lnd/channeldb/models/channel_edge_policy.go
Elle Mouton 84cdcd6847
multi: move DB schemas to channeldb/models
This commit moves the ChannelEdgePolicy, ChannelEdgeInfo,
ChanelAuthProof and CachedEdgePolicy structs to the `channeldb/models`
package.
2023-11-08 14:50:35 +02:00

132 lines
4.5 KiB
Go

package models
import (
"time"
"github.com/btcsuite/btcd/btcec/v2/ecdsa"
"github.com/lightningnetwork/lnd/lnwire"
)
// ChannelEdgePolicy represents a *directed* edge within the channel graph. For
// each channel in the database, there are two distinct edges: one for each
// possible direction of travel along the channel. The edges themselves hold
// information concerning fees, and minimum time-lock information which is
// utilized during path finding.
type ChannelEdgePolicy struct {
// SigBytes is the raw bytes of the signature of the channel edge
// policy. We'll only parse these if the caller needs to access the
// signature for validation purposes. Do not set SigBytes directly, but
// use SetSigBytes instead to make sure that the cache is invalidated.
SigBytes []byte
// sig is a cached fully parsed signature.
sig *ecdsa.Signature
// ChannelID is the unique channel ID for the channel. The first 3
// bytes are the block height, the next 3 the index within the block,
// and the last 2 bytes are the output index for the channel.
ChannelID uint64
// LastUpdate is the last time an authenticated edge for this channel
// was received.
LastUpdate time.Time
// MessageFlags is a bitfield which indicates the presence of optional
// fields (like max_htlc) in the policy.
MessageFlags lnwire.ChanUpdateMsgFlags
// ChannelFlags is a bitfield which signals the capabilities of the
// channel as well as the directed edge this update applies to.
ChannelFlags lnwire.ChanUpdateChanFlags
// TimeLockDelta is the number of blocks this node will subtract from
// the expiry of an incoming HTLC. This value expresses the time buffer
// the node would like to HTLC exchanges.
TimeLockDelta uint16
// MinHTLC is the smallest value HTLC this node will forward, expressed
// in millisatoshi.
MinHTLC lnwire.MilliSatoshi
// MaxHTLC is the largest value HTLC this node will forward, expressed
// in millisatoshi.
MaxHTLC lnwire.MilliSatoshi
// FeeBaseMSat is the base HTLC fee that will be charged for forwarding
// ANY HTLC, expressed in mSAT's.
FeeBaseMSat lnwire.MilliSatoshi
// FeeProportionalMillionths is the rate that the node will charge for
// HTLCs for each millionth of a satoshi forwarded.
FeeProportionalMillionths lnwire.MilliSatoshi
// ToNode is the public key of the node that this directed edge leads
// to. Using this pub key, the channel graph can further be traversed.
ToNode [33]byte
// ExtraOpaqueData is the set of data that was appended to this
// message, some of which we may not actually know how to iterate or
// parse. By holding onto this data, we ensure that we're able to
// properly validate the set of signatures that cover these new fields,
// and ensure we're able to make upgrades to the network in a forwards
// compatible manner.
ExtraOpaqueData []byte
}
// Signature is a channel announcement signature, which is needed for proper
// edge policy announcement.
//
// NOTE: By having this method to access an attribute, we ensure we only need
// to fully deserialize the signature if absolutely necessary.
func (c *ChannelEdgePolicy) Signature() (*ecdsa.Signature, error) {
if c.sig != nil {
return c.sig, nil
}
sig, err := ecdsa.ParseSignature(c.SigBytes)
if err != nil {
return nil, err
}
c.sig = sig
return sig, nil
}
// SetSigBytes updates the signature and invalidates the cached parsed
// signature.
func (c *ChannelEdgePolicy) SetSigBytes(sig []byte) {
c.SigBytes = sig
c.sig = nil
}
// IsDisabled determines whether the edge has the disabled bit set.
func (c *ChannelEdgePolicy) IsDisabled() bool {
return c.ChannelFlags.IsDisabled()
}
// ComputeFee computes the fee to forward an HTLC of `amt` milli-satoshis over
// the passed active payment channel. This value is currently computed as
// specified in BOLT07, but will likely change in the near future.
func (c *ChannelEdgePolicy) ComputeFee(
amt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return c.FeeBaseMSat + (amt*c.FeeProportionalMillionths)/feeRateParts
}
// divideCeil divides dividend by factor and rounds the result up.
func divideCeil(dividend, factor lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return (dividend + factor - 1) / factor
}
// ComputeFeeFromIncoming computes the fee to forward an HTLC given the incoming
// amount.
func (c *ChannelEdgePolicy) ComputeFeeFromIncoming(
incomingAmt lnwire.MilliSatoshi) lnwire.MilliSatoshi {
return incomingAmt - divideCeil(
feeRateParts*(incomingAmt-c.FeeBaseMSat),
feeRateParts+c.FeeProportionalMillionths,
)
}