lnd/lnrpc/routerrpc/router_server.go
2024-04-11 15:04:03 +02:00

1549 lines
43 KiB
Go

package routerrpc
import (
"bytes"
"context"
crand "crypto/rand"
"errors"
"fmt"
"io/ioutil"
"os"
"path/filepath"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/btcutil"
"github.com/btcsuite/btcd/wire"
"github.com/grpc-ecosystem/grpc-gateway/v2/runtime"
"github.com/lightningnetwork/lnd/channeldb"
"github.com/lightningnetwork/lnd/lnrpc"
"github.com/lightningnetwork/lnd/lnrpc/invoicesrpc"
"github.com/lightningnetwork/lnd/lntypes"
"github.com/lightningnetwork/lnd/lnwire"
"github.com/lightningnetwork/lnd/macaroons"
"github.com/lightningnetwork/lnd/routing"
"github.com/lightningnetwork/lnd/routing/route"
"github.com/lightningnetwork/lnd/zpay32"
"google.golang.org/grpc"
"google.golang.org/grpc/codes"
"google.golang.org/grpc/status"
"gopkg.in/macaroon-bakery.v2/bakery"
)
const (
// subServerName is the name of the sub rpc server. We'll use this name
// to register ourselves, and we also require that the main
// SubServerConfigDispatcher instance recognize as the name of our
subServerName = "RouterRPC"
// routeFeeLimitSat is the maximum routing fee that we allow to occur
// when estimating a routing fee.
routeFeeLimitSat = 100_000_000
)
var (
errServerShuttingDown = errors.New("routerrpc server shutting down")
// ErrInterceptorAlreadyExists is an error returned when a new stream is
// opened and there is already one active interceptor. The user must
// disconnect prior to open another stream.
ErrInterceptorAlreadyExists = errors.New("interceptor already exists")
errMissingPaymentAttempt = errors.New("missing payment attempt")
errMissingRoute = errors.New("missing route")
errUnexpectedFailureSource = errors.New("unexpected failure source")
// macaroonOps are the set of capabilities that our minted macaroon (if
// it doesn't already exist) will have.
macaroonOps = []bakery.Op{
{
Entity: "offchain",
Action: "read",
},
{
Entity: "offchain",
Action: "write",
},
}
// macPermissions maps RPC calls to the permissions they require.
macPermissions = map[string][]bakery.Op{
"/routerrpc.Router/SendPaymentV2": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/SendToRouteV2": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/SendToRoute": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/TrackPaymentV2": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/TrackPayments": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/EstimateRouteFee": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/QueryMissionControl": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/XImportMissionControl": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/GetMissionControlConfig": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/SetMissionControlConfig": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/QueryProbability": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/ResetMissionControl": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/BuildRoute": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/SubscribeHtlcEvents": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/SendPayment": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/TrackPayment": {{
Entity: "offchain",
Action: "read",
}},
"/routerrpc.Router/HtlcInterceptor": {{
Entity: "offchain",
Action: "write",
}},
"/routerrpc.Router/UpdateChanStatus": {{
Entity: "offchain",
Action: "write",
}},
}
// DefaultRouterMacFilename is the default name of the router macaroon
// that we expect to find via a file handle within the main
// configuration file in this package.
DefaultRouterMacFilename = "router.macaroon"
)
// ServerShell a is shell struct holding a reference to the actual sub-server.
// It is used to register the gRPC sub-server with the root server before we
// have the necessary dependencies to populate the actual sub-server.
type ServerShell struct {
RouterServer
}
// Server is a stand alone sub RPC server which exposes functionality that
// allows clients to route arbitrary payment through the Lightning Network.
type Server struct {
started int32 // To be used atomically.
shutdown int32 // To be used atomically.
forwardInterceptorActive int32 // To be used atomically.
// Required by the grpc-gateway/v2 library for forward compatibility.
// Must be after the atomically used variables to not break struct
// alignment.
UnimplementedRouterServer
cfg *Config
quit chan struct{}
}
// A compile time check to ensure that Server fully implements the RouterServer
// gRPC service.
var _ RouterServer = (*Server)(nil)
// New creates a new instance of the RouterServer given a configuration struct
// that contains all external dependencies. If the target macaroon exists, and
// we're unable to create it, then an error will be returned. We also return
// the set of permissions that we require as a server. At the time of writing
// of this documentation, this is the same macaroon as as the admin macaroon.
func New(cfg *Config) (*Server, lnrpc.MacaroonPerms, error) {
// If the path of the router macaroon wasn't generated, then we'll
// assume that it's found at the default network directory.
if cfg.RouterMacPath == "" {
cfg.RouterMacPath = filepath.Join(
cfg.NetworkDir, DefaultRouterMacFilename,
)
}
// Now that we know the full path of the router macaroon, we can check
// to see if we need to create it or not. If stateless_init is set
// then we don't write the macaroons.
macFilePath := cfg.RouterMacPath
if cfg.MacService != nil && !cfg.MacService.StatelessInit &&
!lnrpc.FileExists(macFilePath) {
log.Infof("Making macaroons for Router RPC Server at: %v",
macFilePath)
// At this point, we know that the router macaroon doesn't yet,
// exist, so we need to create it with the help of the main
// macaroon service.
routerMac, err := cfg.MacService.NewMacaroon(
context.Background(), macaroons.DefaultRootKeyID,
macaroonOps...,
)
if err != nil {
return nil, nil, err
}
routerMacBytes, err := routerMac.M().MarshalBinary()
if err != nil {
return nil, nil, err
}
err = ioutil.WriteFile(macFilePath, routerMacBytes, 0644)
if err != nil {
_ = os.Remove(macFilePath)
return nil, nil, err
}
}
routerServer := &Server{
cfg: cfg,
quit: make(chan struct{}),
}
return routerServer, macPermissions, nil
}
// Start launches any helper goroutines required for the rpcServer to function.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Start() error {
if atomic.AddInt32(&s.started, 1) != 1 {
return nil
}
return nil
}
// Stop signals any active goroutines for a graceful closure.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Stop() error {
if atomic.AddInt32(&s.shutdown, 1) != 1 {
return nil
}
close(s.quit)
return nil
}
// Name returns a unique string representation of the sub-server. This can be
// used to identify the sub-server and also de-duplicate them.
