testChannels, "self",
)
require.NoError(t, err, "unable to create test graph")
const startingHeight = 100
ctx := createTestCtxFromGraphInstanceAssumeValid(
t, startingHeight, testGraph, assumeValid, false,
)
// All the channels should exist within the graph before pruning them
// when not using AssumeChannelValid, otherwise we should have pruned
// the last channel on startup.
if !assumeValid {
assertChannelsPruned(t, ctx.graph, testChannels)
} else {
// Sleep to allow the pruning to finish.
time.Sleep(200 * time.Millisecond)
prunedChannel := testChannels[len(testChannels)-1].ChannelID
assertChannelsPruned(t, ctx.graph, testChannels, prunedChannel)
}
if err := ctx.builder.pruneZombieChans(); err != nil {
t.Fatalf("unable to prune zombie channels: %v", err)
}
// If we attempted to prune them without AssumeChannelValid being set,
// none should be pruned. Otherwise the last channel should still be
// pruned.
if !assumeValid {
assertChannelsPruned(t, ctx.graph, testChannels)
} else {
prunedChannel := testChannels[len(testChannels)-1].ChannelID
assertChannelsPruned(t, ctx.graph, testChannels, prunedChannel)
}
}
// TestIsStaleNode tests that the IsStaleNode method properly detects stale
// node announcements.
func TestIsStaleNode(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxSingleNode(t, startingBlockHeight)
// Before we can insert a node in to the database, we need to create a
// channel that it's linked to.
var (
pub1 [33]byte
pub2 [33]byte
)
copy(pub1[:], priv1.PubKey().SerializeCompressed())
copy(pub2[:], priv2.PubKey().SerializeCompressed())
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
10000, 500)
require.NoError(t, err, "unable to create channel edge")
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: pub1,
NodeKey2Bytes: pub2,
BitcoinKey1Bytes: pub1,
BitcoinKey2Bytes: pub2,
AuthProof: nil,
}
if err := ctx.builder.AddEdge(edge); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// Before we add the node, if we query for staleness, we should get
// false, as we haven't added the full node.
updateTimeStamp := time.Unix(123, 0)
if ctx.builder.IsStaleNode(pub1, updateTimeStamp) {
t.Fatalf("incorrectly detected node as stale")
}
// With the node stub in the database, we'll add the fully node
// announcement to the database.
n1 := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
LastUpdate: updateTimeStamp,
Addresses: testAddrs,
Color: color.RGBA{1, 2, 3, 0},
Alias: "node11",
AuthSigBytes: testSig.Serialize(),
Features: testFeatures,
}
copy(n1.PubKeyBytes[:], priv1.PubKey().SerializeCompressed())
if err := ctx.builder.AddNode(n1); err != nil {
t.Fatalf("could not add node: %v", err)
}
// If we use the same timestamp and query for staleness, we should get
// true.
if !ctx.builder.IsStaleNode(pub1, updateTimeStamp) {
t.Fatalf("failure to detect stale node update")
}
// If we update the timestamp and once again query for staleness, it
// should report false.
newTimeStamp := time.Unix(1234, 0)
if ctx.builder.IsStaleNode(pub1, newTimeStamp) {
t.Fatalf("incorrectly detected node as stale")
}
}
// TestIsKnownEdge tests that the IsKnownEdge method properly detects stale
// channel announcements.
func TestIsKnownEdge(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxSingleNode(t, startingBlockHeight)
// First, we'll create a new channel edge (just the info) and insert it
// into the database.
var (
pub1 [33]byte
pub2 [33]byte
)
copy(pub1[:], priv1.PubKey().SerializeCompressed())
copy(pub2[:], priv2.PubKey().SerializeCompressed())
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
10000, 500)
require.NoError(t, err, "unable to create channel edge")
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: pub1,
NodeKey2Bytes: pub2,
BitcoinKey1Bytes: pub1,
BitcoinKey2Bytes: pub2,
AuthProof: nil,
}
if err := ctx.builder.AddEdge(edge); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// Now that the edge has been inserted, query is the router already
// knows of the edge should return true.
