lnd/internal/musig2v040/keys.go
Oliver Gugger 0154226233
internal/musig2: rename to musig2v040 to avoid confusion
Since we explicitly keep an old version of a library in lnd for backward
compatibility we want to make sure the purpose and version of it is
clear and not misleading.
2023-02-03 18:30:09 +01:00

460 lines
15 KiB
Go

// Copyright 2013-2022 The btcsuite developers
package musig2v040
import (
"bytes"
"fmt"
"sort"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/schnorr"
"github.com/btcsuite/btcd/chaincfg/chainhash"
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
)
var (
// KeyAggTagList is the tagged hash tag used to compute the hash of the
// list of sorted public keys.
KeyAggTagList = []byte("KeyAgg list")
// KeyAggTagCoeff is the tagged hash tag used to compute the key
// aggregation coefficient for each key.
KeyAggTagCoeff = []byte("KeyAgg coefficient")
// ErrTweakedKeyIsInfinity is returned if while tweaking a key, we end
// up with the point at infinity.
ErrTweakedKeyIsInfinity = fmt.Errorf("tweaked key is infinity point")
// ErrTweakedKeyOverflows is returned if a tweaking key is larger than
// 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141.
ErrTweakedKeyOverflows = fmt.Errorf("tweaked key is to large")
)
// sortableKeys defines a type of slice of public keys that implements the sort
// interface for BIP 340 keys.
type sortableKeys []*btcec.PublicKey
// Less reports whether the element with index i must sort before the element
// with index j.
func (s sortableKeys) Less(i, j int) bool {
// TODO(roasbeef): more efficient way to compare...
keyIBytes := schnorr.SerializePubKey(s[i])
keyJBytes := schnorr.SerializePubKey(s[j])
return bytes.Compare(keyIBytes, keyJBytes) == -1
}
// Swap swaps the elements with indexes i and j.
func (s sortableKeys) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
// Len is the number of elements in the collection.
func (s sortableKeys) Len() int {
return len(s)
}
// sortKeys takes a set of schnorr public keys and returns a new slice that is
// a copy of the keys sorted in lexicographical order bytes on the x-only
// pubkey serialization.
func sortKeys(keys []*btcec.PublicKey) []*btcec.PublicKey {
keySet := sortableKeys(keys)
if sort.IsSorted(keySet) {
return keys
}
sort.Sort(keySet)
return keySet
}
// keyHashFingerprint computes the tagged hash of the series of (sorted) public
// keys passed as input. This is used to compute the aggregation coefficient
// for each key. The final computation is:
// - H(tag=KeyAgg list, pk1 || pk2..)
func keyHashFingerprint(keys []*btcec.PublicKey, sort bool) []byte {
if sort {
keys = sortKeys(keys)
}
// We'll create a single buffer and slice into that so the bytes buffer
// doesn't continually need to grow the underlying buffer.
keyAggBuf := make([]byte, 32*len(keys))
keyBytes := bytes.NewBuffer(keyAggBuf[0:0])
for _, key := range keys {
keyBytes.Write(schnorr.SerializePubKey(key))
}
h := chainhash.TaggedHash(KeyAggTagList, keyBytes.Bytes())
return h[:]
}
// keyBytesEqual returns true if two keys are the same from the PoV of BIP
// 340's 32-byte x-only public keys.
func keyBytesEqual(a, b *btcec.PublicKey) bool {
return bytes.Equal(
schnorr.SerializePubKey(a),
schnorr.SerializePubKey(b),
)
}
// aggregationCoefficient computes the key aggregation coefficient for the
// specified target key. The coefficient is computed as:
// - H(tag=KeyAgg coefficient, keyHashFingerprint(pks) || pk)
func aggregationCoefficient(keySet []*btcec.PublicKey,
targetKey *btcec.PublicKey, keysHash []byte,
secondKeyIdx int) *btcec.ModNScalar {
var mu btcec.ModNScalar
// If this is the second key, then this coefficient is just one.