//
// NOTE: This is part of the lnrpc.SubServer interface.
func (s *Server) Name() string {
return subServerName
}
// RegisterWithRootServer will be called by the root gRPC server to direct a
// sub RPC server to register itself with the main gRPC root server. Until this
// is called, each sub-server won't be able to have requests routed towards it.
//
// NOTE: This is part of the lnrpc.GrpcHandler interface.
func (r *ServerShell) RegisterWithRootServer(grpcServer *grpc.Server) error {
// We make sure that we register it with the main gRPC server to ensure
// all our methods are routed properly.
RegisterRouterServer(grpcServer, r)
log.Debugf("Router RPC server successfully register with root gRPC " +
"server")
return nil
}
// RegisterWithRestServer will be called by the root REST mux to direct a sub
// RPC server to register itself with the main REST mux server. Until this is
// called, each sub-server won't be able to have requests routed towards it.
//
// NOTE: This is part of the lnrpc.GrpcHandler interface.
func (r *ServerShell) RegisterWithRestServer(ctx context.Context,
mux *runtime.ServeMux, dest string, opts []grpc.DialOption) error {
// We make sure that we register it with the main REST server to ensure
// all our methods are routed properly.
err := RegisterRouterHandlerFromEndpoint(ctx, mux, dest, opts)
if err != nil {
log.Errorf("Could not register Router REST server "+
"with root REST server: %v", err)
return err
}
log.Debugf("Router REST server successfully registered with " +
"root REST server")
return nil
}
// CreateSubServer populates the subserver's dependencies using the passed
// SubServerConfigDispatcher. This method should fully initialize the
// sub-server instance, making it ready for action. It returns the macaroon
// permissions that the sub-server wishes to pass on to the root server for all
// methods routed towards it.
//
// NOTE: This is part of the lnrpc.GrpcHandler interface.
func (r *ServerShell) CreateSubServer(configRegistry lnrpc.SubServerConfigDispatcher) (
lnrpc.SubServer, lnrpc.MacaroonPerms, error) {
subServer, macPermissions, err := createNewSubServer(configRegistry)
if err != nil {
return nil, nil, err
}
r.RouterServer = subServer
return subServer, macPermissions, nil
}
// SendPaymentV2 attempts to route a payment described by the passed
// PaymentRequest to the final destination. If we are unable to route the
// payment, or cannot find a route that satisfies the constraints in the
// PaymentRequest, then an error will be returned. Otherwise, the payment
// pre-image, along with the final route will be returned.
func (s *Server) SendPaymentV2(req *SendPaymentRequest,
stream Router_SendPaymentV2Server) error {
payment, err := s.cfg.RouterBackend.extractIntentFromSendRequest(req)
if err != nil {
return err
}
// Get the payment hash.
payHash := payment.Identifier()
// Init the payment in db.
paySession, shardTracker, err := s.cfg.Router.PreparePayment(payment)
if err != nil {
log.Errorf("SendPayment async error for payment %x: %v",
payment.Identifier(), err)
// Transform user errors to grpc code.
if errors.Is(err, channeldb.ErrPaymentExists) ||
errors.Is(err, channeldb.ErrPaymentInFlight) ||
errors.Is(err, channeldb.ErrAlreadyPaid) {
return status.Error(
codes.AlreadyExists, err.Error(),
)
}
return err
}
// Subscribe to the payment before sending it to make sure we won't
// miss events.
sub, err := s.subscribePayment(payHash)
if err != nil {
return err
}
// Send the payment asynchronously.
s.cfg.Router.SendPaymentAsync(payment, paySession, shardTracker)
// Track the payment and return.
return s.trackPayment(
sub, payHash, stream, req.NoInflightUpdates,
)
}
// EstimateRouteFee allows callers to obtain an expected value w.r.t how much it
// may cost to send an HTLC to the target end destination. This method sends
// probe payments to the target node, based on target invoice parameters and a
// random payment hash that makes it impossible for the target to settle the
// htlc. The probing stops if a user-provided timeout is reached. If provided
// with a destination key and amount, this method will perform a local graph
// based fee estimation.
func (s *Server) EstimateRouteFee(ctx context.Context,
req *RouteFeeRequest) (*RouteFeeResponse, error) {
isProbeDestination := len(req.Dest) > 0
isProbeInvoice := len(req.PaymentRequest) > 0
switch {
case isProbeDestination == isProbeInvoice:
return nil, errors.New("specify either a destination or an " +
"invoice")
case isProbeDestination:
switch {
case len(req.Dest) != 33:
return nil, errors.New("invalid length destination key")
case req.AmtSat <= 0:
return nil, errors.New("amount must be greater than 0")
default:
return s.probeDestination(req.Dest, req.AmtSat)
}
case isProbeInvoice:
return s.probePaymentRequest(
ctx, req.PaymentRequest, req.Timeout,
)
}
return &RouteFeeResponse{}, nil
}
// probeDestination estimates fees along a route to a destination based on the
// contents of the local graph.
func (s *Server) probeDestination(dest []byte, amtSat int64) (*RouteFeeResponse,
error) {
destNode, err := route.NewVertexFromBytes(dest)
if err != nil {
return nil, err
}
// Next, we'll convert the amount in satoshis to mSAT, which are the
// native unit of LN.
