lnd/routing/missioncontrol.go
Elle Mouton 5370c90906
routing+migration32: update MC encoding to use pure TLV
In this commit, we update an existing migration which at the time of
writing has not been included in a release. We update it so that it
converts the format used for MissionControl result encoding to use pure
TLV instead. The 3 structs that have been updated are: `mcHop`,
`mcRoute` and `paymentResult`.
2024-11-01 12:28:06 +02:00

985 lines
27 KiB
Go

package routing
import (
"bytes"
"errors"
"fmt"
"io"
"sync"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btclog/v2"
"github.com/btcsuite/btcwallet/walletdb"
"github.com/lightningnetwork/lnd/build"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/clock"
"github.com/lightningnetwork/lnd/fn"
"github.com/lightningnetwork/lnd/kvdb"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/tlv"
)
const (
// DefaultPenaltyHalfLife is the default half-life duration. The
// half-life duration defines after how much time a penalized node or
// channel is back at 50% probability.
DefaultPenaltyHalfLife = time.Hour
// minSecondChanceInterval is the minimum time required between
// second-chance failures.
//
// If nodes return a channel policy related failure, they may get a
// second chance to forward the payment. It could be that the channel
// policy that we are aware of is not up to date. This is especially
// important in case of mobile apps that are mostly offline.
//
// However, we don't want to give nodes the option to endlessly return
// new channel updates so that we are kept busy trying to route through
// that node until the payment loop times out.
//
// Therefore we only grant a second chance to a node if the previous
// second chance is sufficiently long ago. This is what
// minSecondChanceInterval defines. If a second policy failure comes in
// within that interval, we will apply a penalty.
//
// Second chances granted are tracked on the level of node pairs. This
// means that if a node has multiple channels to the same peer, they
// will only get a single second chance to route to that peer again.
// Nodes forward non-strict, so it isn't necessary to apply a less
// restrictive channel level tracking scheme here.
minSecondChanceInterval = time.Minute
// DefaultMaxMcHistory is the default maximum history size.
DefaultMaxMcHistory = 1000
// DefaultMcFlushInterval is the default interval we use to flush MC state
// to the database.
DefaultMcFlushInterval = time.Second
// prevSuccessProbability is the assumed probability for node pairs that
// successfully relayed the previous attempt.
prevSuccessProbability = 0.95
// DefaultAprioriWeight is the default a priori weight. See
// MissionControlConfig for further explanation.
DefaultAprioriWeight = 0.5
// DefaultMinFailureRelaxInterval is the default minimum time that must
// have passed since the previously recorded failure before the failure
// amount may be raised.
DefaultMinFailureRelaxInterval = time.Minute
// DefaultFeeEstimationTimeout is the default value for
// FeeEstimationTimeout. It defines the maximum duration that the
// probing fee estimation is allowed to take.
DefaultFeeEstimationTimeout = time.Minute
// DefaultMissionControlNamespace is the name of the default mission
// control name space. This is used as the sub-bucket key within the
// top level DB bucket to store mission control results.
DefaultMissionControlNamespace = "default"
)
var (
// ErrInvalidMcHistory is returned if we get a negative mission control
// history count.
ErrInvalidMcHistory = errors.New("mission control history must be " +
">= 0")
// ErrInvalidFailureInterval is returned if we get an invalid failure
// interval.
ErrInvalidFailureInterval = errors.New("failure interval must be >= 0")
)
// NodeResults contains previous results from a node to its peers.
type NodeResults map[route.Vertex]TimedPairResult
// mcConfig holds various config members that will be required by all
// MissionControl instances and will be the same regardless of namespace.
type mcConfig struct {
// clock is a time source used by mission control.
clock clock.Clock
// selfNode is our pubkey.
selfNode route.Vertex
}
// MissionControl contains state which summarizes the past attempts of HTLC
// routing by external callers when sending payments throughout the network. It
// acts as a shared memory during routing attempts with the goal to optimize the
// payment attempt success rate.