if !ctx.builder.IsKnownEdge(*chanID) {
t.Fatalf("router should detect edge as known")
}
}
// TestIsStaleEdgePolicy tests that the IsStaleEdgePolicy properly detects
// stale channel edge update announcements.
func TestIsStaleEdgePolicy(t *testing.T) {
t.Parallel()
const startingBlockHeight = 101
ctx := createTestCtxFromFile(t, startingBlockHeight, basicGraphFilePath)
// First, we'll create a new channel edge (just the info) and insert it
// into the database.
var (
pub1 [33]byte
pub2 [33]byte
)
copy(pub1[:], priv1.PubKey().SerializeCompressed())
copy(pub2[:], priv2.PubKey().SerializeCompressed())
fundingTx, _, chanID, err := createChannelEdge(ctx,
bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(),
10000, 500)
require.NoError(t, err, "unable to create channel edge")
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
// If we query for staleness before adding the edge, we should get
// false.
updateTimeStamp := time.Unix(123, 0)
if ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
t.Fatalf("router failed to detect fresh edge policy")
}
if ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
t.Fatalf("router failed to detect fresh edge policy")
}
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: pub1,
NodeKey2Bytes: pub2,
BitcoinKey1Bytes: pub1,
BitcoinKey2Bytes: pub2,
AuthProof: nil,
}
if err := ctx.builder.AddEdge(edge); err != nil {
t.Fatalf("unable to add edge: %v", err)
}
// We'll also add two edge policies, one for each direction.
edgePolicy := &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
ChannelID: edge.ChannelID,
LastUpdate: updateTimeStamp,
TimeLockDelta: 10,
MinHTLC: 1,
FeeBaseMSat: 10,
FeeProportionalMillionths: 10000,
}
edgePolicy.ChannelFlags = 0
if err := ctx.builder.UpdateEdge(edgePolicy); err != nil {
t.Fatalf("unable to update edge policy: %v", err)
}
edgePolicy = &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
ChannelID: edge.ChannelID,
LastUpdate: updateTimeStamp,
TimeLockDelta: 10,
MinHTLC: 1,
FeeBaseMSat: 10,
FeeProportionalMillionths: 10000,
}
edgePolicy.ChannelFlags = 1
if err := ctx.builder.UpdateEdge(edgePolicy); err != nil {
t.Fatalf("unable to update edge policy: %v", err)
}
// Now that the edges have been added, an identical (chanID, flag,
// timestamp) tuple for each edge should be detected as a stale edge.
if !ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
t.Fatalf("router failed to detect stale edge policy")
}
if !ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
t.Fatalf("router failed to detect stale edge policy")
}
// If we now update the timestamp for both edges, the router should
// detect that this tuple represents a fresh edge.
updateTimeStamp = time.Unix(9999, 0)
if ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 0) {
t.Fatalf("router failed to detect fresh edge policy")
}
if ctx.builder.IsStaleEdgePolicy(*chanID, updateTimeStamp, 1) {
t.Fatalf("router failed to detect fresh edge policy")
}
}
// edgeCreationModifier is an enum-like type used to modify steps that are
// skipped when creating a channel in the test context.
type edgeCreationModifier uint8
const (
// edgeCreationNoFundingTx is used to skip adding the funding
// transaction of an edge to the chain.
edgeCreationNoFundingTx edgeCreationModifier = iota
// edgeCreationNoUTXO is used to skip adding the UTXO of a channel to
// the UTXO set.
edgeCreationNoUTXO
// edgeCreationBadScript is used to create the edge, but use the wrong
// scrip which should cause it to fail output validation.
edgeCreationBadScript
)
// newChannelEdgeInfo is a helper function used to create a new channel edge,
// possibly skipping adding it to parts of the chain/state as well.