amtMsat := lnwire.NewMSatFromSatoshis(btcutil.Amount(amtSat))
// Finally, we'll query for a route to the destination that can carry
// that target amount, we'll only request a single route. Set a
// restriction for the default CLTV limit, otherwise we can find a route
// that exceeds it and is useless to us.
mc := s.cfg.RouterBackend.MissionControl
routeReq, err := routing.NewRouteRequest(
s.cfg.RouterBackend.SelfNode, &destNode, amtMsat, 0,
&routing.RestrictParams{
FeeLimit: routeFeeLimitSat,
CltvLimit: s.cfg.RouterBackend.MaxTotalTimelock,
ProbabilitySource: mc.GetProbability,
}, nil, nil, nil, s.cfg.RouterBackend.DefaultFinalCltvDelta,
)
if err != nil {
return nil, err
}
route, _, err := s.cfg.Router.FindRoute(routeReq)
if err != nil {
return nil, err
}
// We are adding a block padding to the total time lock to account for
// the safety buffer that the payment session will add to the last hop's
// cltv delta. This is to prevent the htlc from failing if blocks are
// mined while it is in flight.
timeLockDelay := route.TotalTimeLock + uint32(routing.BlockPadding)
return &RouteFeeResponse{
RoutingFeeMsat: int64(route.TotalFees()),
TimeLockDelay: int64(timeLockDelay),
FailureReason: lnrpc.PaymentFailureReason_FAILURE_REASON_NONE,
}, nil
}
// probePaymentRequest estimates fees along a route to a destination that is
// specified in an invoice. The estimation duration is limited by a timeout. In
// case that route hints are provided, this method applies a heuristic to
// identify LSPs which might block probe payments. In that case, fees are
// manually calculated and added to the probed fee estimation up until the LSP
// node. If the route hints don't indicate an LSP, they are passed as arguments
// to the SendPayment_V2 method, which enable it to send probe payments to the
// payment request destination.
func (s *Server) probePaymentRequest(ctx context.Context, paymentRequest string,
timeout uint32) (*RouteFeeResponse, error) {
payReq, err := zpay32.Decode(
paymentRequest, s.cfg.RouterBackend.ActiveNetParams,
)
if err != nil {
return nil, err
}
if *payReq.MilliSat <= 0 {
return nil, errors.New("payment request amount must be " +
"greater than 0")
}
// Generate random payment hash, so we can be sure that the target of
// the probe payment doesn't have the preimage to settle the htlc.
var paymentHash lntypes.Hash
_, err = crand.Read(paymentHash[:])
if err != nil {
return nil, fmt.Errorf("cannot generate random probe "+
"preimage: %w", err)
}
amtMsat := int64(*payReq.MilliSat)
probeRequest := &SendPaymentRequest{
TimeoutSeconds: int32(timeout),
Dest: payReq.Destination.SerializeCompressed(),
MaxParts: 1,
AllowSelfPayment: false,
AmtMsat: amtMsat,
PaymentHash: paymentHash[:],
FeeLimitSat: routeFeeLimitSat,
PaymentAddr: payReq.PaymentAddr[:],
FinalCltvDelta: int32(payReq.MinFinalCLTVExpiry()),
DestFeatures: MarshalFeatures(payReq.Features),
}
hints := payReq.RouteHints
// If the hints don't indicate an LSP then chances are that our probe
// payment won't be blocked along the route to the destination. We send
// a probe payment with unmodified route hints.
if !isLSP(hints) {
probeRequest.RouteHints = invoicesrpc.CreateRPCRouteHints(hints)
return s.sendProbePayment(ctx, probeRequest)
}
// If the heuristic indicates an LSP we modify the route hints to allow
// probing the LSP.
lspAdjustedRouteHints, lspHint, err := prepareLspRouteHints(
hints, *payReq.MilliSat,
)
if err != nil {
return nil, err
}
// The adjusted route hints serve the payment probe to find the last
// public hop to the LSP on the route.
probeRequest.Dest = lspHint.NodeID.SerializeCompressed()
if len(lspAdjustedRouteHints) > 0 {
probeRequest.RouteHints = invoicesrpc.CreateRPCRouteHints(
lspAdjustedRouteHints,
)
}
// The payment probe will be able to calculate the fee up until the LSP
// node. The fee of the last hop has to be calculated manually. Since
// the last hop's fee amount has to be sent across the payment path we
// have to add it to the original payment amount. Only then will the
// payment probe be able to determine the correct fee to the last hop
// prior to the private destination. For example, if the user wants to
// send 1000 sats to a private destination and the last hop's fee is 10
// sats, then 1010 sats will have to arrive at the last hop. This means
// that the probe has to be dispatched with 1010 sats to correctly
// calculate the routing fee.
//
// Calculate the hop fee for the last hop manually.
hopFee := lspHint.HopFee(*payReq.MilliSat)
if err != nil {
return nil, err
}
// Add the last hop's fee to the requested payment amount that we want
// to get an estimate for.
probeRequest.AmtMsat += int64(hopFee)
// Use the hop hint's cltv delta as the payment request's final cltv
// delta. The actual final cltv delta of the invoice will be added to
// the payment probe's cltv delta.
probeRequest.FinalCltvDelta = int32(lspHint.CLTVExpiryDelta)
// Dispatch the payment probe with adjusted fee amount.
resp, err := s.sendProbePayment(ctx, probeRequest)
if err != nil {
return nil, err
}
// If the payment probe failed we only return the failure reason and
// leave the probe result params unaltered.
if resp.FailureReason != lnrpc.PaymentFailureReason_FAILURE_REASON_NONE { //nolint:lll
return resp, nil
}
// The probe succeeded, so we can add the last hop's fee to fee the
// payment probe returned.