//
// Failed payment attempts are reported to mission control. These reports are
// used to track the time of the last node or channel level failure. The time
// since the last failure is used to estimate a success probability that is fed
// into the path finding process for subsequent payment attempts.
type MissionControl struct {
cfg *mcConfig
// state is the internal mission control state that is input for
// probability estimation.
state *missionControlState
store *missionControlStore
// estimator is the probability estimator that is used with the payment
// results that mission control collects.
estimator Estimator
// onConfigUpdate is a function that is called whenever the
// mission control state is updated.
onConfigUpdate fn.Option[func(cfg *MissionControlConfig)]
log btclog.Logger
mu sync.Mutex
}
// MissionController manages MissionControl instances in various namespaces.
type MissionController struct {
db kvdb.Backend
cfg *mcConfig
defaultMCCfg *MissionControlConfig
mc map[string]*MissionControl
mu sync.Mutex
// TODO(roasbeef): further counters, if vertex continually unavailable,
// add to another generation
// TODO(roasbeef): also add favorable metrics for nodes
}
// GetNamespacedStore returns the MissionControl in the given namespace. If one
// does not yet exist, then it is initialised.
func (m *MissionController) GetNamespacedStore(ns string) (*MissionControl,
error) {
m.mu.Lock()
defer m.mu.Unlock()
if mc, ok := m.mc[ns]; ok {
return mc, nil
}
return m.initMissionControl(ns)
}
// ListNamespaces returns a list of the namespaces that the MissionController
// is aware of.
func (m *MissionController) ListNamespaces() []string {
m.mu.Lock()
defer m.mu.Unlock()
namespaces := make([]string, 0, len(m.mc))
for ns := range m.mc {
namespaces = append(namespaces, ns)
}
return namespaces
}
// MissionControlConfig defines parameters that control mission control
// behaviour.
type MissionControlConfig struct {
// Estimator gives probability estimates for node pairs.
Estimator Estimator
// OnConfigUpdate is function that is called whenever the
// mission control state is updated.
OnConfigUpdate fn.Option[func(cfg *MissionControlConfig)]
// MaxMcHistory defines the maximum number of payment results that are
// held on disk.
MaxMcHistory int
// McFlushInterval defines the ticker interval when we flush the
// accumulated state to the DB.
McFlushInterval time.Duration
// MinFailureRelaxInterval is the minimum time that must have passed
// since the previously recorded failure before the failure amount may
// be raised.
MinFailureRelaxInterval time.Duration
}
func (c *MissionControlConfig) validate() error {
if c.MaxMcHistory < 0 {
return ErrInvalidMcHistory
}
if c.MinFailureRelaxInterval < 0 {
return ErrInvalidFailureInterval
}
return nil
}
// String returns a string representation of a mission control config.
func (c *MissionControlConfig) String() string {
return fmt.Sprintf("maximum history: %v, minimum failure relax "+
"interval: %v", c.MaxMcHistory, c.MinFailureRelaxInterval)
}
// TimedPairResult describes a timestamped pair result.
type TimedPairResult struct {
// FailTime is the time of the last failure.
FailTime time.Time
// FailAmt is the amount of the last failure. This amount may be pushed
// up if a later success is higher than the last failed amount.
FailAmt lnwire.MilliSatoshi
// SuccessTime is the time of the last success.
SuccessTime time.Time
// SuccessAmt is the highest amount that successfully forwarded. This
// isn't necessarily the last success amount. The value of this field
// may also be pushed down if a later failure is lower than the highest
// success amount. Because of this, SuccessAmt may not match
// SuccessTime.
SuccessAmt lnwire.MilliSatoshi
}
// MissionControlSnapshot contains a snapshot of the current state of mission
// control.
type MissionControlSnapshot struct {
// Pairs is a list of channels for which specific information is
// logged.
Pairs []MissionControlPairSnapshot
}
// MissionControlPairSnapshot contains a snapshot of the current node pair
// state in mission control.
type MissionControlPairSnapshot struct {
// Pair is the node pair of which the state is described.
Pair DirectedNodePair
// TimedPairResult contains the data for this pair.