func newChannelEdgeInfo(t *testing.T, ctx *testCtx, fundingHeight uint32,
ecm edgeCreationModifier) (*models.ChannelEdgeInfo, error) {
node1 := createTestNode(t)
node2 := createTestNode(t)
fundingTx, _, chanID, err := createChannelEdge(
ctx, bitcoinKey1.SerializeCompressed(),
bitcoinKey2.SerializeCompressed(), 100, fundingHeight,
)
if err != nil {
return nil, fmt.Errorf("unable to create edge: %w", err)
}
edge := &models.ChannelEdgeInfo{
ChannelID: chanID.ToUint64(),
NodeKey1Bytes: node1.PubKeyBytes,
NodeKey2Bytes: node2.PubKeyBytes,
}
copy(edge.BitcoinKey1Bytes[:], bitcoinKey1.SerializeCompressed())
copy(edge.BitcoinKey2Bytes[:], bitcoinKey2.SerializeCompressed())
if ecm == edgeCreationNoFundingTx {
return edge, nil
}
fundingBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{fundingTx},
}
ctx.chain.addBlock(fundingBlock, chanID.BlockHeight, chanID.BlockHeight)
if ecm == edgeCreationNoUTXO {
ctx.chain.delUtxo(wire.OutPoint{
Hash: fundingTx.TxHash(),
})
}
if ecm == edgeCreationBadScript {
fundingTx.TxOut[0].PkScript[0] ^= 1
}
return edge, nil
}
func assertChanChainRejection(t *testing.T, ctx *testCtx,
edge *models.ChannelEdgeInfo, failCode errorCode) {
t.Helper()
err := ctx.builder.AddEdge(edge)
if !IsError(err, failCode) {
t.Fatalf("validation should have failed: %v", err)
}
// This channel should now be present in the zombie channel index.
_, _, _, isZombie, err := ctx.graph.HasChannelEdge(
edge.ChannelID,
)
require.Nil(t, err)
require.True(t, isZombie, "edge should be marked as zombie")
}
// TestChannelOnChainRejectionZombie tests that if we fail validating a channel
// due to some sort of on-chain rejection (no funding transaction, or invalid
// UTXO), then we'll mark the channel as a zombie.
func TestChannelOnChainRejectionZombie(t *testing.T) {
t.Parallel()
ctx := createTestCtxSingleNode(t, 0)
// To start, we'll make an edge for the channel, but we won't add the
// funding transaction to the mock blockchain, which should cause the
// validation to fail below.
edge, err := newChannelEdgeInfo(t, ctx, 1, edgeCreationNoFundingTx)
require.Nil(t, err)
// We expect this to fail as the transaction isn't present in the
// chain (nor the block).
assertChanChainRejection(t, ctx, edge, ErrNoFundingTransaction)
// Next, we'll make another channel edge, but actually add it to the
// graph this time.
edge, err = newChannelEdgeInfo(t, ctx, 2, edgeCreationNoUTXO)
require.Nil(t, err)
// Instead now, we'll remove it from the set of UTXOs which should
// cause the spentness validation to fail.
assertChanChainRejection(t, ctx, edge, ErrChannelSpent)
// If we cause the funding transaction the chain to fail validation, we
// should see similar behavior.
edge, err = newChannelEdgeInfo(t, ctx, 3, edgeCreationBadScript)
require.Nil(t, err)
assertChanChainRejection(t, ctx, edge, ErrInvalidFundingOutput)
}
// TestBlockDifferenceFix tests if when the router is behind on blocks, the
// router catches up to the best block head.
func TestBlockDifferenceFix(t *testing.T) {
t.Parallel()
initialBlockHeight := uint32(0)
// Starting height here is set to 0, which is behind where we want to
// be.
ctx := createTestCtxSingleNode(t, initialBlockHeight)
// Add initial block to our mini blockchain.
block := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
ctx.chain.addBlock(block, initialBlockHeight, rand.Uint32())
// Let's generate a new block of height 5, 5 above where our node is at.
newBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
}
newBlockHeight := uint32(5)
blockDifference := newBlockHeight - initialBlockHeight
ctx.chainView.notifyBlockAck = make(chan struct{}, 1)
ctx.chain.addBlock(newBlock, newBlockHeight, rand.Uint32())
ctx.chain.setBestBlock(int32(newBlockHeight))
ctx.chainView.notifyBlock(block.BlockHash(), newBlockHeight,
[]*wire.MsgTx{}, t)
<-ctx.chainView.notifyBlockAck
// At this point, the chain notifier should have noticed that we're
// behind on blocks, and will send the n missing blocks that we
// need to the client's epochs channel. Let's replicate this
// functionality.