resp.RoutingFeeMsat += int64(hopFee)
// Add the final cltv delta of the invoice to the payment probe's total
// cltv delta. This is the cltv delta for the hop behind the LSP.
resp.TimeLockDelay += int64(payReq.MinFinalCLTVExpiry())
return resp, nil
}
// isLSP checks if the route hints indicate an LSP. An LSP is indicated with
// true if the last node in each route hint has the same node id, false
// otherwise.
func isLSP(routeHints [][]zpay32.HopHint) bool {
if len(routeHints) == 0 || len(routeHints[0]) == 0 {
return false
}
refNodeID := routeHints[0][len(routeHints[0])-1].NodeID
for i := 1; i < len(routeHints); i++ {
// Skip empty route hints.
if len(routeHints[i]) == 0 {
continue
}
lastHop := routeHints[i][len(routeHints[i])-1]
idMatchesRefNode := bytes.Equal(
lastHop.NodeID.SerializeCompressed(),
refNodeID.SerializeCompressed(),
)
if !idMatchesRefNode {
return false
}
}
return true
}
// prepareLspRouteHints assumes that the isLsp heuristic returned true for the
// route hints passed in here. It constructs a modified list of route hints that
// allows the caller to probe the LSP, which itself is returned as a separate
// hop hint.
func prepareLspRouteHints(routeHints [][]zpay32.HopHint,
amt lnwire.MilliSatoshi) ([][]zpay32.HopHint, *zpay32.HopHint, error) {
if len(routeHints) == 0 {
return nil, nil, fmt.Errorf("no route hints provided")
}
// Create the LSP hop hint. We are probing for the worst case fee and
// cltv delta. So we look for the max values amongst all LSP hop hints.
refHint := routeHints[0][len(routeHints[0])-1]
refHint.CLTVExpiryDelta = maxLspCltvDelta(routeHints)
refHint.FeeBaseMSat, refHint.FeeProportionalMillionths = maxLspFee(
routeHints, amt,
)
// We construct a modified list of route hints that allows the caller to
// probe the LSP.
adjustedHints := make([][]zpay32.HopHint, 0, len(routeHints))
// Strip off the LSP hop hint from all route hints.
for i := 0; i < len(routeHints); i++ {
hint := routeHints[i]
if len(hint) > 1 {
adjustedHints = append(
adjustedHints, hint[:len(hint)-1],
)
}
}
return adjustedHints, &refHint, nil
}
// maxLspFee returns base fee and fee rate amongst all LSP route hints that
// results in the overall highest fee for the given amount.
func maxLspFee(routeHints [][]zpay32.HopHint, amt lnwire.MilliSatoshi) (uint32,
uint32) {
var maxFeePpm uint32
var maxBaseFee uint32
var maxTotalFee lnwire.MilliSatoshi
for _, rh := range routeHints {
lastHop := rh[len(rh)-1]
lastHopFee := lastHop.HopFee(amt)
if lastHopFee > maxTotalFee {
maxTotalFee = lastHopFee
maxBaseFee = lastHop.FeeBaseMSat
maxFeePpm = lastHop.FeeProportionalMillionths
}
}
return maxBaseFee, maxFeePpm
}
// maxLspCltvDelta returns the maximum cltv delta amongst all LSP route hints.
func maxLspCltvDelta(routeHints [][]zpay32.HopHint) uint16 {
var maxCltvDelta uint16
for _, rh := range routeHints {
rhLastHop := rh[len(rh)-1]
if rhLastHop.CLTVExpiryDelta > maxCltvDelta {
maxCltvDelta = rhLastHop.CLTVExpiryDelta
}
}
return maxCltvDelta
}
// probePaymentStream is a custom implementation of the grpc.ServerStream
// interface. It is used to send payment status updates to the caller on the
// stream channel.
type probePaymentStream struct {
Router_SendPaymentV2Server
stream chan *lnrpc.Payment
ctx context.Context //nolint:containedctx
}
// Send sends a payment status update to a payment stream that the caller can
// evaluate.
func (p *probePaymentStream) Send(response *lnrpc.Payment) error {
select {
case p.stream <- response:
case <-p.ctx.Done():
return p.ctx.Err()
}
return nil
}
// Context returns the context of the stream.
func (p *probePaymentStream) Context() context.Context {
return p.ctx
}
// sendProbePayment sends a payment to a target node in order to obtain
// potential routing fees for it. The payment request has to contain a payment
// hash that is guaranteed to be unknown to the target node, so it cannot settle
// the payment. This method invokes a payment request loop in a goroutine and
// awaits payment status updates.
func (s *Server) sendProbePayment(ctx context.Context,
req *SendPaymentRequest) (*RouteFeeResponse, error) {
// We'll launch a goroutine to send the payment probes.
errChan := make(chan error, 1)
defer close(errChan)
paymentStream := &probePaymentStream{
stream: make(chan *lnrpc.Payment),
ctx: ctx,
}
go func() {
err := s.SendPaymentV2(req, paymentStream)
if err != nil {
select {
case errChan <- err:
case <-paymentStream.ctx.Done():
return
}
}
}()
for {
select {
case payment := <-paymentStream.stream:
switch payment.Status {
case lnrpc.Payment_INITIATED:
case lnrpc.Payment_IN_FLIGHT:
case lnrpc.Payment_SUCCEEDED:
return nil, errors.New("warning, the fee " +
"estimation payment probe " +
"unexpectedly succeeded. Please reach" +
"out to the probe destination to " +
"negotiate a refund. Otherwise the " +
"payment probe amount is lost forever")
case lnrpc.Payment_FAILED:
// Incorrect payment details point to a
// successful probe.