TimedPairResult
}
// paymentResult is the information that becomes available when a payment
// attempt completes.
type paymentResult struct {
id uint64
timeFwd tlv.RecordT[tlv.TlvType0, uint64]
timeReply tlv.RecordT[tlv.TlvType1, uint64]
route tlv.RecordT[tlv.TlvType2, mcRoute]
// failure holds information related to the failure of a payment. The
// presence of this record indicates a payment failure. The absence of
// this record indicates a successful payment.
failure tlv.OptionalRecordT[tlv.TlvType3, paymentFailure]
}
// newPaymentResult constructs a new paymentResult.
func newPaymentResult(id uint64, rt *mcRoute, timeFwd, timeReply time.Time,
failure *paymentFailure) *paymentResult {
result := &paymentResult{
id: id,
timeFwd: tlv.NewPrimitiveRecord[tlv.TlvType0](
uint64(timeFwd.UnixNano()),
),
timeReply: tlv.NewPrimitiveRecord[tlv.TlvType1](
uint64(timeReply.UnixNano()),
),
route: tlv.NewRecordT[tlv.TlvType2](*rt),
}
if failure != nil {
result.failure = tlv.SomeRecordT(
tlv.NewRecordT[tlv.TlvType3](*failure),
)
}
return result
}
// NewMissionController returns a new instance of MissionController.
func NewMissionController(db kvdb.Backend, self route.Vertex,
cfg *MissionControlConfig) (*MissionController, error) {
log.Debugf("Instantiating mission control with config: %v, %v", cfg,
cfg.Estimator)
if err := cfg.validate(); err != nil {
return nil, err
}
mcCfg := &mcConfig{
clock: clock.NewDefaultClock(),
selfNode: self,
}
mgr := &MissionController{
db: db,
defaultMCCfg: cfg,
cfg: mcCfg,
mc: make(map[string]*MissionControl),
}
if err := mgr.loadMissionControls(); err != nil {
return nil, err
}
for _, mc := range mgr.mc {
if err := mc.init(); err != nil {
return nil, err
}
}
return mgr, nil
}
// loadMissionControls initialises a MissionControl in the default namespace if
// one does not yet exist. It then initialises a MissionControl for all other
// namespaces found in the DB.
//
// NOTE: this should only be called once during MissionController construction.
func (m *MissionController) loadMissionControls() error {
m.mu.Lock()
defer m.mu.Unlock()
// Always initialise the default namespace.
_, err := m.initMissionControl(DefaultMissionControlNamespace)
if err != nil {
return err
}
namespaces := make(map[string]struct{})
err = m.db.View(func(tx walletdb.ReadTx) error {
mcStoreBkt := tx.ReadBucket(resultsKey)
if mcStoreBkt == nil {
return fmt.Errorf("top level mission control bucket " +
"not found")
}
// Iterate through all the keys in the bucket and collect the
// namespaces.
return mcStoreBkt.ForEach(func(k, _ []byte) error {
// We've already initialised the default namespace so
// we can skip it.
if string(k) == DefaultMissionControlNamespace {
return nil
}
namespaces[string(k)] = struct{}{}
return nil
})
}, func() {})
if err != nil {
return err
}
// Now, iterate through all the namespaces and initialise them.
for ns := range namespaces {
_, err = m.initMissionControl(ns)
if err != nil {
return err
}
}
return nil
}
// initMissionControl creates a new MissionControl instance with the given
// namespace if one does not yet exist.