for i := 0; i < int(blockDifference); i++ {
currBlockHeight := int32(i + 1)
nonce := rand.Uint32()
newBlock := &wire.MsgBlock{
Transactions: []*wire.MsgTx{},
Header: wire.BlockHeader{Nonce: nonce},
}
ctx.chain.addBlock(newBlock, uint32(currBlockHeight), nonce)
currHash := newBlock.Header.BlockHash()
newEpoch := &chainntnfs.BlockEpoch{
Height: currBlockHeight,
Hash: &currHash,
}
ctx.notifier.EpochChan <- newEpoch
ctx.chainView.notifyBlock(currHash,
uint32(currBlockHeight), block.Transactions, t)
<-ctx.chainView.notifyBlockAck
}
err := wait.NoError(func() error {
// Then router height should be updated to the latest block.
if ctx.builder.bestHeight.Load() != newBlockHeight {
return fmt.Errorf("height should have been updated "+
"to %v, instead got %v", newBlockHeight,
ctx.builder.bestHeight.Load())
}
return nil
}, testTimeout)
require.NoError(t, err, "block height wasn't updated")
}
func createTestCtxFromFile(t *testing.T,
startingHeight uint32, testGraph string) *testCtx {
// We'll attempt to locate and parse out the file
// that encodes the graph that our tests should be run against.
graphInstance, err := parseTestGraph(t, true, testGraph)
require.NoError(t, err, "unable to create test graph")
return createTestCtxFromGraphInstance(
t, startingHeight, graphInstance, false,
)
}
// parseTestGraph returns a fully populated ChannelGraph given a path to a JSON
// file which encodes a test graph.
func parseTestGraph(t *testing.T, useCache bool, path string) (
*testGraphInstance, error) {
graphJSON, err := os.ReadFile(path)
if err != nil {
return nil, err
}
// First unmarshal the JSON graph into an instance of the testGraph
// struct. Using the struct tags created above in the struct, the JSON
// will be properly parsed into the struct above.
var g testGraph
if err := json.Unmarshal(graphJSON, &g); err != nil {
return nil, err
}
// We'll use this fake address for the IP address of all the nodes in
// our tests. This value isn't needed for path finding so it doesn't
// need to be unique.
var testAddrs []net.Addr
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
if err != nil {
return nil, err
}
testAddrs = append(testAddrs, testAddr)
// Next, create a temporary graph database for usage within the test.
graph, graphBackend, err := makeTestGraph(t, useCache)
if err != nil {
return nil, err
}
aliasMap := make(map[string]route.Vertex)
privKeyMap := make(map[string]*btcec.PrivateKey)
channelIDs := make(map[route.Vertex]map[route.Vertex]uint64)
links := make(map[lnwire.ShortChannelID]htlcswitch.ChannelLink)
var source *channeldb.LightningNode
// First we insert all the nodes within the graph as vertexes.
for _, node := range g.Nodes {
pubBytes, err := hex.DecodeString(node.PubKey)
if err != nil {
return nil, err
}
dbNode := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: testTime,
Addresses: testAddrs,
Alias: node.Alias,
Features: testFeatures,
}
copy(dbNode.PubKeyBytes[:], pubBytes)
// We require all aliases within the graph to be unique for our
// tests.
if _, ok := aliasMap[node.Alias]; ok {
return nil, errors.New("aliases for nodes " +
"must be unique!")
}
// If the alias is unique, then add the node to the
// alias map for easy lookup.
aliasMap[node.Alias] = dbNode.PubKeyBytes
// private keys are needed for signing error messages. If set
// check the consistency with the public key.
privBytes, err := hex.DecodeString(node.PrivKey)
if err != nil {
return nil, err
}
if len(privBytes) > 0 {
key, derivedPub := btcec.PrivKeyFromBytes(
privBytes,
)
if !bytes.Equal(
pubBytes, derivedPub.SerializeCompressed(),
) {
return nil, fmt.Errorf("%s public key and "+
"private key are inconsistent\n"+
"got %x\nwant %x\n",
node.Alias,
derivedPub.SerializeCompressed(),
pubBytes,
)
}
privKeyMap[node.Alias] = key
}
// If the node is tagged as the source, then we create a
// pointer to is so we can mark the source in the graph
// properly.
