lnd/lnwire/channel_id.go
Olaoluwa Osuntokun e3717485f5
lnwire: fix bug in wire.OutPoint -> lnwire.ChannelID conversion
This commit fixes an existing, unnoticed bug within the lnwire.
NewChanIDFromOutPoint function. Two lingering issues cause the function
to not do anything at all, meaning that the channel ID, would be the
exact same as the actual txid passed in.

The first issue was that the xorTxid function wasn’t actually XOR’ing
the last two bytes. This was due to the fact that the function wasn’t
taking a pointer to the target ChannelID, meaning that the mutation
wouldn’t be seen outside of the scope of the function. Second, we had
our slicing reversed, rather than buf[30:], we were using buf[:30],
meaning that we were weren’t properly filling the buffer with the lower
2-bytes of the passed index.
2017-09-18 19:45:11 +02:00

86 lines
2.9 KiB
Go

package lnwire
import (
"encoding/binary"
"encoding/hex"
"math"
"github.com/roasbeef/btcd/chaincfg/chainhash"
"github.com/roasbeef/btcd/wire"
)
const (
// MaxFundingTxOutputs is the maximum number of allowed outputs on a
// funding transaction within the protocol. This is due to the fact
// that we use 2-bytes to encode the index within the funding output
// during the funding workflow. Funding transaction with more outputs
// than this are considered invalid within the protocol.
MaxFundingTxOutputs = math.MaxUint16
)
// ChannelID is a series of 32-bytes that uniquely identifies all channels
// within the network. The ChannelID is computed using the outpoint of the
// funding transaction (the txid, and output index). Given a funding output the
// ChannelID can be calculated by XOR'ing the big-endian serialization of the
type ChannelID [32]byte
// String returns the string representation of the ChannelID. This is just the
// hex string encoding of the ChannelID itself.
func (c ChannelID) String() string {
return hex.EncodeToString(c[:])
}
// NewChanIDFromOutPoint converts a target OutPoint into a ChannelID that is
// usable within the network. In order to covert the OutPoint into a ChannelID,
// we XOR the lower 2-bytes of the txid within the OutPoint with the big-endian
// serialization of the Index of the OutPoint, truncated to 2-bytes.
func NewChanIDFromOutPoint(op *wire.OutPoint) ChannelID {
// First we'll copy the txid of the outpoint into our channel ID slice.
var cid ChannelID
copy(cid[:], op.Hash[:])
// With the txid copied over, we'll now XOR the lower 2-bytes of the
// partial channelID with big-endian serialization of output index.
xorTxid(&cid, uint16(op.Index))
return cid
}
// xorTxid performs the transformation needed to transform an OutPoint into a
// ChannelID. To do this, we expect the cid parameter to contain the txid
// unaltered and the outputIndex to be the output index
func xorTxid(cid *ChannelID, outputIndex uint16) {
var buf [32]byte
binary.BigEndian.PutUint16(buf[30:], outputIndex)
cid[30] = cid[30] ^ buf[30]
cid[31] = cid[31] ^ buf[31]
}
// GenPossibleOutPoints generates all the possible outputs given a channel ID.
// In order to generate these possible outpoints, we perform a brute-force
// search through the candidate output index space, performing a reverse
// mapping from channelID back to OutPoint.
func (c *ChannelID) GenPossibleOutPoints() [MaxFundingTxOutputs]wire.OutPoint {
var possiblePoints [MaxFundingTxOutputs]wire.OutPoint
for i := uint32(0); i < MaxFundingTxOutputs; i++ {
cidCopy := *c
xorTxid(&cidCopy, uint16(i))
possiblePoints[i] = wire.OutPoint{
Hash: chainhash.Hash(cidCopy),
Index: i,
}
}
return possiblePoints
}
// IsChanPoint returns true if the OutPoint passed corresponds to the target
// ChannelID.
func (c ChannelID) IsChanPoint(op *wire.OutPoint) bool {
candidateCid := NewChanIDFromOutPoint(op)
return candidateCid == c
}