//
// NOTE: the MissionController's mutex must be held before calling this method.
func (m *MissionController) initMissionControl(namespace string) (
*MissionControl, error) {
// If a mission control with this namespace has already been initialised
// then there is nothing left to do.
if mc, ok := m.mc[namespace]; ok {
return mc, nil
}
cfg := m.defaultMCCfg
store, err := newMissionControlStore(
newNamespacedDB(m.db, namespace), cfg.MaxMcHistory,
cfg.McFlushInterval,
)
if err != nil {
return nil, err
}
mc := &MissionControl{
cfg: m.cfg,
state: newMissionControlState(cfg.MinFailureRelaxInterval),
store: store,
estimator: cfg.Estimator,
log: build.NewPrefixLog(
fmt.Sprintf("[%s]:", namespace), log,
),
onConfigUpdate: cfg.OnConfigUpdate,
}
m.mc[namespace] = mc
return mc, nil
}
// RunStoreTickers runs the mission controller store's tickers.
func (m *MissionController) RunStoreTickers() {
m.mu.Lock()
defer m.mu.Unlock()
for _, mc := range m.mc {
mc.store.run()
}
}
// StopStoreTickers stops the mission control store's tickers.
func (m *MissionController) StopStoreTickers() {
log.Debug("Stopping mission control store ticker")
defer log.Debug("Mission control store ticker stopped")
m.mu.Lock()
defer m.mu.Unlock()
for _, mc := range m.mc {
mc.store.stop()
}
}
// init initializes mission control with historical data.
func (m *MissionControl) init() error {
m.log.Debugf("Mission control state reconstruction started")
m.mu.Lock()
defer m.mu.Unlock()
start := time.Now()
results, err := m.store.fetchAll()
if err != nil {
return err
}
for _, result := range results {
_ = m.applyPaymentResult(result)
}
m.log.Debugf("Mission control state reconstruction finished: "+
"n=%v, time=%v", len(results), time.Since(start))
return nil
}
// GetConfig returns the config that mission control is currently configured
// with. All fields are copied by value, so we do not need to worry about
// mutation.
func (m *MissionControl) GetConfig() *MissionControlConfig {
m.mu.Lock()
defer m.mu.Unlock()
return &MissionControlConfig{
Estimator: m.estimator,
MaxMcHistory: m.store.maxRecords,
McFlushInterval: m.store.flushInterval,
MinFailureRelaxInterval: m.state.minFailureRelaxInterval,
}
}
// SetConfig validates the config provided and updates mission control's config
// if it is valid.
func (m *MissionControl) SetConfig(cfg *MissionControlConfig) error {
if cfg == nil {
return errors.New("nil mission control config")
}
if err := cfg.validate(); err != nil {
return err
}
m.mu.Lock()
defer m.mu.Unlock()
m.log.Infof("Active mission control cfg: %v, estimator: %v", cfg,
cfg.Estimator)
m.store.maxRecords = cfg.MaxMcHistory
m.state.minFailureRelaxInterval = cfg.MinFailureRelaxInterval
m.estimator = cfg.Estimator
// Execute the callback function if it is set.
m.onConfigUpdate.WhenSome(func(f func(cfg *MissionControlConfig)) {
f(cfg)
})
return nil
}
// ResetHistory resets the history of MissionControl returning it to a state as
// if no payment attempts have been made.
func (m *MissionControl) ResetHistory() error {
m.mu.Lock()
defer m.mu.Unlock()
if err := m.store.clear(); err != nil {
return err
}
m.state.resetHistory()
m.log.Debugf("Mission control history cleared")
return nil
}
// GetProbability is expected to return the success probability of a payment
// from fromNode along edge.
func (m *MissionControl) GetProbability(fromNode, toNode route.Vertex,
amt lnwire.MilliSatoshi, capacity btcutil.Amount) float64 {
m.mu.Lock()
defer m.mu.Unlock()
now := m.cfg.clock.Now()
results, _ := m.state.getLastPairResult(fromNode)
// Use a distinct probability estimation function for local channels.
if fromNode == m.cfg.selfNode {
return m.estimator.LocalPairProbability(now, results, toNode)
}
return m.estimator.PairProbability(
now, results, toNode, amt, capacity,
)
}
// GetHistorySnapshot takes a snapshot from the current mission control state
// and actual probability estimates.
func (m *MissionControl) GetHistorySnapshot() *MissionControlSnapshot {
m.mu.Lock()
defer m.mu.Unlock()
m.log.Debugf("Requesting history snapshot from mission control")
return m.state.getSnapshot()
}
// ImportHistory imports the set of mission control results provided to our
// in-memory state. These results are not persisted, so will not survive
// restarts.