if node.Source {
// If we come across a node that's marked as the
// source, and we've already set the source in a prior
// iteration, then the JSON has an error as only ONE
// node can be the source in the graph.
if source != nil {
return nil, errors.New("JSON is invalid " +
"multiple nodes are tagged as the " +
"source")
}
source = dbNode
}
// With the node fully parsed, add it as a vertex within the
// graph.
if err := graph.AddLightningNode(dbNode); err != nil {
return nil, err
}
}
if source != nil {
// Set the selected source node
if err := graph.SetSourceNode(source); err != nil {
return nil, err
}
}
// With all the vertexes inserted, we can now insert the edges into the
// test graph.
for _, edge := range g.Edges {
node1Bytes, err := hex.DecodeString(edge.Node1)
if err != nil {
return nil, err
}
node2Bytes, err := hex.DecodeString(edge.Node2)
if err != nil {
return nil, err
}
if bytes.Compare(node1Bytes, node2Bytes) == 1 {
return nil, fmt.Errorf(
"channel %v node order incorrect",
edge.ChannelID,
)
}
fundingTXID := strings.Split(edge.ChannelPoint, ":")[0]
txidBytes, err := chainhash.NewHashFromStr(fundingTXID)
if err != nil {
return nil, err
}
fundingPoint := wire.OutPoint{
Hash: *txidBytes,
Index: 0,
}
// We first insert the existence of the edge between the two
// nodes.
edgeInfo := models.ChannelEdgeInfo{
ChannelID: edge.ChannelID,
AuthProof: &testAuthProof,
ChannelPoint: fundingPoint,
Capacity: btcutil.Amount(edge.Capacity),
}
copy(edgeInfo.NodeKey1Bytes[:], node1Bytes)
copy(edgeInfo.NodeKey2Bytes[:], node2Bytes)
copy(edgeInfo.BitcoinKey1Bytes[:], node1Bytes)
copy(edgeInfo.BitcoinKey2Bytes[:], node2Bytes)
shortID := lnwire.NewShortChanIDFromInt(edge.ChannelID)
links[shortID] = &mockLink{
bandwidth: lnwire.MilliSatoshi(
edgeInfo.Capacity * 1000,
),
}
err = graph.AddChannelEdge(&edgeInfo)
if err != nil && !errors.Is(
err, channeldb.ErrEdgeAlreadyExist,
) {
return nil, err
}
channelFlags := lnwire.ChanUpdateChanFlags(edge.ChannelFlags)
isUpdate1 := channelFlags&lnwire.ChanUpdateDirection == 0
targetNode := edgeInfo.NodeKey1Bytes
if isUpdate1 {
targetNode = edgeInfo.NodeKey2Bytes
}
edgePolicy := &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: lnwire.ChanUpdateMsgFlags(
edge.MessageFlags,
),
ChannelFlags: channelFlags,
ChannelID: edge.ChannelID,
LastUpdate: testTime,
TimeLockDelta: edge.Expiry,
MinHTLC: lnwire.MilliSatoshi(
edge.MinHTLC,
),
MaxHTLC: lnwire.MilliSatoshi(
edge.MaxHTLC,
),
FeeBaseMSat: lnwire.MilliSatoshi(
edge.FeeBaseMsat,
),
FeeProportionalMillionths: lnwire.MilliSatoshi(
edge.FeeRate,
),
ToNode: targetNode,
}
if err := graph.UpdateEdgePolicy(edgePolicy); err != nil {
return nil, err
}
// We also store the channel IDs info for each of the node.
node1Vertex, err := route.NewVertexFromBytes(node1Bytes)
if err != nil {
return nil, err
}
node2Vertex, err := route.NewVertexFromBytes(node2Bytes)
if err != nil {
return nil, err
}
if _, ok := channelIDs[node1Vertex]; !ok {
channelIDs[node1Vertex] = map[route.Vertex]uint64{}
}
channelIDs[node1Vertex][node2Vertex] = edge.ChannelID
if _, ok := channelIDs[node2Vertex]; !ok {
channelIDs[node2Vertex] = map[route.Vertex]uint64{}
}
channelIDs[node2Vertex][node1Vertex] = edge.ChannelID
}
return &testGraphInstance{
graph: graph,
graphBackend: graphBackend,
aliasMap: aliasMap,
privKeyMap: privKeyMap,
channelIDs: channelIDs,
links: links,
}, nil
}
// testGraph is the struct which corresponds to the JSON format used to encode
// graphs within the files in the testdata directory.