if secondKeyIdx != -1 && keyBytesEqual(keySet[secondKeyIdx], targetKey) {
return mu.SetInt(1)
}
// Otherwise, we'll compute the full finger print hash for this given
// key and then use that to compute the coefficient tagged hash:
// * H(tag=KeyAgg coefficient, keyHashFingerprint(pks, pk) || pk)
var coefficientBytes [64]byte
copy(coefficientBytes[:], keysHash[:])
copy(coefficientBytes[32:], schnorr.SerializePubKey(targetKey))
muHash := chainhash.TaggedHash(KeyAggTagCoeff, coefficientBytes[:])
mu.SetByteSlice(muHash[:])
return &mu
}
// secondUniqueKeyIndex returns the index of the second unique key. If all keys
// are the same, then a value of -1 is returned.
func secondUniqueKeyIndex(keySet []*btcec.PublicKey, sort bool) int {
if sort {
keySet = sortKeys(keySet)
}
// Find the first key that isn't the same as the very first key (second
// unique key).
for i := range keySet {
if !keyBytesEqual(keySet[i], keySet[0]) {
return i
}
}
// A value of negative one is used to indicate that all the keys in the
// sign set are actually equal, which in practice actually makes musig2
// useless, but we need a value to distinguish this case.
return -1
}
// KeyTweakDesc describes a tweak to be applied to the aggregated public key
// generation and signing process. The IsXOnly specifies if the target key
// should be converted to an x-only public key before tweaking.
type KeyTweakDesc struct {
// Tweak is the 32-byte value that will modify the public key.
Tweak [32]byte
// IsXOnly if true, then the public key will be mapped to an x-only key
// before the tweaking operation is applied.
IsXOnly bool
}
// KeyAggOption is a functional option argument that allows callers to specify
// more or less information that has been pre-computed to the main routine.
type KeyAggOption func(*keyAggOption)
// keyAggOption houses the set of functional options that modify key
// aggregation.
type keyAggOption struct {
// keyHash is the output of keyHashFingerprint for a given set of keys.
keyHash []byte
// uniqueKeyIndex is the pre-computed index of the second unique key.
uniqueKeyIndex *int
// tweaks specifies a series of tweaks to be applied to the aggregated
// public key.
tweaks []KeyTweakDesc
// taprootTweak controls if the tweaks above should be applied in a BIP
// 340 style.
taprootTweak bool
// bip86Tweak specifies that the taproot tweak should be done in a BIP
// 86 style, where we don't expect an actual tweak and instead just
// commit to the public key itself.
bip86Tweak bool
}
// WithKeysHash allows key aggregation to be optimize, by allowing the caller
// to specify the hash of all the keys.
func WithKeysHash(keyHash []byte) KeyAggOption {
return func(o *keyAggOption) {
o.keyHash = keyHash
}
}
// WithUniqueKeyIndex allows the caller to specify the index of the second
// unique key.
func WithUniqueKeyIndex(idx int) KeyAggOption {
return func(o *keyAggOption) {
i := idx
o.uniqueKeyIndex = &i
}
}
// WithKeyTweaks allows a caller to specify a series of 32-byte tweaks that
// should be applied to the final aggregated public key.
func WithKeyTweaks(tweaks ...KeyTweakDesc) KeyAggOption {
return func(o *keyAggOption) {
o.tweaks = tweaks
}
}
// WithTaprootKeyTweak specifies that within this context, the final key should
// use the taproot tweak as defined in BIP 341: outputKey = internalKey +
// h_tapTweak(internalKey || scriptRoot). In this case, the aggregated key
// before the tweak will be used as the internal key.