func (m *MissionControl) ImportHistory(history *MissionControlSnapshot,
force bool) error {
if history == nil {
return errors.New("cannot import nil history")
}
m.mu.Lock()
defer m.mu.Unlock()
m.log.Infof("Importing history snapshot with %v pairs to mission "+
"control", len(history.Pairs))
imported := m.state.importSnapshot(history, force)
m.log.Infof("Imported %v results to mission control", imported)
return nil
}
// GetPairHistorySnapshot returns the stored history for a given node pair.
func (m *MissionControl) GetPairHistorySnapshot(
fromNode, toNode route.Vertex) TimedPairResult {
m.mu.Lock()
defer m.mu.Unlock()
results, ok := m.state.getLastPairResult(fromNode)
if !ok {
return TimedPairResult{}
}
result, ok := results[toNode]
if !ok {
return TimedPairResult{}
}
return result
}
// ReportPaymentFail reports a failed payment to mission control as input for
// future probability estimates. The failureSourceIdx argument indicates the
// failure source. If it is nil, the failure source is unknown. This function
// returns a reason if this failure is a final failure. In that case no further
// payment attempts need to be made.
func (m *MissionControl) ReportPaymentFail(paymentID uint64, rt *route.Route,
failureSourceIdx *int, failure lnwire.FailureMessage) (
*channeldb.FailureReason, error) {
timestamp := m.cfg.clock.Now()
result := newPaymentResult(
paymentID, extractMCRoute(rt), timestamp, timestamp,
newPaymentFailure(failureSourceIdx, failure),
)
return m.processPaymentResult(result)
}
// ReportPaymentSuccess reports a successful payment to mission control as input
// for future probability estimates.
func (m *MissionControl) ReportPaymentSuccess(paymentID uint64,
rt *route.Route) error {
timestamp := m.cfg.clock.Now()
result := newPaymentResult(
paymentID, extractMCRoute(rt), timestamp, timestamp, nil,
)
_, err := m.processPaymentResult(result)
return err
}
// processPaymentResult stores a payment result in the mission control store and
// updates mission control's in-memory state.
func (m *MissionControl) processPaymentResult(result *paymentResult) (
*channeldb.FailureReason, error) {
// Store complete result in database.
m.store.AddResult(result)
m.mu.Lock()
defer m.mu.Unlock()
// Apply result to update mission control state.
reason := m.applyPaymentResult(result)
return reason, nil
}
// applyPaymentResult applies a payment result as input for future probability
// estimates. It returns a bool indicating whether this error is a final error
// and no further payment attempts need to be made.
func (m *MissionControl) applyPaymentResult(
result *paymentResult) *channeldb.FailureReason {
// Interpret result.
i := interpretResult(&result.route.Val, result.failure.ValOpt())
if i.policyFailure != nil {
if m.state.requestSecondChance(
time.Unix(0, int64(result.timeReply.Val)),
i.policyFailure.From, i.policyFailure.To,
) {
return nil
}
}
// If there is a node-level failure, record a failure for every tried
// connection of that node. A node-level failure can be considered as a
// failure that would have occurred with any of the node's channels.
//
// Ideally we'd also record the failure for the untried connections of
// the node. Unfortunately this would require access to the graph and
// adding this dependency and db calls does not outweigh the benefits.
//
// Untried connections will fall back to the node probability. After the
// call to setAllPairResult below, the node probability will be equal to
// the probability of the tried channels except that the a priori
// probability is mixed in too. This effect is controlled by the
// aprioriWeight parameter. If that parameter isn't set to an extreme
// and there are a few known connections, there shouldn't be much of a
// difference. The largest difference occurs when aprioriWeight is 1. In
// that case, a node-level failure would not be applied to untried
// channels.