//
// TODO(roasbeef): add test graph auto-generator.
type testGraph struct {
Info []string `json:"info"`
Nodes []testNode `json:"nodes"`
Edges []testChan `json:"edges"`
}
// testNode represents a node within the test graph above. We skip certain
// information such as the node's IP address as that information isn't needed
// for our tests. Private keys are optional. If set, they should be consistent
// with the public key. The private key is used to sign error messages
// sent from the node.
type testNode struct {
Source bool `json:"source"`
PubKey string `json:"pubkey"`
PrivKey string `json:"privkey"`
Alias string `json:"alias"`
}
// testChan represents the JSON version of a payment channel. This struct
// matches the Json that's encoded under the "edges" key within the test graph.
type testChan struct {
Node1 string `json:"node_1"`
Node2 string `json:"node_2"`
ChannelID uint64 `json:"channel_id"`
ChannelPoint string `json:"channel_point"`
ChannelFlags uint8 `json:"channel_flags"`
MessageFlags uint8 `json:"message_flags"`
Expiry uint16 `json:"expiry"`
MinHTLC int64 `json:"min_htlc"`
MaxHTLC int64 `json:"max_htlc"`
FeeBaseMsat int64 `json:"fee_base_msat"`
FeeRate int64 `json:"fee_rate"`
Capacity int64 `json:"capacity"`
}
type testChannel struct {
Node1 *testChannelEnd
Node2 *testChannelEnd
Capacity btcutil.Amount
ChannelID uint64
}
type testChannelEnd struct {
Alias string
*testChannelPolicy
}
func symmetricTestChannel(alias1, alias2 string, capacity btcutil.Amount,
policy *testChannelPolicy, chanID ...uint64) *testChannel {
// Leaving id zero will result in auto-generation of a channel id during
// graph construction.
var id uint64
if len(chanID) > 0 {
id = chanID[0]
}
policy2 := *policy
return asymmetricTestChannel(
alias1, alias2, capacity, policy, &policy2, id,
)
}
func asymmetricTestChannel(alias1, alias2 string, capacity btcutil.Amount,
policy1, policy2 *testChannelPolicy, id uint64) *testChannel {
return &testChannel{
Capacity: capacity,
Node1: &testChannelEnd{
Alias: alias1,
testChannelPolicy: policy1,
},
Node2: &testChannelEnd{
Alias: alias2,
testChannelPolicy: policy2,
},
ChannelID: id,
}
}
// assertChannelsPruned ensures that only the given channels are pruned from the
// graph out of the set of all channels.
func assertChannelsPruned(t *testing.T, graph *channeldb.ChannelGraph,
channels []*testChannel, prunedChanIDs ...uint64) {
t.Helper()
pruned := make(map[uint64]struct{}, len(channels))
for _, chanID := range prunedChanIDs {
pruned[chanID] = struct{}{}
}
for _, channel := range channels {
_, shouldPrune := pruned[channel.ChannelID]
_, _, exists, isZombie, err := graph.HasChannelEdge(
channel.ChannelID,
)
if err != nil {
t.Fatalf("unable to determine existence of "+
"channel=%v in the graph: %v",
channel.ChannelID, err)
}
if !shouldPrune && !exists {
t.Fatalf("expected channel=%v to exist within "+
"the graph", channel.ChannelID)
}
if shouldPrune && exists {
t.Fatalf("expected channel=%v to not exist "+
"within the graph", channel.ChannelID)
}
if !shouldPrune && isZombie {
t.Fatalf("expected channel=%v to not be marked "+
"as zombie", channel.ChannelID)
}
if shouldPrune && !isZombie {
t.Fatalf("expected channel=%v to be marked as "+
"zombie", channel.ChannelID)
}
}
}
type testChannelPolicy struct {
Expiry uint16
MinHTLC lnwire.MilliSatoshi
MaxHTLC lnwire.MilliSatoshi
FeeBaseMsat lnwire.MilliSatoshi
FeeRate lnwire.MilliSatoshi
InboundFeeBaseMsat int64
InboundFeeRate int64
LastUpdate time.Time
Disabled bool
Features *lnwire.FeatureVector
}
// createTestGraphFromChannels returns a fully populated ChannelGraph based on a
// set of test channels. Additional required information like keys are derived
// in a deterministic way and added to the channel graph. A list of nodes is not
// required and derived from the channel data. The goal is to keep instantiating
// a test channel graph as light weight as possible.