//nolint:lll
if payment.FailureReason == lnrpc.PaymentFailureReason_FAILURE_REASON_INCORRECT_PAYMENT_DETAILS {
return paymentDetails(payment)
}
return &RouteFeeResponse{
RoutingFeeMsat: 0,
TimeLockDelay: 0,
FailureReason: payment.FailureReason,
}, nil
default:
return nil, errors.New("unexpected payment " +
"status")
}
case err := <-errChan:
return nil, err
case <-s.quit:
return nil, errServerShuttingDown
}
}
}
func paymentDetails(payment *lnrpc.Payment) (*RouteFeeResponse, error) {
fee, timeLock, err := timelockAndFee(payment)
if errors.Is(err, errUnexpectedFailureSource) {
return nil, err
}
return &RouteFeeResponse{
RoutingFeeMsat: fee,
TimeLockDelay: timeLock,
FailureReason: lnrpc.PaymentFailureReason_FAILURE_REASON_NONE,
}, nil
}
// timelockAndFee returns the fee and total time lock of the last payment
// attempt.
func timelockAndFee(p *lnrpc.Payment) (int64, int64, error) {
if len(p.Htlcs) == 0 {
return 0, 0, nil
}
lastAttempt := p.Htlcs[len(p.Htlcs)-1]
if lastAttempt == nil {
return 0, 0, errMissingPaymentAttempt
}
lastRoute := lastAttempt.Route
if lastRoute == nil {
return 0, 0, errMissingRoute
}
hopFailureIndex := lastAttempt.Failure.FailureSourceIndex
finalHopIndex := uint32(len(lastRoute.Hops))
if hopFailureIndex != finalHopIndex {
return 0, 0, errUnexpectedFailureSource
}
return lastRoute.TotalFeesMsat, int64(lastRoute.TotalTimeLock), nil
}
// SendToRouteV2 sends a payment through a predefined route. The response of
// this call contains structured error information.
func (s *Server) SendToRouteV2(ctx context.Context,
req *SendToRouteRequest) (*lnrpc.HTLCAttempt, error) {
if req.Route == nil {
return nil, fmt.Errorf("unable to send, no routes provided")
}
route, err := s.cfg.RouterBackend.UnmarshallRoute(req.Route)
if err != nil {
return nil, err
}
hash, err := lntypes.MakeHash(req.PaymentHash)
if err != nil {
return nil, err
}
var attempt *channeldb.HTLCAttempt
// Pass route to the router. This call returns the full htlc attempt
// information as it is stored in the database. It is possible that both
// the attempt return value and err are non-nil. This can happen when
// the attempt was already initiated before the error happened. In that
// case, we give precedence to the attempt information as stored in the
// db.
if req.SkipTempErr {
attempt, err = s.cfg.Router.SendToRouteSkipTempErr(hash, route)
} else {
attempt, err = s.cfg.Router.SendToRoute(hash, route)
}
if attempt != nil {
rpcAttempt, err := s.cfg.RouterBackend.MarshalHTLCAttempt(
*attempt,
)
if err != nil {
return nil, err
}
return rpcAttempt, nil
}
// Transform user errors to grpc code.
switch {
case errors.Is(err, channeldb.ErrPaymentExists):
fallthrough
case errors.Is(err, channeldb.ErrPaymentInFlight):
fallthrough
case errors.Is(err, channeldb.ErrAlreadyPaid):
return nil, status.Error(
codes.AlreadyExists, err.Error(),
)
}
return nil, err
}
// ResetMissionControl clears all mission control state and starts with a clean
// slate.
func (s *Server) ResetMissionControl(ctx context.Context,
req *ResetMissionControlRequest) (*ResetMissionControlResponse, error) {
err := s.cfg.RouterBackend.MissionControl.ResetHistory()
if err != nil {
return nil, err
}
return &ResetMissionControlResponse{}, nil
}
// GetMissionControlConfig returns our current mission control config.
func (s *Server) GetMissionControlConfig(ctx context.Context,
req *GetMissionControlConfigRequest) (*GetMissionControlConfigResponse,
error) {
// Query the current mission control config.
cfg := s.cfg.RouterBackend.MissionControl.GetConfig()
resp := &GetMissionControlConfigResponse{
Config: &MissionControlConfig{
MaximumPaymentResults: uint32(cfg.MaxMcHistory),
MinimumFailureRelaxInterval: uint64(
cfg.MinFailureRelaxInterval.Seconds(),
),
},
}
// We only populate fields based on the current estimator.
switch v := cfg.Estimator.Config().(type) {
case routing.AprioriConfig:
resp.Config.Model = MissionControlConfig_APRIORI
aCfg := AprioriParameters{
HalfLifeSeconds: uint64(v.PenaltyHalfLife.Seconds()),
HopProbability: v.AprioriHopProbability,
Weight: v.AprioriWeight,
CapacityFraction: v.CapacityFraction,
}
// Populate deprecated fields.
resp.Config.HalfLifeSeconds = uint64(
v.PenaltyHalfLife.Seconds(),
)
resp.Config.HopProbability = float32(v.AprioriHopProbability)
resp.Config.Weight = float32(v.AprioriWeight)
resp.Config.EstimatorConfig = &MissionControlConfig_Apriori{
Apriori: &aCfg,
}
case routing.BimodalConfig:
resp.Config.Model = MissionControlConfig_BIMODAL
bCfg := BimodalParameters{
NodeWeight: v.BimodalNodeWeight,
ScaleMsat: uint64(v.BimodalScaleMsat),
DecayTime: uint64(v.BimodalDecayTime.Seconds()),
}
resp.Config.EstimatorConfig = &MissionControlConfig_Bimodal{
Bimodal: &bCfg,
}
default:
return nil, fmt.Errorf("unknown estimator config type %T", v)
}
return resp, nil
}
// SetMissionControlConfig sets parameters in the mission control config.