if i.nodeFailure != nil {
m.log.Debugf("Reporting node failure to Mission Control: "+
"node=%v", *i.nodeFailure)
m.state.setAllFail(
*i.nodeFailure,
time.Unix(0, int64(result.timeReply.Val)),
)
}
for pair, pairResult := range i.pairResults {
pairResult := pairResult
if pairResult.success {
m.log.Debugf("Reporting pair success to Mission "+
"Control: pair=%v, amt=%v",
pair, pairResult.amt)
} else {
m.log.Debugf("Reporting pair failure to Mission "+
"Control: pair=%v, amt=%v",
pair, pairResult.amt)
}
m.state.setLastPairResult(
pair.From, pair.To,
time.Unix(0, int64(result.timeReply.Val)), &pairResult,
false,
)
}
return i.finalFailureReason
}
// namespacedDB is an implementation of the missionControlDB that gives a user
// of the interface access to a namespaced bucket within the top level mission
// control bucket.
type namespacedDB struct {
topLevelBucketKey []byte
namespace []byte
db kvdb.Backend
}
// A compile-time check to ensure that namespacedDB implements missionControlDB.
var _ missionControlDB = (*namespacedDB)(nil)
// newDefaultNamespacedStore creates an instance of namespaceDB that uses the
// default namespace.
func newDefaultNamespacedStore(db kvdb.Backend) missionControlDB {
return newNamespacedDB(db, DefaultMissionControlNamespace)
}
// newNamespacedDB creates a new instance of missionControlDB where the DB will
// have access to a namespaced bucket within the top level mission control
// bucket.
func newNamespacedDB(db kvdb.Backend, namespace string) missionControlDB {
return &namespacedDB{
db: db,
namespace: []byte(namespace),
topLevelBucketKey: resultsKey,
}
}
// update can be used to perform reads and writes on the given bucket.
//
// NOTE: this is part of the missionControlDB interface.
func (n *namespacedDB) update(f func(bkt walletdb.ReadWriteBucket) error,
reset func()) error {
return n.db.Update(func(tx kvdb.RwTx) error {
mcStoreBkt, err := tx.CreateTopLevelBucket(n.topLevelBucketKey)
if err != nil {
return fmt.Errorf("cannot create top level mission "+
"control bucket: %w", err)
}
namespacedBkt, err := mcStoreBkt.CreateBucketIfNotExists(
n.namespace,
)
if err != nil {
return fmt.Errorf("cannot create namespaced bucket "+
"(%s) in mission control store: %w",
n.namespace, err)
}
return f(namespacedBkt)
}, reset)
}
// view can be used to perform reads on the given bucket.
//
// NOTE: this is part of the missionControlDB interface.
func (n *namespacedDB) view(f func(bkt walletdb.ReadBucket) error,
reset func()) error {
return n.db.View(func(tx kvdb.RTx) error {
mcStoreBkt := tx.ReadBucket(n.topLevelBucketKey)
if mcStoreBkt == nil {
return fmt.Errorf("top level mission control bucket " +
"not found")
}
namespacedBkt := mcStoreBkt.NestedReadBucket(n.namespace)
if namespacedBkt == nil {
return fmt.Errorf("namespaced bucket (%s) not found "+
"in mission control store", n.namespace)
}
return f(namespacedBkt)
}, reset)
}
// purge will delete all the contents in the namespace.
//
// NOTE: this is part of the missionControlDB interface.
func (n *namespacedDB) purge() error {
return n.db.Update(func(tx kvdb.RwTx) error {
mcStoreBkt := tx.ReadWriteBucket(n.topLevelBucketKey)
if mcStoreBkt == nil {
return nil
}
err := mcStoreBkt.DeleteNestedBucket(n.namespace)
if err != nil {
return err
}
_, err = mcStoreBkt.CreateBucket(n.namespace)
return err
}, func() {})
}
// paymentFailure represents the presence of a payment failure. It may or may
// not include additional information about said failure.
type paymentFailure struct {
info tlv.OptionalRecordT[tlv.TlvType0, paymentFailureInfo]
}
// newPaymentFailure constructs a new paymentFailure struct. If the source
// index is nil, then an empty paymentFailure is returned. This represents a
// failure with unknown details. Otherwise, the index and failure message are
// used to populate the info field of the paymentFailure.