//
// This option should be used instead of WithKeyTweaks when the aggregated key
// is intended to be used as a taproot output key that commits to a script
// root.
func WithTaprootKeyTweak(scriptRoot []byte) KeyAggOption {
return func(o *keyAggOption) {
var tweak [32]byte
copy(tweak[:], scriptRoot[:])
o.tweaks = []KeyTweakDesc{
{
Tweak: tweak,
IsXOnly: true,
},
}
o.taprootTweak = true
}
}
// WithBIP86KeyTweak specifies that then during key aggregation, the BIP 86
// tweak which just commits to the hash of the serialized public key should be
// used. This option should be used when signing with a key that was derived
// using BIP 86.
func WithBIP86KeyTweak() KeyAggOption {
return func(o *keyAggOption) {
o.tweaks = []KeyTweakDesc{
{
IsXOnly: true,
},
}
o.taprootTweak = true
o.bip86Tweak = true
}
}
// defaultKeyAggOptions returns the set of default arguments for key
// aggregation.
func defaultKeyAggOptions() *keyAggOption {
return &keyAggOption{}
}
// hasEvenY returns true if the affine representation of the passed jacobian
// point has an even y coordinate.
//
// TODO(roasbeef): double check, can just check the y coord even not jacobian?
func hasEvenY(pJ btcec.JacobianPoint) bool {
pJ.ToAffine()
p := btcec.NewPublicKey(&pJ.X, &pJ.Y)
keyBytes := p.SerializeCompressed()
return keyBytes[0] == secp.PubKeyFormatCompressedEven
}
// tweakKey applies a tweaks to the passed public key using the specified
// tweak. The parityAcc and tweakAcc are returned (in that order) which
// includes the accumulate ration of the parity factor and the tweak multiplied
// by the parity factor. The xOnly bool specifies if this is to be an x-only
// tweak or not.
func tweakKey(keyJ btcec.JacobianPoint, parityAcc btcec.ModNScalar, tweak [32]byte,
tweakAcc btcec.ModNScalar,
xOnly bool) (btcec.JacobianPoint, btcec.ModNScalar, btcec.ModNScalar, error) {
// First we'll compute the new parity factor for this key. If the key has
// an odd y coordinate (not even), then we'll need to negate it (multiply
// by -1 mod n, in this case).
var parityFactor btcec.ModNScalar
if xOnly && !hasEvenY(keyJ) {
parityFactor.SetInt(1).Negate()
} else {
parityFactor.SetInt(1)
}
// Next, map the tweak into a mod n integer so we can use it for
// manipulations below.
tweakInt := new(btcec.ModNScalar)
overflows := tweakInt.SetBytes(&tweak)
if overflows == 1 {
return keyJ, parityAcc, tweakAcc, ErrTweakedKeyOverflows
}
// Next, we'll compute: Q_i = g*Q + t*G, where g is our parityFactor and t
// is the tweakInt above. We'll space things out a bit to make it easier to
// follow.
//
// First compute t*G:
var tweakedGenerator btcec.JacobianPoint
btcec.ScalarBaseMultNonConst(tweakInt, &tweakedGenerator)
// Next compute g*Q:
btcec.ScalarMultNonConst(&parityFactor, &keyJ, &keyJ)
// Finally add both of them together to get our final
// tweaked point.
btcec.AddNonConst(&tweakedGenerator, &keyJ, &keyJ)
// As a sanity check, make sure that we didn't just end up with the
// point at infinity.
if keyJ == infinityPoint {
return keyJ, parityAcc, tweakAcc, ErrTweakedKeyIsInfinity
}
// As a final wrap up step, we'll accumulate the parity
// factor and also this tweak into the final set of accumulators.
parityAcc.Mul(&parityFactor)
tweakAcc.Mul(&parityFactor).Add(tweakInt)
return keyJ, parityAcc, tweakAcc, nil
}
// AggregateKey is a final aggregated key along with a possible version of the
// key without any tweaks applied.
type AggregateKey struct {
// FinalKey is the final aggregated key which may include one or more
// tweaks applied to it.
FinalKey *btcec.PublicKey
// PreTweakedKey is the aggregated *before* any tweaks have been
// applied. This should be used as the internal key in taproot
// contexts.
PreTweakedKey *btcec.PublicKey
}
// AggregateKeys takes a list of possibly unsorted keys and returns a single
// aggregated key as specified by the musig2 key aggregation algorithm. A nil
// value can be passed for keyHash, which causes this function to re-derive it.