func createTestGraphFromChannels(t *testing.T, useCache bool,
testChannels []*testChannel, source string) (*testGraphInstance,
error) {
// We'll use this fake address for the IP address of all the nodes in
// our tests. This value isn't needed for path finding so it doesn't
// need to be unique.
var testAddrs []net.Addr
testAddr, err := net.ResolveTCPAddr("tcp", "192.0.0.1:8888")
if err != nil {
return nil, err
}
testAddrs = append(testAddrs, testAddr)
// Next, create a temporary graph database for usage within the test.
graph, graphBackend, err := makeTestGraph(t, useCache)
if err != nil {
return nil, err
}
aliasMap := make(map[string]route.Vertex)
privKeyMap := make(map[string]*btcec.PrivateKey)
nodeIndex := byte(0)
addNodeWithAlias := func(alias string, features *lnwire.FeatureVector) (
*channeldb.LightningNode, error) {
keyBytes := []byte{
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, nodeIndex + 1,
}
privKey, pubKey := btcec.PrivKeyFromBytes(keyBytes)
if features == nil {
features = lnwire.EmptyFeatureVector()
}
dbNode := &channeldb.LightningNode{
HaveNodeAnnouncement: true,
AuthSigBytes: testSig.Serialize(),
LastUpdate: testTime,
Addresses: testAddrs,
Alias: alias,
Features: features,
}
copy(dbNode.PubKeyBytes[:], pubKey.SerializeCompressed())
privKeyMap[alias] = privKey
// With the node fully parsed, add it as a vertex within the
// graph.
if err := graph.AddLightningNode(dbNode); err != nil {
return nil, err
}
aliasMap[alias] = dbNode.PubKeyBytes
nodeIndex++
return dbNode, nil
}
// Add the source node.
dbNode, err := addNodeWithAlias(source, lnwire.EmptyFeatureVector())
if err != nil {
return nil, err
}
if err = graph.SetSourceNode(dbNode); err != nil {
return nil, err
}
// Initialize variable that keeps track of the next channel id to assign
// if none is specified.
nextUnassignedChannelID := uint64(100000)
links := make(map[lnwire.ShortChannelID]htlcswitch.ChannelLink)
for _, testChannel := range testChannels {
for _, node := range []*testChannelEnd{
testChannel.Node1, testChannel.Node2,
} {
_, exists := aliasMap[node.Alias]
if !exists {
var features *lnwire.FeatureVector
if node.testChannelPolicy != nil {
features =
node.testChannelPolicy.Features
}
_, err := addNodeWithAlias(
node.Alias, features,
)
if err != nil {
return nil, err
}
}
}
channelID := testChannel.ChannelID
// If no channel id is specified, generate an id.
if channelID == 0 {
channelID = nextUnassignedChannelID
nextUnassignedChannelID++
}
var hash [sha256.Size]byte
hash[len(hash)-1] = byte(channelID)
fundingPoint := &wire.OutPoint{
Hash: chainhash.Hash(hash),
Index: 0,
}
capacity := lnwire.MilliSatoshi(testChannel.Capacity * 1000)
shortID := lnwire.NewShortChanIDFromInt(channelID)
links[shortID] = &mockLink{
bandwidth: capacity,
}
// Sort nodes
node1 := testChannel.Node1
node2 := testChannel.Node2
node1Vertex := aliasMap[node1.Alias]
node2Vertex := aliasMap[node2.Alias]
if bytes.Compare(node1Vertex[:], node2Vertex[:]) == 1 {
node1, node2 = node2, node1
node1Vertex, node2Vertex = node2Vertex, node1Vertex
}
// We first insert the existence of the edge between the two
// nodes.
