lnd/graph/validation_barrier.go
Eugene Siegel 2731d09a0b graph: change ValidationBarrier usage in the builder code
This omits calls to InitJobDependencies, SignalDependants, and
WaitForDependants. These changes have been made here because
the router / builder code does not actually need job dependency
management. Calls to the builder code (i.e. AddNode, AddEdge,
UpdateEdge) are all blocking in the gossiper. This, combined
with the fact that child jobs are run after parent jobs in the
gossiper, means that the calls to the router will happen in the
proper dependency order.
2025-01-23 11:43:07 -05:00

255 lines
8.8 KiB
Go

package graph
import (
"fmt"
"sync"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
)
// validationSignals contains two signals which allows the ValidationBarrier to
// communicate back to the caller whether a dependent should be processed or not
// based on whether its parent was successfully validated. Only one of these
// signals is to be used at a time.
type validationSignals struct {
// allow is the signal used to allow a dependent to be processed.
allow chan struct{}
// deny is the signal used to prevent a dependent from being processed.
deny chan struct{}
}
// ValidationBarrier is a barrier used to ensure proper validation order while
// concurrently validating new announcements for channel edges, and the
// attributes of channel edges. It uses this set of maps (protected by this
// mutex) to track validation dependencies. For a given channel our
// dependencies look like this: chanAnn <- chanUp <- nodeAnn. That is we must
// validate the item on the left of the arrow before that on the right.
type ValidationBarrier struct {
// validationSemaphore is a channel of structs which is used as a
// semaphore. Initially we'll fill this with a buffered channel of the
// size of the number of active requests. Each new job will consume
// from this channel, then restore the value upon completion.
validationSemaphore chan struct{}
// chanAnnFinSignal is map that keep track of all the pending
// ChannelAnnouncement like validation job going on. Once the job has
// been completed, the channel will be closed unblocking any
// dependants.
chanAnnFinSignal map[lnwire.ShortChannelID]*validationSignals
// chanEdgeDependencies tracks any channel edge updates which should
// wait until the completion of the ChannelAnnouncement before
// proceeding. This is a dependency, as we can't validate the update
// before we validate the announcement which creates the channel
// itself.
chanEdgeDependencies map[lnwire.ShortChannelID]*validationSignals
// nodeAnnDependencies tracks any pending NodeAnnouncement validation
// jobs which should wait until the completion of the
// ChannelAnnouncement before proceeding.
nodeAnnDependencies map[route.Vertex]*validationSignals
quit chan struct{}
sync.Mutex
}
// NewValidationBarrier creates a new instance of a validation barrier given
// the total number of active requests, and a quit channel which will be used
// to know when to kill pending, but unfilled jobs.
func NewValidationBarrier(numActiveReqs int,
quitChan chan struct{}) *ValidationBarrier {
v := &ValidationBarrier{
chanAnnFinSignal: make(map[lnwire.ShortChannelID]*validationSignals),
chanEdgeDependencies: make(map[lnwire.ShortChannelID]*validationSignals),
nodeAnnDependencies: make(map[route.Vertex]*validationSignals),
quit: quitChan,
}
// We'll first initialize a set of semaphores to limit our concurrency
// when validating incoming requests in parallel.
v.validationSemaphore = make(chan struct{}, numActiveReqs)
for i := 0; i < numActiveReqs; i++ {
v.validationSemaphore <- struct{}{}
}
return v
}
// InitJobDependencies will wait for a new job slot to become open, and then
// sets up any dependent signals/trigger for the new job
func (v *ValidationBarrier) InitJobDependencies(job interface{}) {
// We'll wait for either a new slot to become open, or for the quit
// channel to be closed.
select {
case <-v.validationSemaphore:
case <-v.quit:
}
v.Lock()
defer v.Unlock()
// Once a slot is open, we'll examine the message of the job, to see if
// there need to be any dependent barriers set up.
switch msg := job.(type) {
// If this is a channel announcement, then we'll need to set up den
// tenancies, as we'll need to verify this before we verify any
// ChannelUpdates for the same channel, or NodeAnnouncements of nodes
// that are involved in this channel. This goes for both the wire
// type,s and also the types that we use within the database.
case *lnwire.ChannelAnnouncement1:
// We ensure that we only create a new announcement signal iff,
// one doesn't already exist, as there may be duplicate
// announcements. We'll close this signal once the
// ChannelAnnouncement has been validated. This will result in
// all the dependent jobs being unlocked so they can finish
// execution themselves.
if _, ok := v.chanAnnFinSignal[msg.ShortChannelID]; !ok {
// We'll create the channel that we close after we
// validate this announcement. All dependants will
// point to this same channel, so they'll be unblocked
// at the same time.