func (s *Server) SetMissionControlConfig(ctx context.Context,
req *SetMissionControlConfigRequest) (*SetMissionControlConfigResponse,
error) {
mcCfg := &routing.MissionControlConfig{
MaxMcHistory: int(req.Config.MaximumPaymentResults),
MinFailureRelaxInterval: time.Duration(
req.Config.MinimumFailureRelaxInterval,
) * time.Second,
}
switch req.Config.Model {
case MissionControlConfig_APRIORI:
var aprioriConfig routing.AprioriConfig
// Determine the apriori config with backward compatibility
// should the api use deprecated fields.
switch v := req.Config.EstimatorConfig.(type) {
case *MissionControlConfig_Bimodal:
return nil, fmt.Errorf("bimodal config " +
"provided, but apriori model requested")
case *MissionControlConfig_Apriori:
aprioriConfig = routing.AprioriConfig{
PenaltyHalfLife: time.Duration(
v.Apriori.HalfLifeSeconds,
) * time.Second,
AprioriHopProbability: v.Apriori.HopProbability,
AprioriWeight: v.Apriori.Weight,
CapacityFraction: v.Apriori.
CapacityFraction,
}
default:
aprioriConfig = routing.AprioriConfig{
PenaltyHalfLife: time.Duration(
int64(req.Config.HalfLifeSeconds),
) * time.Second,
AprioriHopProbability: float64(
req.Config.HopProbability,
),
AprioriWeight: float64(req.Config.Weight),
CapacityFraction: float64(
routing.DefaultCapacityFraction),
}
}
estimator, err := routing.NewAprioriEstimator(aprioriConfig)
if err != nil {
return nil, err
}
mcCfg.Estimator = estimator
case MissionControlConfig_BIMODAL:
cfg, ok := req.Config.
EstimatorConfig.(*MissionControlConfig_Bimodal)
if !ok {
return nil, fmt.Errorf("bimodal estimator requested " +
"but corresponding config not set")
}
bCfg := cfg.Bimodal
bimodalConfig := routing.BimodalConfig{
BimodalDecayTime: time.Duration(
bCfg.DecayTime,
) * time.Second,
BimodalScaleMsat: lnwire.MilliSatoshi(bCfg.ScaleMsat),
BimodalNodeWeight: bCfg.NodeWeight,
}
estimator, err := routing.NewBimodalEstimator(bimodalConfig)
if err != nil {
return nil, err
}
mcCfg.Estimator = estimator
default:
return nil, fmt.Errorf("unknown estimator type %v",
req.Config.Model)
}
return &SetMissionControlConfigResponse{},
s.cfg.RouterBackend.MissionControl.SetConfig(mcCfg)
}
// QueryMissionControl exposes the internal mission control state to callers. It
// is a development feature.
func (s *Server) QueryMissionControl(ctx context.Context,
req *QueryMissionControlRequest) (*QueryMissionControlResponse, error) {
snapshot := s.cfg.RouterBackend.MissionControl.GetHistorySnapshot()
rpcPairs := make([]*PairHistory, 0, len(snapshot.Pairs))
for _, p := range snapshot.Pairs {
// Prevent binding to loop variable.
pair := p
rpcPair := PairHistory{
NodeFrom: pair.Pair.From[:],
NodeTo: pair.Pair.To[:],
History: toRPCPairData(&pair.TimedPairResult),
}
rpcPairs = append(rpcPairs, &rpcPair)
}
response := QueryMissionControlResponse{
Pairs: rpcPairs,
}
return &response, nil
}
// toRPCPairData marshalls mission control pair data to the rpc struct.
func toRPCPairData(data *routing.TimedPairResult) *PairData {
rpcData := PairData{
FailAmtSat: int64(data.FailAmt.ToSatoshis()),
FailAmtMsat: int64(data.FailAmt),
SuccessAmtSat: int64(data.SuccessAmt.ToSatoshis()),
SuccessAmtMsat: int64(data.SuccessAmt),
}
if !data.FailTime.IsZero() {
rpcData.FailTime = data.FailTime.Unix()
}
if !data.SuccessTime.IsZero() {
rpcData.SuccessTime = data.SuccessTime.Unix()
}
return &rpcData
}
// XImportMissionControl imports the state provided to our internal mission
// control. Only entries that are fresher than our existing state will be used.
func (s *Server) XImportMissionControl(ctx context.Context,
req *XImportMissionControlRequest) (*XImportMissionControlResponse,
error) {
if len(req.Pairs) == 0 {
return nil, errors.New("at least one pair required for import")
}
snapshot := &routing.MissionControlSnapshot{
Pairs: make(
[]routing.MissionControlPairSnapshot, len(req.Pairs),
),
}
for i, pairResult := range req.Pairs {
pairSnapshot, err := toPairSnapshot(pairResult)
if err != nil {
return nil, err
}
snapshot.Pairs[i] = *pairSnapshot
}
err := s.cfg.RouterBackend.MissionControl.ImportHistory(
snapshot, req.Force,
)
if err != nil {
return nil, err
}
return &XImportMissionControlResponse{}, nil
}
func toPairSnapshot(pairResult *PairHistory) (*routing.MissionControlPairSnapshot,
error) {
from, err := route.NewVertexFromBytes(pairResult.NodeFrom)
if err != nil {
return nil, err
}
to, err := route.NewVertexFromBytes(pairResult.NodeTo)
if err != nil {
return nil, err
}
pairPrefix := fmt.Sprintf("pair: %v -> %v:", from, to)
if from == to {
return nil, fmt.Errorf("%v source and destination node must "+
"differ", pairPrefix)
}
failAmt, failTime, err := getPair(
lnwire.MilliSatoshi(pairResult.History.FailAmtMsat),
btcutil.Amount(pairResult.History.FailAmtSat),
pairResult.History.FailTime,
)
if err != nil {
return nil, fmt.Errorf("%v invalid failure: %w", pairPrefix,
err)
}
successAmt, successTime, err := getPair(
lnwire.MilliSatoshi(pairResult.History.SuccessAmtMsat),
btcutil.Amount(pairResult.History.SuccessAmtSat),
pairResult.History.SuccessTime,
)
if err != nil {
return nil, fmt.Errorf("%v invalid success: %w", pairPrefix,
err)
}
if successAmt == 0 && failAmt == 0 {
return nil, fmt.Errorf("%v: either success or failure result "+
"required", pairPrefix)
}
pair := routing.NewDirectedNodePair(from, to)
result := &routing.TimedPairResult{
FailAmt: failAmt,
FailTime: failTime,
SuccessAmt: successAmt,
SuccessTime: successTime,
}
return &routing.MissionControlPairSnapshot{
Pair: pair,
TimedPairResult: *result,
}, nil
}
// getPair validates the values provided for a mission control result and
// returns the msat amount and timestamp for it.