edgeInfo := models.ChannelEdgeInfo{
ChannelID: channelID,
AuthProof: &testAuthProof,
ChannelPoint: *fundingPoint,
Capacity: testChannel.Capacity,
NodeKey1Bytes: node1Vertex,
BitcoinKey1Bytes: node1Vertex,
NodeKey2Bytes: node2Vertex,
BitcoinKey2Bytes: node2Vertex,
}
err = graph.AddChannelEdge(&edgeInfo)
if err != nil &&
!errors.Is(err, channeldb.ErrEdgeAlreadyExist) {
return nil, err
}
getExtraData := func(
end *testChannelEnd) lnwire.ExtraOpaqueData {
var extraData lnwire.ExtraOpaqueData
inboundFee := lnwire.Fee{
BaseFee: int32(end.InboundFeeBaseMsat),
FeeRate: int32(end.InboundFeeRate),
}
require.NoError(t, extraData.PackRecords(&inboundFee))
return extraData
}
if node1.testChannelPolicy != nil {
var msgFlags lnwire.ChanUpdateMsgFlags
if node1.MaxHTLC != 0 {
msgFlags |= lnwire.ChanUpdateRequiredMaxHtlc
}
var channelFlags lnwire.ChanUpdateChanFlags
if node1.Disabled {
channelFlags |= lnwire.ChanUpdateDisabled
}
edgePolicy := &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: msgFlags,
ChannelFlags: channelFlags,
ChannelID: channelID,
LastUpdate: node1.LastUpdate,
TimeLockDelta: node1.Expiry,
MinHTLC: node1.MinHTLC,
MaxHTLC: node1.MaxHTLC,
FeeBaseMSat: node1.FeeBaseMsat,
FeeProportionalMillionths: node1.FeeRate,
ToNode: node2Vertex,
ExtraOpaqueData: getExtraData(node1),
}
err := graph.UpdateEdgePolicy(edgePolicy)
if err != nil {
return nil, err
}
}
if node2.testChannelPolicy != nil {
var msgFlags lnwire.ChanUpdateMsgFlags
if node2.MaxHTLC != 0 {
msgFlags |= lnwire.ChanUpdateRequiredMaxHtlc
}
var channelFlags lnwire.ChanUpdateChanFlags
if node2.Disabled {
channelFlags |= lnwire.ChanUpdateDisabled
}
channelFlags |= lnwire.ChanUpdateDirection
edgePolicy := &models.ChannelEdgePolicy{
SigBytes: testSig.Serialize(),
MessageFlags: msgFlags,
ChannelFlags: channelFlags,
ChannelID: channelID,
LastUpdate: node2.LastUpdate,
TimeLockDelta: node2.Expiry,
MinHTLC: node2.MinHTLC,
MaxHTLC: node2.MaxHTLC,
FeeBaseMSat: node2.FeeBaseMsat,
FeeProportionalMillionths: node2.FeeRate,
ToNode: node1Vertex,
ExtraOpaqueData: getExtraData(node2),
}
err := graph.UpdateEdgePolicy(edgePolicy)
if err != nil {
return nil, err
}
}
channelID++ //nolint:ineffassign
}
return &testGraphInstance{
graph: graph,
graphBackend: graphBackend,
aliasMap: aliasMap,
privKeyMap: privKeyMap,
links: links,
}, nil
}
type mockLink struct {
htlcswitch.ChannelLink
bandwidth lnwire.MilliSatoshi
mayAddOutgoingErr error
ineligible bool
}
// Bandwidth returns the bandwidth the mock was configured with.
func (m *mockLink) Bandwidth() lnwire.MilliSatoshi {
return m.bandwidth
}
// EligibleToForward returns the mock's configured eligibility.
func (m *mockLink) EligibleToForward() bool {
return !m.ineligible
}
// MayAddOutgoingHtlc returns the error configured in our mock.
func (m *mockLink) MayAddOutgoingHtlc(_ lnwire.MilliSatoshi) error {
return m.mayAddOutgoingErr
}