func newPaymentFailure(sourceIdx *int,
failureMsg lnwire.FailureMessage) *paymentFailure {
if sourceIdx == nil {
return &paymentFailure{}
}
info := paymentFailureInfo{
sourceIdx: tlv.NewPrimitiveRecord[tlv.TlvType0](
uint8(*sourceIdx),
),
msg: tlv.NewRecordT[tlv.TlvType1](failureMessage{failureMsg}),
}
return &paymentFailure{
info: tlv.SomeRecordT(tlv.NewRecordT[tlv.TlvType0](info)),
}
}
// Record returns a TLV record that can be used to encode/decode a
// paymentFailure to/from a TLV stream.
func (r *paymentFailure) Record() tlv.Record {
recordSize := func() uint64 {
var (
b bytes.Buffer
buf [8]byte
)
if err := encodePaymentFailure(&b, r, &buf); err != nil {
panic(err)
}
return uint64(len(b.Bytes()))
}
return tlv.MakeDynamicRecord(
0, r, recordSize, encodePaymentFailure, decodePaymentFailure,
)
}
func encodePaymentFailure(w io.Writer, val interface{}, _ *[8]byte) error {
if v, ok := val.(*paymentFailure); ok {
var recordProducers []tlv.RecordProducer
v.info.WhenSome(
func(r tlv.RecordT[tlv.TlvType0, paymentFailureInfo]) {
recordProducers = append(recordProducers, &r)
},
)
return lnwire.EncodeRecordsTo(
w, lnwire.ProduceRecordsSorted(recordProducers...),
)
}
return tlv.NewTypeForEncodingErr(val, "routing.paymentFailure")
}
func decodePaymentFailure(r io.Reader, val interface{}, _ *[8]byte,
l uint64) error {
if v, ok := val.(*paymentFailure); ok {
var h paymentFailure
info := tlv.ZeroRecordT[tlv.TlvType0, paymentFailureInfo]()
typeMap, err := lnwire.DecodeRecords(
r, lnwire.ProduceRecordsSorted(&info)...,
)
if err != nil {
return err
}
if _, ok := typeMap[h.info.TlvType()]; ok {
h.info = tlv.SomeRecordT(info)
}
*v = h
return nil
}
return tlv.NewTypeForDecodingErr(val, "routing.paymentFailure", l, l)
}
// paymentFailureInfo holds additional information about a payment failure.
type paymentFailureInfo struct {
sourceIdx tlv.RecordT[tlv.TlvType0, uint8]
msg tlv.RecordT[tlv.TlvType1, failureMessage]
}
// Record returns a TLV record that can be used to encode/decode a
// paymentFailureInfo to/from a TLV stream.
func (r *paymentFailureInfo) Record() tlv.Record {
recordSize := func() uint64 {
var (
b bytes.Buffer
buf [8]byte
)
if err := encodePaymentFailureInfo(&b, r, &buf); err != nil {
panic(err)
}
return uint64(len(b.Bytes()))
}
return tlv.MakeDynamicRecord(
0, r, recordSize, encodePaymentFailureInfo,
decodePaymentFailureInfo,
)
}
func encodePaymentFailureInfo(w io.Writer, val interface{}, _ *[8]byte) error {
if v, ok := val.(*paymentFailureInfo); ok {
return lnwire.EncodeRecordsTo(
w, lnwire.ProduceRecordsSorted(
&v.sourceIdx, &v.msg,
),
)
}
return tlv.NewTypeForEncodingErr(val, "routing.paymentFailureInfo")
}
func decodePaymentFailureInfo(r io.Reader, val interface{}, _ *[8]byte,
l uint64) error {
if v, ok := val.(*paymentFailureInfo); ok {
var h paymentFailureInfo
_, err := lnwire.DecodeRecords(
r,
lnwire.ProduceRecordsSorted(&h.sourceIdx, &h.msg)...,
)
if err != nil {
return err
}
*v = h
return nil
}
return tlv.NewTypeForDecodingErr(
val, "routing.paymentFailureInfo", l, l,
)
}