signals := &validationSignals{
allow: make(chan struct{}),
deny: make(chan struct{}),
}
v.chanAnnFinSignal[msg.ShortChannelID] = signals
v.chanEdgeDependencies[msg.ShortChannelID] = signals
v.nodeAnnDependencies[route.Vertex(msg.NodeID1)] = signals
v.nodeAnnDependencies[route.Vertex(msg.NodeID2)] = signals
}
// These other types don't have any dependants, so no further
// initialization needs to be done beyond just occupying a job slot.
case *lnwire.ChannelUpdate1:
return
case *lnwire.NodeAnnouncement:
// TODO(roasbeef): node ann needs to wait on existing channel updates
return
case *lnwire.AnnounceSignatures1:
// TODO(roasbeef): need to wait on chan ann?
return
}
}
// CompleteJob returns a free slot to the set of available job slots. This
// should be called once a job has been fully completed. Otherwise, slots may
// not be returned to the internal scheduling, causing a deadlock when a new
// overflow job is attempted.
func (v *ValidationBarrier) CompleteJob() {
select {
case v.validationSemaphore <- struct{}{}:
case <-v.quit:
}
}
// WaitForDependants will block until any jobs that this job dependants on have
// finished executing. This allows us a graceful way to schedule goroutines
// based on any pending uncompleted dependent jobs. If this job doesn't have an
// active dependent, then this function will return immediately.
func (v *ValidationBarrier) WaitForDependants(job interface{}) error {
var (
signals *validationSignals
ok bool
jobDesc string
)
// Acquire a lock to read ValidationBarrier.
v.Lock()
switch msg := job.(type) {
// Any ChannelUpdate or NodeAnnouncement jobs will need to wait on the
// completion of any active ChannelAnnouncement jobs related to them.
case *lnwire.ChannelUpdate1:
signals, ok = v.chanEdgeDependencies[msg.ShortChannelID]
jobDesc = fmt.Sprintf("job=lnwire.ChannelUpdate, scid=%v",
msg.ShortChannelID.ToUint64())
case *lnwire.NodeAnnouncement:
vertex := route.Vertex(msg.NodeID)
signals, ok = v.nodeAnnDependencies[vertex]
jobDesc = fmt.Sprintf("job=lnwire.NodeAnnouncement, pub=%s",
vertex)
// Other types of jobs can be executed immediately, so we'll just
// return directly.
case *lnwire.AnnounceSignatures1:
// TODO(roasbeef): need to wait on chan ann?
case *lnwire.ChannelAnnouncement1:
}
// Release the lock once the above read is finished.
v.Unlock()
// If it's not ok, it means either the job is not a dependent type, or
// it doesn't have a dependency signal. Either way, we can return
// early.
if !ok {
return nil
}
log.Debugf("Waiting for dependent on %s", jobDesc)
// If we do have an active job, then we'll wait until either the signal
// is closed, or the set of jobs exits.
select {
case <-v.quit:
return NewErrf(ErrVBarrierShuttingDown,
"validation barrier shutting down")
case <-signals.deny:
log.Debugf("Signal deny for %s", jobDesc)
return NewErrf(ErrParentValidationFailed,
"parent validation failed")
case <-signals.allow:
log.Tracef("Signal allow for %s", jobDesc)
return nil
}
}
// SignalDependants will allow/deny any jobs that are dependent on this job that
// they can continue execution. If the job doesn't have any dependants, then
// this function sill exit immediately.
func (v *ValidationBarrier) SignalDependants(job interface{}, allow bool) {
v.Lock()
defer v.Unlock()
switch msg := job.(type) {
// If we've just finished executing a ChannelAnnouncement, then we'll
// close out the signal, and remove the signal from the map of active
// ones. This will allow/deny any dependent jobs to continue execution.
case *lnwire.ChannelAnnouncement1:
finSignals, ok := v.chanAnnFinSignal[msg.ShortChannelID]
if ok {
if allow {
close(finSignals.allow)
} else {
close(finSignals.deny)
}
delete(v.chanAnnFinSignal, msg.ShortChannelID)
}
delete(v.chanEdgeDependencies, msg.ShortChannelID)
// For all other job types, we'll delete the tracking entries from the
// map, as if we reach this point, then all dependants have already
// finished executing and we can proceed.
case *lnwire.NodeAnnouncement:
delete(v.nodeAnnDependencies, route.Vertex(msg.NodeID))
case *lnwire.ChannelUpdate1:
delete(v.chanEdgeDependencies, msg.ShortChannelID)
case *lnwire.AnnounceSignatures1:
return
}
}