func getPair(amtMsat lnwire.MilliSatoshi, amtSat btcutil.Amount,
timestamp int64) (lnwire.MilliSatoshi, time.Time, error) {
amt, err := getMsatPairValue(amtMsat, amtSat)
if err != nil {
return 0, time.Time{}, err
}
var (
timeSet = timestamp != 0
amountSet = amt != 0
)
switch {
case timeSet && amountSet:
return amt, time.Unix(timestamp, 0), nil
case timeSet && !amountSet:
return 0, time.Time{}, errors.New("non-zero timestamp " +
"requires non-zero amount")
case !timeSet && amountSet:
return 0, time.Time{}, errors.New("non-zero amount requires " +
"non-zero timestamp")
default:
return 0, time.Time{}, nil
}
}
// getMsatPairValue checks the msat and sat values set for a pair and ensures
// that the values provided are either the same, or only a single value is set.
func getMsatPairValue(msatValue lnwire.MilliSatoshi,
satValue btcutil.Amount) (lnwire.MilliSatoshi, error) {
// If our msat value converted to sats equals our sat value, we just
// return the msat value, since the values are the same.
if msatValue.ToSatoshis() == satValue {
return msatValue, nil
}
// If we have no msatValue, we can just return our state value even if
// it is zero, because it's impossible that we have mismatched values.
if msatValue == 0 {
return lnwire.MilliSatoshi(satValue * 1000), nil
}
// Likewise, we can just use msat value if we have no sat value set.
if satValue == 0 {
return msatValue, nil
}
// If our values are non-zero but not equal, we have invalid amounts
// set, so we fail.
return 0, fmt.Errorf("msat: %v and sat: %v values not equal", msatValue,
satValue)
}
// TrackPaymentV2 returns a stream of payment state updates. The stream is
// closed when the payment completes.
func (s *Server) TrackPaymentV2(request *TrackPaymentRequest,
stream Router_TrackPaymentV2Server) error {
payHash, err := lntypes.MakeHash(request.PaymentHash)
if err != nil {
return err
}
log.Debugf("TrackPayment called for payment %v", payHash)
// Make the subscription.
sub, err := s.subscribePayment(payHash)
if err != nil {
return err
}
return s.trackPayment(sub, payHash, stream, request.NoInflightUpdates)
}
// subscribePayment subscribes to the payment updates for the given payment
// hash.
func (s *Server) subscribePayment(identifier lntypes.Hash) (
routing.ControlTowerSubscriber, error) {
// Make the subscription.
router := s.cfg.RouterBackend
sub, err := router.Tower.SubscribePayment(identifier)
switch {
case err == channeldb.ErrPaymentNotInitiated:
return nil, status.Error(codes.NotFound, err.Error())
case err != nil:
return nil, err
}
return sub, nil
}
// trackPayment writes payment status updates to the provided stream.
func (s *Server) trackPayment(subscription routing.ControlTowerSubscriber,
identifier lntypes.Hash, stream Router_TrackPaymentV2Server,
noInflightUpdates bool) error {
err := s.trackPaymentStream(
stream.Context(), subscription, noInflightUpdates, stream.Send,
)
// If the context is canceled, we don't return an error.
if errors.Is(err, context.Canceled) {
log.Infof("Payment stream %v canceled", identifier)
return nil
}
// Otherwise, we will log and return the error as the stream has
// received an error from the payment lifecycle.
log.Errorf("TrackPayment got error for payment %x: %v", identifier, err)
return err
}
// TrackPayments returns a stream of payment state updates.
func (s *Server) TrackPayments(request *TrackPaymentsRequest,
stream Router_TrackPaymentsServer) error {
log.Debug("TrackPayments called")
router := s.cfg.RouterBackend
// Subscribe to payments.
subscription, err := router.Tower.SubscribeAllPayments()
if err != nil {
return err
}
// Stream updates to the client.
err = s.trackPaymentStream(
stream.Context(), subscription, request.NoInflightUpdates,
stream.Send,
)
if errors.Is(err, context.Canceled) {
log.Debugf("TrackPayments payment stream canceled.")