// In addition to the combined public key, the parity accumulator and the tweak
// accumulator are returned as well.
func AggregateKeys(keys []*btcec.PublicKey, sort bool,
keyOpts ...KeyAggOption) (
*AggregateKey, *btcec.ModNScalar, *btcec.ModNScalar, error) {
// First, parse the set of optional signing options.
opts := defaultKeyAggOptions()
for _, option := range keyOpts {
option(opts)
}
// Sort the set of public key so we know we're working with them in
// sorted order for all the routines below.
if sort {
keys = sortKeys(keys)
}
// The caller may provide the hash of all the keys as an optimization
// during signing, as it already needs to be computed.
if opts.keyHash == nil {
opts.keyHash = keyHashFingerprint(keys, sort)
}
// A caller may also specify the unique key index themselves so we
// don't need to re-compute it.
if opts.uniqueKeyIndex == nil {
idx := secondUniqueKeyIndex(keys, sort)
opts.uniqueKeyIndex = &idx
}
// For each key, we'll compute the intermediate blinded key: a_i*P_i,
// where a_i is the aggregation coefficient for that key, and P_i is
// the key itself, then accumulate that (addition) into the main final
// key: P = P_1 + P_2 ... P_N.
var finalKeyJ btcec.JacobianPoint
for _, key := range keys {
// Port the key over to Jacobian coordinates as we need it in
// this format for the routines below.
var keyJ btcec.JacobianPoint
key.AsJacobian(&keyJ)
// Compute the aggregation coefficient for the key, then
// multiply it by the key itself: P_i' = a_i*P_i.
var tweakedKeyJ btcec.JacobianPoint
a := aggregationCoefficient(
keys, key, opts.keyHash, *opts.uniqueKeyIndex,
)
btcec.ScalarMultNonConst(a, &keyJ, &tweakedKeyJ)
// Finally accumulate this into the final key in an incremental
// fashion.
btcec.AddNonConst(&finalKeyJ, &tweakedKeyJ, &finalKeyJ)
}
// We'll copy over the key at this point, since this represents the
// aggregated key before any tweaks have been applied. This'll be used
// as the internal key for script path proofs.
finalKeyJ.ToAffine()
combinedKey := btcec.NewPublicKey(&finalKeyJ.X, &finalKeyJ.Y)
// At this point, if this is a taproot tweak, then we'll modify the
// base tweak value to use the BIP 341 tweak value.
if opts.taprootTweak {
// Emulate the same behavior as txscript.ComputeTaprootOutputKey
// which only operates on the x-only public key.
key, _ := schnorr.ParsePubKey(schnorr.SerializePubKey(
combinedKey,
))
// We only use the actual tweak bytes if we're not committing
// to a BIP-0086 key only spend output. Otherwise, we just
// commit to the internal key and an empty byte slice as the
// root hash.
tweakBytes := []byte{}
if !opts.bip86Tweak {
tweakBytes = opts.tweaks[0].Tweak[:]
}
// Compute the taproot key tagged hash of:
// h_tapTweak(internalKey || scriptRoot). We only do this for
// the first one, as you can only specify a single tweak when
// using the taproot mode with this API.
tapTweakHash := chainhash.TaggedHash(
chainhash.TagTapTweak, schnorr.SerializePubKey(key),
tweakBytes,
)
opts.tweaks[0].Tweak = *tapTweakHash
}
var (
err error
tweakAcc btcec.ModNScalar
parityAcc btcec.ModNScalar
)
parityAcc.SetInt(1)
// In this case we have a set of tweaks, so we'll incrementally apply
// each one, until we have our final tweaked key, and the related
// accumulators.
for i := 1; i <= len(opts.tweaks); i++ {
finalKeyJ, parityAcc, tweakAcc, err = tweakKey(
finalKeyJ, parityAcc, opts.tweaks[i-1].Tweak, tweakAcc,
opts.tweaks[i-1].IsXOnly,
)
if err != nil {
return nil, nil, nil, err
}
}
finalKeyJ.ToAffine()
finalKey := btcec.NewPublicKey(&finalKeyJ.X, &finalKeyJ.Y)
return &AggregateKey{
PreTweakedKey: combinedKey,
FinalKey: finalKey,
}, &parityAcc, &tweakAcc, nil
}