mirror of
https://github.com/lightningnetwork/lnd.git
synced 2024-11-19 18:10:34 +01:00
342 lines
8.0 KiB
Go
342 lines
8.0 KiB
Go
package autopilot
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"math/rand"
|
|
"reflect"
|
|
"testing"
|
|
"testing/quick"
|
|
)
|
|
|
|
// TestWeightedChoiceEmptyMap tests that passing in an empty slice of weights
|
|
// returns an error.
|
|
func TestWeightedChoiceEmptyMap(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
var w []float64
|
|
_, err := weightedChoice(w)
|
|
if err != ErrNoPositive {
|
|
t.Fatalf("expected ErrNoPositive when choosing in "+
|
|
"empty map, instead got %v", err)
|
|
}
|
|
}
|
|
|
|
// singeNonZero is a type used to generate float64 slices with one non-zero
|
|
// element.
|
|
type singleNonZero []float64
|
|
|
|
// Generate generates a value of type sinelNonZero to be used during
|
|
// QuickTests.
|
|
func (singleNonZero) Generate(rand *rand.Rand, size int) reflect.Value {
|
|
w := make([]float64, size)
|
|
|
|
// Pick a random index and set it to a random float.
|
|
i := rand.Intn(size)
|
|
w[i] = rand.Float64()
|
|
|
|
return reflect.ValueOf(w)
|
|
}
|
|
|
|
// TestWeightedChoiceSingleIndex tests that choosing randomly in a slice with
|
|
// one positive element always returns that one index.
|
|
func TestWeightedChoiceSingleIndex(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Helper that returns the index of the non-zero element.
|
|
allButOneZero := func(weights []float64) (bool, int) {
|
|
var (
|
|
numZero uint32
|
|
nonZeroEl int
|
|
)
|
|
|
|
for i, w := range weights {
|
|
if w != 0 {
|
|
numZero++
|
|
nonZeroEl = i
|
|
}
|
|
}
|
|
|
|
return numZero == 1, nonZeroEl
|
|
}
|
|
|
|
property := func(weights singleNonZero) bool {
|
|
// Make sure the generated slice has exactly one non-zero
|
|
// element.
|
|
conditionMet, nonZeroElem := allButOneZero(weights[:])
|
|
if !conditionMet {
|
|
return false
|
|
}
|
|
|
|
// Call weightedChoice and assert it picks the non-zero
|
|
// element.
|
|
choice, err := weightedChoice(weights[:])
|
|
if err != nil {
|
|
return false
|
|
}
|
|
return choice == nonZeroElem
|
|
}
|
|
|
|
if err := quick.Check(property, nil); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
// nonNegative is a type used to generate float64 slices with non-negative
|
|
// elements.
|
|
type nonNegative []float64
|
|
|
|
// Generate generates a value of type nonNegative to be used during
|
|
// QuickTests.
|
|
func (nonNegative) Generate(rand *rand.Rand, size int) reflect.Value {
|
|
w := make([]float64, size)
|
|
|
|
for i := range w {
|
|
r := rand.Float64()
|
|
|
|
// For very small weights it won't work to check deviation from
|
|
// expected value, so we set them to zero.
|
|
if r < 0.01*float64(size) {
|
|
r = 0
|
|
}
|
|
w[i] = float64(r)
|
|
}
|
|
return reflect.ValueOf(w)
|
|
}
|
|
|
|
func assertChoice(w []float64, iterations int) bool {
|
|
var sum float64
|
|
for _, v := range w {
|
|
sum += v
|
|
}
|
|
|
|
// Calculate the expected frequency of each choice.
|
|
expFrequency := make([]float64, len(w))
|
|
for i, ww := range w {
|
|
expFrequency[i] = ww / sum
|
|
}
|
|
|
|
chosen := make(map[int]int)
|
|
for i := 0; i < iterations; i++ {
|
|
res, err := weightedChoice(w)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
chosen[res]++
|
|
}
|
|
|
|
// Since this is random we check that the number of times chosen is
|
|
// within 20% of the expected value.
|
|
totalChoices := 0
|
|
for i, f := range expFrequency {
|
|
exp := float64(iterations) * f
|
|
v := float64(chosen[i])
|
|
totalChoices += chosen[i]
|
|
expHigh := exp + exp/5
|
|
expLow := exp - exp/5
|
|
if v < expLow || v > expHigh {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// The sum of choices must be exactly iterations of course.
|
|
if totalChoices != iterations {
|
|
return false
|
|
}
|
|
return true
|
|
|
|
}
|
|
|
|
// TestWeightedChoiceDistribution asserts that the weighted choice algorithm
|
|
// chooses among indexes according to their scores.
|
|
func TestWeightedChoiceDistribution(t *testing.T) {
|
|
const iterations = 100000
|
|
|
|
property := func(weights nonNegative) bool {
|
|
return assertChoice(weights, iterations)
|
|
}
|
|
|
|
if err := quick.Check(property, nil); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
// TestChooseNEmptyMap checks that chooseN returns an empty result when no
|
|
// nodes are chosen among.
|
|
func TestChooseNEmptyMap(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
nodes := map[NodeID]*NodeScore{}
|
|
property := func(n uint32) bool {
|
|
res, err := chooseN(n, nodes)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
// Result should always be empty.
|
|
return len(res) == 0
|
|
}
|
|
|
|
if err := quick.Check(property, nil); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
// candidateMapVarLen is a type we'll use to generate maps of various lengths
|
|
// up to 255 to be used during QuickTests.