}
return err
}
// trackPaymentStream streams payment updates to the client.
func (s *Server) trackPaymentStream(context context.Context,
subscription routing.ControlTowerSubscriber, noInflightUpdates bool,
send func(*lnrpc.Payment) error) error {
defer subscription.Close()
// Stream updates back to the client.
for {
select {
case item, ok := <-subscription.Updates():
if !ok {
// No more payment updates.
return nil
}
result := item.(*channeldb.MPPayment)
log.Tracef("Payment %v updated to state %v",
result.Info.PaymentIdentifier, result.Status)
// Skip in-flight updates unless requested.
if noInflightUpdates {
if result.Status == channeldb.StatusInitiated {
continue
}
if result.Status == channeldb.StatusInFlight {
continue
}
}
rpcPayment, err := s.cfg.RouterBackend.MarshallPayment(
result,
)
if err != nil {
return err
}
// Send event to the client.
err = send(rpcPayment)
if err != nil {
return err
}
case <-s.quit:
return errServerShuttingDown
case <-context.Done():
return context.Err()
}
}
}
// BuildRoute builds a route from a list of hop addresses.
func (s *Server) BuildRoute(ctx context.Context,
req *BuildRouteRequest) (*BuildRouteResponse, error) {
// Unmarshall hop list.
hops := make([]route.Vertex, len(req.HopPubkeys))
for i, pubkeyBytes := range req.HopPubkeys {
pubkey, err := route.NewVertexFromBytes(pubkeyBytes)
if err != nil {
return nil, err
}
hops[i] = pubkey
}
// Prepare BuildRoute call parameters from rpc request.
var amt *lnwire.MilliSatoshi
if req.AmtMsat != 0 {
rpcAmt := lnwire.MilliSatoshi(req.AmtMsat)
amt = &rpcAmt
}
var outgoingChan *uint64
if req.OutgoingChanId != 0 {
outgoingChan = &req.OutgoingChanId
}
var payAddr *[32]byte
if len(req.PaymentAddr) != 0 {
var backingPayAddr [32]byte
copy(backingPayAddr[:], req.PaymentAddr)
payAddr = &backingPayAddr
}
if req.FinalCltvDelta == 0 {
req.FinalCltvDelta = int32(
s.cfg.RouterBackend.DefaultFinalCltvDelta,
)
}
// Build the route and return it to the caller.
route, err := s.cfg.Router.BuildRoute(
amt, hops, outgoingChan, req.FinalCltvDelta, payAddr,
)
if err != nil {
return nil, err
}
rpcRoute, err := s.cfg.RouterBackend.MarshallRoute(route)
if err != nil {
return nil, err
}
routeResp := &BuildRouteResponse{
Route: rpcRoute,
}
return routeResp, nil
}
// SubscribeHtlcEvents creates a uni-directional stream from the server to
// the client which delivers a stream of htlc events.
func (s *Server) SubscribeHtlcEvents(req *SubscribeHtlcEventsRequest,
stream Router_SubscribeHtlcEventsServer) error {
htlcClient, err := s.cfg.RouterBackend.SubscribeHtlcEvents()
if err != nil {
return err
}
defer htlcClient.Cancel()
// Send out an initial subscribed event so that the caller knows the
// point from which new events will be transmitted.
if err := stream.Send(&HtlcEvent{
Event: &HtlcEvent_SubscribedEvent{
SubscribedEvent: &SubscribedEvent{},
},
}); err != nil {
return err
}
for {
select {
case event := <-htlcClient.Updates():
rpcEvent, err := rpcHtlcEvent(event)
if err != nil {
return err
}
if err := stream.Send(rpcEvent); err != nil {
return err
}
// If the stream's context is cancelled, return an error.
case <-stream.Context().Done():
log.Debugf("htlc event stream cancelled")
return stream.Context().Err()
// If the subscribe client terminates, exit with an error.
case <-htlcClient.Quit():
return errors.New("htlc event subscription terminated")
// If the server has been signalled to shut down, exit.
case <-s.quit:
return errServerShuttingDown
}
}
}
// HtlcInterceptor is a bidirectional stream for streaming interception
// requests to the caller.
// Upon connection it does the following:
// 1. Check if there is already a live stream, if yes it rejects the request.
// 2. Registered a ForwardInterceptor
// 3. Delivers to the caller every √√ and detect his answer.
// It uses a local implementation of holdForwardsStore to keep all the hold
// forwards and find them when manual resolution is later needed.
func (s *Server) HtlcInterceptor(stream Router_HtlcInterceptorServer) error {
// We ensure there is only one interceptor at a time.
if !atomic.CompareAndSwapInt32(&s.forwardInterceptorActive, 0, 1) {
return ErrInterceptorAlreadyExists
}
defer atomic.CompareAndSwapInt32(&s.forwardInterceptorActive, 1, 0)
// run the forward interceptor.
return newForwardInterceptor(
s.cfg.RouterBackend.InterceptableForwarder, stream,
).run()
}
func extractOutPoint(req *UpdateChanStatusRequest) (*wire.OutPoint, error) {
chanPoint := req.GetChanPoint()
txid, err := lnrpc.GetChanPointFundingTxid(chanPoint)
if err != nil {
return nil, err
}
index := chanPoint.OutputIndex
return wire.NewOutPoint(txid, index), nil
}
// UpdateChanStatus allows channel state to be set manually.
func (s *Server) UpdateChanStatus(ctx context.Context,
req *UpdateChanStatusRequest) (*UpdateChanStatusResponse, error) {
outPoint, err := extractOutPoint(req)
if err != nil {
return nil, err
}
action := req.GetAction()
log.Debugf("UpdateChanStatus called for channel(%v) with "+
"action %v", outPoint, action)
switch action {
case ChanStatusAction_ENABLE:
err = s.cfg.RouterBackend.SetChannelEnabled(*outPoint)
case ChanStatusAction_DISABLE:
err = s.cfg.RouterBackend.SetChannelDisabled(*outPoint)
case ChanStatusAction_AUTO:
err = s.cfg.RouterBackend.SetChannelAuto(*outPoint)
default:
err = fmt.Errorf("unrecognized ChannelStatusAction %v", action)
}
if err != nil {
return nil, err
}
return &UpdateChanStatusResponse{}, nil
}