|
|
type candidateMapVarLen map[NodeID]*NodeScore
|
|
|
|
// Generate generates a value of type candidateMapVarLen to be used during
|
|
// QuickTests.
|
|
func (candidateMapVarLen) Generate(rand *rand.Rand, size int) reflect.Value {
|
|
nodes := make(map[NodeID]*NodeScore)
|
|
|
|
// To avoid creating huge maps, we restrict them to max uint8 len.
|
|
n := uint8(rand.Uint32())
|
|
|
|
for i := uint8(0); i < n; i++ {
|
|
s := rand.Float64()
|
|
|
|
// We set small values to zero, to ensure we handle these
|
|
// correctly.
|
|
if s < 0.01 {
|
|
s = 0
|
|
}
|
|
|
|
var nID [33]byte
|
|
binary.BigEndian.PutUint32(nID[:], uint32(i))
|
|
nodes[nID] = &NodeScore{
|
|
Score: s,
|
|
}
|
|
}
|
|
|
|
return reflect.ValueOf(nodes)
|
|
}
|
|
|
|
// TestChooseNMinimum test that chooseN returns the minimum of the number of
|
|
// nodes we request and the number of positively scored nodes in the given map.
|
|
func TestChooseNMinimum(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
// Helper to count the number of positive scores in the given map.
|
|
numPositive := func(nodes map[NodeID]*NodeScore) int {
|
|
cnt := 0
|
|
for _, v := range nodes {
|
|
if v.Score > 0 {
|
|
cnt++
|
|
}
|
|
}
|
|
return cnt
|
|
}
|
|
|
|
// We use let the type of n be uint8 to avoid generating huge numbers.
|
|
property := func(nodes candidateMapVarLen, n uint8) bool {
|
|
res, err := chooseN(uint32(n), nodes)
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
positive := numPositive(nodes)
|
|
|
|
// Result should always be the minimum of the number of nodes
|
|
// we wanted to select and the number of positively scored
|
|
// nodes in the map.
|
|
min := positive
|
|
if int(n) < min {
|
|
min = int(n)
|
|
}
|
|
|
|
if len(res) != min {
|
|
return false
|
|
|
|
}
|
|
return true
|
|
}
|
|
|
|
if err := quick.Check(property, nil); err != nil {
|
|
t.Fatal(err)
|
|
}
|
|
}
|
|
|
|
// TestChooseNSample sanity checks that nodes are picked by chooseN according
|
|
// to their scores.
|
|
func TestChooseNSample(t *testing.T) {
|
|
t.Parallel()
|
|
|
|
const numNodes = 500
|
|
const maxIterations = 100000
|
|
fifth := uint32(numNodes / 5)
|
|
|
|
nodes := make(map[NodeID]*NodeScore)
|
|
|
|
// we make 5 buckets of nodes: 0, 0.1, 0.2, 0.4 and 0.8 score. We want
|
|
// to check that zero scores never gets chosen, while a doubling the
|
|
// score makes a node getting chosen about double the amount (this is
|
|
// true only when n <<< numNodes).
|
|
j := 2 * fifth
|
|
score := 0.1
|
|
for i := uint32(0); i < numNodes; i++ {
|
|
|
|
// Each time i surpasses j we double the score we give to the
|
|
// next fifth of nodes.
|
|
if i >= j {
|
|
score *= 2
|
|
j += fifth
|
|
}
|
|
s := score
|
|
|
|
// The first 1/5 of nodes we give a score of 0.
|
|
if i < fifth {
|
|
s = 0
|
|
}
|
|
|
|
var nID [33]byte
|
|
binary.BigEndian.PutUint32(nID[:], i)
|
|
nodes[nID] = &NodeScore{
|
|
Score: s,
|
|
}
|
|
}
|
|
|
|
// For each value of N we'll check that the nodes are picked the
|
|
// expected number of times over time.
|
|
for _, n := range []uint32{1, 5, 10, 20, 50} {
|
|
// Since choosing more nodes will result in chooseN getting
|
|
// slower we decrease the number of iterations. This is okay
|
|
// since the variance in the total picks for a node will be
|
|
// lower when choosing more nodes each time.
|
|
iterations := maxIterations / n
|
|
count := make(map[NodeID]int)
|
|
for i := 0; i < int(iterations); i++ {
|
|
res, err := chooseN(n, nodes)
|
|
if err != nil {
|
|
t.Fatalf("failed choosing nodes: %v", err)
|
|
}
|
|
|
|
for nID := range res {
|
|
count[nID]++
|
|
}
|
|
}
|
|
|
|
// Sum the number of times a node in each score bucket was
|
|
// picked.
|
|
sums := make(map[float64]int)
|
|
for nID, s := range nodes {
|
|
sums[s.Score] += count[nID]
|
|
}
|
|
|
|
// The count of each bucket should be about double of the
|
|
// previous bucket. Since this is all random, we check that
|
|
// the result is within 20% of the expected value.
|
|
for _, score := range []float64{0.2, 0.4, 0.8} {
|
|
cnt := sums[score]
|
|
half := cnt / 2
|
|
expLow := half - half/5
|
|
expHigh := half + half/5
|
|
if sums[score/2] < expLow || sums[score/2] > expHigh {
|
|
t.Fatalf("expected the nodes with score %v "+
|
|
"to be chosen about %v times, instead "+
|
|
"was %v", score/2, half, sums[score/2])
|
|
}
|
|
}
|
|
}
|
|
}
|